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Abstract.  A relatively new technology for the electric vehicles considers the use 

of brushless permanent magnet motors directly connected to the car wheels (in-

wheel motors or hub motors). In order to evaluate the performance that can be ob-

tained, a complete dynamic model of a four-wheel drive (4WD) electric vehicle 

equipped with four in-wheel motors is developed and a correspondent parametric 

simulator is implemented in Matlab/SimulinkTM. The simulator is also employed for 

designing, testing and comparing various control logics which reproduce the han-

dling behavior of a real vehicle. 
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1 Introduction 

In the last years, several car manufacturers have focused their efforts on the produc-

tion of completely electric vehicles with the aim of both increasing the energy effi-

ciency and reducing the environmental impact [1, 2]. 

A step forward in this direction is offered by the introduction of a new technology 

based on electric motors directly connected to the wheels (also known as in-wheel 

motors or hub motors) [3, 4]. The best suited electric motor class for the inclusion 

in the wheel rims is represented by the permanent magnet brushless DC motors, 

thanks to their compactness, low weight, high torque per unit mass and volume, and 

maximum speed. The adopted solutions are many, because, without the need of any 

transmission shafts, traction can be moved from the front to the rear axle almost 

arbitrarily. As a result, the four-wheel drive (4WD) should be easily achieved [5]. 

Moreover, independently controlled motors allow high dynamic performance, with-

out the presence of complex gearboxes and mechanical differentials. The price is an 

increased complexity in the control design algorithms, considering also the negative 

effects of augmented unsprung mass on vehicle performance dynamics [6, 7]. 
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In this paper, a complete vehicle, wheel and tire dynamic model is built, with the 

inclusion of the electric in-wheel motors. The mathematical model is then imple-

mented in a modular and parametric simulator by using the Matlab/SimulinkTM en-

vironment. The simulator is employed both for the analysis of the system perfor-

mance and the synthesis of robust control algorithms [8, 9, 10]. 

The paper is organized as follows: in Section 2, some preliminaries about the 

overall system mathematical model are recalled; in Section 3 the simulator is de-

scribed in detail and the most significant simulation results are reported; in Section 

4 some differential control logics, related to the torque distribution among the in-

wheel motors, are analyzed and compared. Finally, Section 5 concludes the paper. 

2 Preliminaries 

In this Section, some preliminaries about the vehicle dynamic modeling are syn-

thetically recalled. The global mathematical model is obtained by assembling the 

models of the system main components: vehicle, tires, in-wheel motors.  

2.1 Vehicle dynamics 

There exist numerous mathematical models in literature for representing the vehicle 

dynamics. If the interest is limited to its directional behavior, with the hypothesis of 

slowly varying forward speed, the bounce and the pitch motions of the car body can 

be neglected [11]. By further assuming long-range and low-speed turns, the roll 

degree of freedom can be also disregarded. As a consequence, a planar model is 

considered for the vehicle rigid body dynamics.  

Other simplifying assumptions are: 

• the wheels mass is negligible; 

• the vehicle is moving on a flat and rigid road, such as to be considered a geomet-

rical plane; 

• there is a univocal relationship between the steering wheel angle and the wheel 

angle;  

• the steering axis is vertical and passes through the center of the contact. 

The car body reference system has the x-axis parallel to the ground, in the forward 

direction, the z-axis orthogonal to the road plan and upwards directed, and the y-

axis to complete the left-handed reference frame.  

By referring to Fig. 1, with the hypothesis of small angles, the congruence equa-

tions are: 

α1s = δ −
v+ra1

u−rt/2
 ,   (1) 
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α1D = δ −
v+ra1

u+rt/2
 ,   (2)

 α2s = −
v−ra2

u−rt/2
,    (3) 

α2D = −
v−ra2

u+rt/2
,    (4) 

where 𝑡 is the car track width; 𝑎1 is the front wheelbase; 𝑎2 is the rear wheelbase; u 

is the forwarding speed; v is the lateral speed; δ is the steering angle; 𝑟 is the yaw 

rate; α1s, α1D, α2s, α2D are the slip angles. 

