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Abstract

Cleft palate is a common congenital disorder that affects up to 1 in 2500 live births and
results in considerablemorbidity to affected individuals and their families. The aetiology of
cleft palate is complex with both genetic and environmental factors implicated. Mutations in
the transcription factor p63 are one of the major individual causes of cleft palate; however,
the gene regulatory networks in which p63 functions remain only partially characterized. Our
findings demonstrate that p63 functions as an essential regulatory molecule in the spatio-
temporal control of palatal epithelial cell fate to ensure appropriate fusion of the palatal
shelves. Initially, p63 induces periderm formation and controls its subsequent maintenance
to prevent premature adhesion between adhesion-competent, intra-oral epithelia. Subse-
quently, TGFβ3-induced down-regulation of p63 in the medial edge epithelia of the palatal
shelves is a pre-requisite for palatal fusion by facilitating peridermmigration from, and
reducing the proliferative potential of, the midline epithelial seam thereby preventing cleft
palate.

Author summary
Cleft palate is a serious congenital condition which affects approximately 1 in every 2500

births. Cleft palate occurs when the palatal shelves fail to grow, adhere or fuse during

development. Mutations in the gene encoding the transcription factor p63 result in cleft

palate in humans and mice. However, the role of p63 and how it controls the network of
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genes to regulate palate development is not well understood.In this study, we demon-

strate that p63 controls the spatio-temporal regulation of palatal epithelial cell fate to

ensure appropriate palatal adhesion: p63 induces the formation of a flattened layer of

epithelial (periderm) cells and controls its subsequent maintenance. We also demon-

strate that TGFβ3-induced, down-regulation of p63 in the medial edge epithelial cells,

through which the palatal shelves adhere and fuse, controls Jag2-induced periderm

migration to the oral and nasal epithelial triangles. In addition, p63 plays a central role

in maintaining the proliferative potential of the basal layer of the medial edge epithelia.

Our study provides significant new insights into the mechanisms that regulate develop-

ment of the palate by establishing the role of p63 in governing the fate of the midline epi-

thelial cells.

Introduction
Cleft palate is a common congenital anomaly with a prevalence estimated at 1:2500 live births,

that results from failure of growth, elevation, adhesion and/or fusion of the palatal shelves dur-

ing embryogenesis [1,2]. Cleft palate causes major morbidity to affected individuals through

problems with feeding, breathing, speaking, hearing and social adjustment which can be ame-

liorated to varying degrees by airway support, surgery, speech therapy, dental treatment, and

psychosocial intervention [1,2]. The frequent occurrence and resulting major healthcare bur-

den highlight the need to dissect the mechanisms that underlie development of the secondary

palate and how they are disturbed in cleft palate [2].

In mice, development of the secondary palate mirrors that of humans; consequently, the

mouse is the main model organism for the study of mammalian palatogenesis [3]. In mice, pal-

atal shelves initiate from the maxillary processes on embryonic day (E)11 and grow vertically,

lateral to the tongue, during E12 and E13. At these stages, each palatal shelf consists of a core

of neural crest cell-derived mesenchyme surrounded by a simple, undifferentiated epithelium

consisting of a basal layer of cuboidal ectodermal cells and a surface layer of flattened periderm

cells [4,5]. During E14, the palatal shelves re-orientate to a horizontal position above the ton-

gue and contact via their medial edge epithelia (MEE). The MEE of the apposed palatal shelves

adhere to form a midline epithelial seam (MES) which subsequently degenerates to allow mes-

enchymal continuity across the palate by E15.5 [3].

Although the epithelia of the vertical palatal shelves are in intimate contact with the man-

dibular and lingual epithelia, pathological fusions between the palate and the mandible and/or

the tongue are rare [6–8]. Nevertheless, the MEE must rapidly acquire the capability to fuse if

the palatal shelves are not to remain cleft. Although the mechanisms by which MES degenera-

tion is completed have been controversial, the prevailing evidence supports a major role for

cell death [9–11]. Moreover, competence for palatal shelf fusion is precisely regulated: peri-

derm acts as a barrier which prevents premature adhesion of the oral epithelia and removal of

periderm from the MES is therefore a prerequisite for palatal fusion [8,12]. However, the

molecular mechanisms underlying the precise spatio-temporal control of palatal adhesion/

fusion remain incompletely characterized.

Mutations in the gene encoding the transcription factor p63 result in cleft palate in humans

and mice [13,14]. The TP63 gene encodes at least six protein variants. Different promoters

produce two alternative N-termini; TA-isoforms which contain a transactivation sequence

and ΔN-isoforms which possess a shorter activation domain [13]. In addition, both TA and

ΔN isoforms undergo alternative splicing towards the C-terminus giving rise to α-, β- and γ-

p63 controls palatal epithelial fate

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1006828 June 12, 2017 2 / 24

and JD) https://www.mrc.ac.uk; The Wellcome

Trust Institutional Strategic Support Fund (grant

105610 to MJD) www.wellcome.ac.uk; Telethon,

Italy (grant GGP09230 to CM) www.telethon.it; and

the European Research Area-Net Research

Programmes on Rare Diseases (grant to JZ and

CM); www.erare.eu. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1006828
https://www.mrc.ac.uk
http://www.wellcome.ac.uk
http://www.telethon.it
http://www.erare.eu


isoforms [13]. All isoforms contain a DNA-binding domain but they vary in their ability to

activate or repress their target genes [15–17]. ΔNp63α, the major isoform present in the oral

ectoderm [18], is expressed in the basal epithelial cells until after palatal shelf elevation when it

is down-regulated in the midline epithelial seam [19]. Despite the demonstration that p63

transcriptionally activates Fgfr2 to control epithelial and mesenchymal proliferation during

palatal growth [20], cell adhesion molecules to control ectodermal adhesion [21,22], and Irf6
to regulate palatal fusion [19], it is unclear whether down-regulation of p63 in the MEE is a

pre-requisite for, or a consequence of, palatal fusion.

In the current paper, we use the well-characterized Tgfb3-/- mutant mouse, which exhibits

cleft palate [23], to demonstrate that down-regulation of p63 in the MEE is essential for palatal

fusion and that over-expression of ΔNp63α in vivo results in sub-mucous cleft palate. In addi-

tion, we show that ΔNp63α plays a central role in the spatio-temporal regulation of palatal epi-

thelial cell fate to ensure appropriate adhesion and fusion of the palatal shelves, thereby

preventing cleft palate.

Results
Rescue of cleft palate in Tgfb3-/- mice by reducing p63 dosage in the
medial edge epithelia
As p63 expression is maintained in the MEE of Tgfb3-/- mice which exhibit cleft palate and

persistent periderm cells over the MEE [12,19,23,24], we manipulated the level of p63 in the

MEE of Tgfb3-/- mice genetically. Initially, we generated Tgfb3+/-;p63+/- compound heterozy-

gous mice which did not exhibit any gross abnormalities and in which fusion of the second-

ary palate proceeded normally. These mice were inter-crossed with Tgfb3+/- mice to generate

Tgfb3-/- embryos which were also heterozygous for p63. Histological analysis demonstrated

that up to E13.5 palatal development progressed normally in wild-type, Tgfb3-/-, and Tgfb3-/-;

p63+/- mice (S1 Figure). In contrast, while the vast majority of E14.5 (Fig 1A–1C) and E15.0

(S2 Figure) Tgfb3-/-;p63+/+ mice exhibited cleft palate, consistent with previous reports [23],

the MEE of the Tgfb3-/-;p63+/- littermates approximated and adhered in the midline to form

the MES which subsequently degenerated to allow mesenchymal continuity across the palate

in 88.9% of embryos (n = 24/27). Although 6.9% (n = 2/29) of Tgfb3-/-embryos displayed a

small degree of palatal shelf fusion which was restricted to the anterior region of the second-

ary palate, this difference is statistically significant (p<0.001; Fisher’s Exact Test) and sup-

ports the hypothesis that epistatic down-regulation of p63 in Tgfb3-/- embryos rescues the

cleft palate phenotype.