 

Fig. 1 Kinematic quantities definition. 

The equations of motions can be expressed by using the classical rigid body dynam-

ics equations. By referring to the force and torque scheme of Fig. 2, the model is: 

m ∙ (u̇ − vr ) = X = (Fx1s + Fx1d) ∙ cos(δ) + Fx2s + Fx2d − (Fy1s + Fy1d) ∙

sin(δ) −
1

2
ρCxSu2 ,      (5) 

m ∙ (v̇ + ur) = Y = (Fy1s + Fy1d) ∙ cos(δ) + (Fx1s + Fx1d) ∙ sin(δ) + Fy2s +

Fy2d ,        (6) 

Jṙ = N = (Fy1s + Fy1d) ∙ a1 ∙ cos(δ) − (Fy2s + Fy2d) ∙ a2 + (Fx1s + Fx1d) ∙ a1 ∙

sin(δ) −  𝑡

2
∙ [(𝐹𝑥1𝑠 − 𝐹𝑥1𝑑) ∙ cos(𝛿) + (𝐹𝑥2𝑠 − 𝐹𝑥2𝑑) −  (𝐹𝑦1𝑠 − 𝐹𝑦1𝑑) ∙ sin(𝛿)].

        (7) 
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Fig. 2 Forces acting on the vehicle. 

2.2 Tire model 

The interaction force between the tire and the road can be described by using the 

well-known and widely employed Pacejka “Magic Formula” [12]: 

 

Y(x) = D ∙ cos{C ∙ tan−1[B ∙ x − E ∙ (B ∙ x − tan−1(B ∙ x))]}, (8) 

 

where Y = y + Sv , X = x + Sh, being  Y  the output variable, i.e. the longitudinal 

force Fx or the lateral force Fy, and X the input variable, i.e. the longitudinal slip or 

the lateral slip (slip angle) (see also Fig. 3). 
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Fig. 3 Macro parameters of the magic formula.  

In Fig. 4 the variations of Fy as a function of the the vertical load are shown.  

 

Fig. 4 Lateral force vations for various vertical loads. 

2.3 Wheel and in-wheel motor models 

By assuming a rigid wheel and by neglecting the rolling resistance, the wheel equa-

tion of motions is the following: 
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Ir ∙ ω̇ = M − Fx ∙ R,    (9) 

where M is the applied torque, Ir is the wheel inertia, and                                                                                                                                        

ω is the wheel angular velocity, Fx is the longitudinal interaction force, and R is the 

wheel radius. 

 

Fig. 5 Power and speed characteristic curves.  

By neglecting the dynamics of the electric motor, a static nonlinear model is pro-

posed, based on the power and speed characteristics of the motor (e.g., see Fig. 5).  

 

 3 Differential logics 

In this Section, three types of differential logics are analyzed and compared. As 

a first case, the (ideal) open differential case is considered, where the engine torque 

is equally distributed, independently of the real conditions of the wheels. In Fig. 6, 

an example of a simulated open differential acting in presence of icy road conditions 

is reported.  
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Fig. 6 Slip phenomenon with in-wheel motors.  

A second case considered is the speed-sensitive automatic locking differential logic. 

A braking torque characteristic curve is now included in the model. Of course, the 

humping phenomenon previously shown in Fig. 6 does not occur since the braking 

torque suddenly goes to zero as soon as the velocity difference goes to zero.   

Finally, a power sensitive automatic locking differential is analyzed. In this case it 

is assumed that the braking torque is linearly increasing with the input commanded 

torque. The slope of the curve is chosen considering that, as for the Torsen differ-

ential, the Torque Bias Ratio (TBR) is constant. The following relationship is 

adopted: 

if ωA > ωB 

 MA =
MP

2
− Mf (10) 

 MB =
MP

2
+ Mf (11) 

since: 

 TBR =
MB

MA
 (12) 

it is: 

 
MP

2
+ Mf = TBR ∙

MP

2
− TBR ∙ Mf (13) 

 Mf =
TBR−1

1+TBR
∙

MP

2
 (14) 

 

By substituting (14) in (10)-(11), it follows: 

 

 MB =
TBR

1+TBR
 MP                      MA =

1

1+TBR
 MP (15) 
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3 Simulation results 

The mathematical model of the system components described above is implemented 

in a Matlab/SimulinkTM simulator. In Fig. 7 the main subsystems of the simulator 

are shown. Each part is characterized by a set tunable parameters and can be possi-

bly modified independently. 