Down-regulation of p63 in Tgfb3-/- mice restores medial edge epithelial
fate
Previous research has shown that cessation of proliferation, induction of apoptosis, and peri-

derm removal is essential for completion of palatal fusion [11,25], we therefore characterized

MEE fate in wild-type, Tgfb3-/- and Tgfb3-/-;p63+/- mice in greater detail. At E13.5, palatogen-

esis in Tgfb3-/- and Tgfb3-/-;p63+/- mice was comparable to that observed in their wild-type lit-

termates (S1 Figure). At E14.5, p63 expression persisted in the basal cells of the epithelia of the

cleft palatal shelves in Tgfb3-/- mice; in contrast, the MES of wild-type and Tgfb3-/-;p63+/-

embryos had formed, with no apparent p63 staining observed in the midline seam (Fig 1D–

1F). Phosphohistone-H3 immunostaining demonstrated that the MEE ceased proliferation in

Tgfb3-/-;p63+/- embryos, with no significant difference in proliferation in the palatal epithelium

or mesenchyme between wild-type or Tgfb3-/-;p63+/- embryos (S3 Figure) while activated
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Fig 1. Rescue of cleft palate in Tgfb3-/- mice by reducing p63 dosage in themedial edge epithelia. (A) The
palatal shelves of wild-typemice elevate, adhere and fuse to form a transient midline epithelia seam at E14.5 while
(B) the palatal shelves of Tgfb3-/- embryos elevate but fail to adhere to, or fuse with, one another. (C) In contrast,
reducing p63 dosage in a Tgfb3-/- background restores the wild-type phenotype. (DÐI ) In E14.5 wild-typemice, p63
expression is down-regulated in theMEE cells which cease proliferation and undergo apoptosis. In contrast, in

p63 controls palatal epithelial fate
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caspase-3 immunostaining confirmed apoptotic activity in the MEE of Tgfb3-/-;p63+/- mice,

thereby restoring the pattern of cell behaviour exhibited by wild-type mice (Fig 1D–1I). In

addition, keratin 14 and keratin 17 immunostaining indicated that the distinct basal and peri-

derm cell layers that characterize the MEE of Tgfb3-/- mice, were restored to a wild-type pattern

in Tgfb3-/-;p63+/- embryos (Fig 1J–1L). Similarly, in situ hybridization for Mmp13, which is

expressed in the MEE of wild-type embryos but lost in their Tgfb3-/- littermates, was restored

in Tgfb3-/-;p63+/- mice (Fig 1M–1O).

To study periderm fate in greater detail, a transgenic reporter mouse in which the 5’

upstream sequence from the mouse keratin 17 gene directs GFP expression in ectoderm-

derived epithelial appendages during embryonic development (mKrt17-GFP) [26], was

employed in combination with an in vitro palatal shelf culture system. During palatogenesis in

wild-type embryos, confocal imaging of GFP expression over a 24-hour period revealed that

periderm cells migrated out of the MEE towards the epithelial triangles and into the oral and

nasal epithelia of the palatal shelves allowing MES degradation to be completed (S1 Video). As

p63 is down-regulated in the MEE of wild-type but not Tgfb3-/- mice which exhibit cleft palate

and persistent periderm cells over the MEE [12,19], we crossed the mKrt17-GFP reporter onto

a Tgfb3-/- background and noted that GFP-labelled periderm cells failed to migrate out of the

MEE despite forced contact between the palatal shelves (Fig 2D–2F; S2 Video). In contrast, the

migratory periderm phenotype observed in the MEE of wild-type mice was restored in

Tgfb3-/-;p63+/- embryos (Fig 2G–2I; S3 Video).

p63 regulates a cell adhesion network in the secondary palate
To gain insights into the molecular networks controlled by p63 during development of the

secondary palate, we performed chromatin immunoprecipitation followed by high-through-

put sequencing (ChIP-seq) on pooled E13.5/E14.5 mouse palatal shelves and identified 6295

genomic regions bound by ΔNp63α in vivo (p�1e-5) (S4 Figure, S1 Table). Gene-set enrich-

ment performed using the Genomic Regions Enrichment of Annotation Tool (GREAT) [27]

indicated that p63 binding sites were significantly enriched close to genes encoding proteins

implicated in ectodermal development including cell junction organization/assembly, adhe-

rens junctions, and hemi-desmosome assembly suggesting that ΔNp63α plays an important

role in controlling adhesion of the palatal shelves during development (S4 Figure). Subse-

quently, we integrated the ChIP-seq data with microarray data obtained from palatal shelves

dissected from individual E14 wild-type versus p63-/- embryos and identified 889 differen-

tially-expressed genes (p<0.05: 441 genes down-regulated; 448 up-regulated) (Fig 3A; S2

Table). Consistent with the GREAT analysis, Gene Ontology analysis indicated that genes

involved in ectodermal development and cell adhesion were over-represented among the dif-

ferentially-expressed genes (Fig 3B; S3 Table). Down-regulated genes included those

involved in desmosome formation, adherens junction formation, and cell-matrix adhesion.

Conversely, up-regulated genes included those involved with tight junction formation (Fig 3;

S3 Table). RT-qPCR analysis confirmed the results of the microarray analysis (Fig 3C) while

ChIP-qPCR validated p63 binding in close proximity to these genes in vivo (Fig 3D) strongly

E14.5 Tgfb3-/- mice, p63 expression is maintained in the MEEwhich continue to proliferate and do not undergo cell
death. Reducing p63 dosage in a Tgfb3-/- background restores wild-type behaviour in the MEE. (JÐL ) In wild-type
and Tgfb3-/-;p63+/- mice, keratin 17-positive periderm cells migrate out of the MEE to form the oral and nasal
epithelial triangles, whereas in Tgfb3-/- mice, distinct keratin 14-positive basal and keratin 17-positive periderm
layers persist and the palatal shelves fail to adhere/fuse. (MÐO )Mmp13, which is absent from the MEE in E14.5
Tgfb3-/- mice (arrowed), is restored to a wild-type expression pattern in Tgfb3-/-;p63+/- embryos. p: palatal shelves; t:
tongue. Scale bars: A-C &M-O, 250 μm; D-L, 100 μm.

https://doi.org/10.1371/journal.pgen.1006828.g001
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suggesting that ΔNp63α transcriptionally regulates a cell adhesion network in the secondary

palate.

p63 function is essential for periderm development
The ChIP-seq data also identified p63-bound regions associated with Pvrl1, Irf6, Fgfr2,

Tcfap2a, Pdgfa, Sfn, Grhl3 and Jag2, mutations in which result in cleft palate [8, 28–31]. With

the exception of Fgfr2and Grhl3, these genes were down-regulated in p63-/- palatal shelves. In

Fig 2. Down-regulation of p63 in themedial edge epithelia allows peridermmigration.mKrt17-GFP transgenicmice were used for time-lapse
confocal imaging of peridermmigration during development of the secondary palate. (A-C) On a wild-type background, GFP-positive periderm cells
migrate out of the midline seam (arrowed) to form the epithelial triangles on the oral and nasal surfaces as part of the process wherebymesenchymal
continuity across the palate is achieved. (D-F) In contrast, in Tgfb3-/- embryos, GFP-positive periderm cells fail to migrate out of the midline epithelial seam
and the secondary palate remains cleft. (G-I) Reducing p63 dosage in Tgfb3-/- embryos restores the migratory periderm phenotype allowing palatal fusion
and rescuing the cleft palate phenotype (region of midline is arrowed). p: palatal shelves. The images are representative stills taken at the same Z position
over a 24-hour culture period. The videos are provided as Supplemental Material, S1±S3 Videos.

https://doi.org/10.1371/journal.pgen.1006828.g002
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Fig 3. p63 regulates an adhesion programme in the secondary palate. (A) Heatmap of genes encoding proteins involved in cell adhesion that
are differentially-expressed in the palatal shelves of wild-type versus p63-/- embryos (green, down-regulation; black, no significant change; red, up-
regulation). (B) Functional annotation of differentially-expressed genes in the palatal shelves of wild-type versus p63-/- embryos as assessed by
DAVID analysis. (C) qPCR analysis of genes indicated as differentially-regulated in microarray analyses using RNA extracted from palatal shelves
dissected from E14.0 wild-type and p63-/- mice. (D) ChIP-qPCR analysis of p63-bound sites within 25 kb of cell adhesion genes. Fold-enrichment for
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total, 12 p63 binding sites in ‘cleft palate-associated genes’, including novel sites close to Pvrl1,

Tcfap2a, Sfn, Grhl3 and Jag2, were validated by ChIP-qPCR analysis of E13.5 palatal shelves

(Fig 4A). Notably, Irf6, Sfn, Grhl3 and Jag2 play an essential role in periderm formation [8,31].