 

Fig. 7 Main subsystems of the electric vehicle simulator.  

In Fig. 8, the speed sensitive and the power sensitive automatic locking differentials 

are compared in a maneuver on the straight where one of the two wheels encounters 

an ice floe. As it was expected, unlike the power sensitive differential, the speed 

sensitive differential provides appreciable torques only when the tire begins to slip.   

 

(a) (b) 

Fig. 8 Angular velocities with a speed sensitive (a) and a power sensitive (b) differential logics.  

In the following simulation results, the open and the power sensitive differential 

logics are analyzed according to 4 different combinations: 
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- open central and axles differentials; 

- open central and automatic locking axles differentials; 

- automatic locking central and open axles differentials; 

- automatic locking central and axles diffentials. 

Each simulation assumes a TBR = 3 for the central differential, a TBR = 5 for the 

rear differential and a TBR = 2.5 for the front differential, which are typical values 

for a Torsen diffential. Three different maneuvers are used to make a performance 

comparison: a steering pad maneuver where the vehicle describes a circular trajec-

tory with a radius of 100 m and a velocity growing from 30km/h with a constant 

acceleration of 2 m/s2; an acceleration maneuver on straight from a starting velocity 

of 30 km/h and with a constant acceleration of 1.8 m/s2, in presence of ice on the 

vehicle left side; an acceleration maneuver on straight from a starting velocity of 30 

km/h and with a constant acceleration of 1.8 m/s2, in presence of ice on both sides 

of the vehicle.  

For the steering pad maneuver, the solution with both central and axles automatic 

locking differentials guarantees the best curvature (see Fig. 9). Moreover, the use 

of three automatic locking differentials provides the best roadholding (see Fig. 10). 

  

Fig. 9 Steering pad maneuver. 

 

Fig. 10 Longitudinal slip of the front left wheel during the steering pad maneuver.  
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For the on straight constant acceleration maneuver, with icy conditions on the left 

wheels, the cases with open differentials and with automatic locking differentials 

are only reported. Again, the solution with only automatic locking differentials pro-

vides the best performance (see Figs. 11 and 12).  

(a) 
(b) 

Fig. 11 Front (a) and rear (b) wheels angular velocities for an on straight acceleration maneuver 

with icy conditions on the left side of the vehicle and open differentials .  

 

(a) 

 

(b) 

Fig. 12 Front (a) and rear (b) wheels angular velocities for an on straight acceleration maneuver 

with icy conditions on the left side of the vehicle and automatic locking differentials.  

Similar results are obtained in last simulation scenario, i.e. an on straight constant 

acceleration maneuver with icy conditions on both sides of the vehicle. It is con-

firmed that the solution with central and axles automatic locking differentials guar-

antees the best performance.  
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4 Conclusions 

In this paper the influence of the in-wheel motors on the vehicle dynamics has been 

analyzed. Starting from the mathematical model of the system components, a mod-

ular and parametric simulator has been developed in Matlab/SimulinkTM. The cru-

cial problem of the torque distribution control among the 4 electric motors has been 

considered by evaluating various differential logics which mimic the currently em-

ployed ones. From the simulation results for the considered maneuvers, the best 

solution consists in adopting an automatic locking logic for both central and axles 

diffentials, which can be more easily implemented with respect to the internal com-

bustion engines case. Possible future developments of this work could be the inclu-

sion of an ESP control system with also a more complex car model for both the 

sprung and the unsprung masses and moreover the study of torque distribution 

logics not deriving from existing mechanical devices. 
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