To determine if p63 is required for periderm development, we examined the palatal shelves of

E12.5 and E13.5 p63-/- mice. Histological analysis of wild-type palatal shelves revealed basal

epithelial cells covered by a layer of flattened cells, a morphological characteristic of periderm

(Fig 4B and 4D). In contrast, the palatal shelves of p63-/- mice lacked this layer with only pro-

truding, rounded cells observed above a disorganized basal cell layer (Fig 4C and 4E). To con-

firm these results, we analysed keratin 17 expression [32]. While keratin 17-positive periderm

cells were observed in wild-type palatal shelves (Fig 4F and 4H), only patchy keratin 17 expres-

sion was observed in the basal epithelia of their p63-/- littermates (Fig 4G and 4I).

To investigate whether p63 regulates adhesion between periderm and basal epithelial cells,

we analysed the expression of a subset of cell adhesion molecules identified as p63 targets in

the secondary palate. Expression of the desmosomal protein plakoglobin was detected on the

surface of the basal epithelial layer of E13.5 wild-type palatal shelves (Fig 5A and 5B). In con-

trast, plakoglobin expression was markedly reduced in E13.5 p63-/- palatal shelves and expres-

sion at the apical border of the basal cells was absent (Fig 5C and 5D). Similar to plakoglobin,

nectin-1 expression was observed along the basal epithelial layer in E13.5 wild-type palatal

shelves (Fig 5E), localizing specifically to the basal/periderm junction (Fig 5F). In contrast,

nectin-1 expression was markedly down-regulated in E13.5 p63-/- palatal shelves (Fig 5G).

Deconvolution images revealed that the localized expression of nectin-1 at the basal/periderm

junction was absent in E13.5 p63-/- palatal shelves (Fig 5H).

To determine if loss of expression of adherens junction proteins was specific to p63 tran-

scriptional targets, we analysed nectin-4 expression. Mutations in PVRL4, which encodes nec-

tin-4, have been found in ectodermal dysplasia syndromes [33], but Pvrl4 is not thought to be

under the control of p63 [22]. In wild-type embryos at E13.5, nectin-4 was localized at the

basal/periderm junction throughout the palatal epithelia in a pattern similar to that of nectin-1

(Fig 5I and 5J). In contrast, in the palatal epithelia of E13.5 p63-/- mice, nectin-4 expression

was mis-localized and was detected ectopically between adjacent basal cells (Fig 5K and 5L).

As the microarray expression data had indicated that Pvrl4 transcript levels were similar in the

E13.5 palatal shelves of wild-type and p63-/- embryos (S2 Table), we confirmed these findings

by qPCR analysis which revealed that total transcript levels of Pvrl4were unaltered despite the

mis-localization of nectin-4 (Fig 5M). Taken together, these results support the hypothesis that

down-regulation of ΔNp63α in the MEE is essential to ensure periderm migration from the

MES through its regulation of the ectodermal adhesion programme.

Over-expression of ΔNp63α in the medial edge epithelia causes sub-
mucous cleft palate
To examine further the effect of manipulating the levels of p63 in the MEE, we expressed

ΔNp63α ectopically in the palatal epithelia using a transgenic approach. Here, we inter-crossed

transgenic mice in which HA-tagged ΔNp63α is under the control of a tetracycline-inducible

response element with Krt5-tTA transgenic mice in which the tetracycline-regulated, tran-

scriptional transactivator is suppressed by doxycycline to generate Krt5-tTA;pTRE-ΔNp63α
bi-transgenic mice [34–36]. Histological analysis of secondary palate development in E13.5

Krt5-tTA;pTRE-ΔNp63α bi-transgenic mice demonstrated that they exhibited similar palatal

each binding region was calculated relative to a control region in exon 2 of myoglobin (set at 1; pale bar), to which p63 does not bind. Asterisks
represent level of significance: * = P <0.05, ** = P <0.01; Student's t-test (C), n = 4; MannWhitney U test (D), n = 5 for each genotype.

https://doi.org/10.1371/journal.pgen.1006828.g003
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Fig 4. p63 is essential for peridermdevelopment. (A) ChIP-qPCR validation of p63-bound sites within regulatory regions surrounding `cleftpalate-
associated genes'. Fold-enrichment for each binding region was calculated relative to a control region in exon 2 of myoglobin (set at 1; pale bar), to which
p63 does not bind. (P) Genes associatedwith periderm formation; Intra, intragenic. Asterisks represent level of significance: * = P <0.05, ** = P <0.01,
*** = P <0.001. Student's t-test, n = 4. (B-E) Histological analysis of palatal epithelia at E12.5 and E13.5. (B andD) Coronal sections of wild-type palatal
shelves at E12.5 and E13.5 reveal a layer of flattened periderm cells overlying the basal epithelia. (C andE) In p63-/- palatal shelves, the flattened cells are
absent and individual `bead-like' cells are observed above the basal epithelia at E12.5 (C) and E13.5 (E). Boxed insets represent highermagnification of
the respective regions. (F-I) Keratin 17 (K17) expression at E12.5 and E13.5. (F) K17 is expressed in a number of flattened cells overlying the basal
epithelia in wild-type palatal shelves at E12.5. (G) In contrast, K17 is not detected in p63-/- palatal epithelia at E12.5. (H) From E13.5, K17 expression is
observed throughout the periderm layer in wild-type palatal epithelia. (I) However, K17 expression is absent in p63-/- palatal shelves although ectopic K17
expression is detected in basal epithelial cells at E13.5 (arrow). Scale bars: 50 μm.

https://doi.org/10.1371/journal.pgen.1006828.g004

p63 controls palatal epithelial fate

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1006828 June 12, 2017 9 / 24

https://doi.org/10.1371/journal.pgen.1006828.g004
https://doi.org/10.1371/journal.pgen.1006828


morphology to their wild-type littermates, although thickening of the basal epithelial layer was

observed in the region of the future MEE and on the oral surface of the palate (S5 Figure;

n = 11). Immunostaining with a panel of antibodies confirmed that the periderm developed

appropriately and all other aspects of cell behaviour appeared comparable to wild-type litter-

mates (S5 Figure). Phosphohistone H3 staining revealed no significant difference in the per-

centage of cells proliferating in the epithelium or the mesenchyme in the bi-transgenic mice

compared to wild-type littermates (S6 Figure).

Examination of eight litters of embryos at E14.5 or older, when all wild-type littermates

exhibited a fully fused and degenerating midline epithelial seam, indicated that 70% (n = 14) of

Krt5-tTA;pTRE-ΔNp63α bi-transgenic embryos displayed a persistent midline epithelial seam

throughout the entire anterior-posterior axis of the palate which varied in thickness, some-

times appearing as ‘rounded-off’ palatal shelves (S7 Figure and Fig 6). The remaining embryos

(n = 6) exhibited a combination of phenotypes, including open palatal shelves (n = 3), one

shelf elevated/one shelf vertical (n = 2) and one exhibited oral fusions that prevented the pala-

tal shelves from elevating. One litter was discovered on post-natal day 0 with two Krt5-tTA;

pTRE-ΔNp63α bi-transgenic neonates. Histological sections of these embryos revealed that

the palate appeared thin and the shelves were joined by an epithelial ‘bridge’ with no mesen-

chymal continuity across the palate (S8 Figure).

Fig 5. Loss of p63 results in adhesion defects in palatal epithelia. Immunofluorescence analysis of (A,B) plakoglobin, (E, F) nectin-1, and (I, J)
nectin-4 reveals strong expression of these proteins at the junction between the periderm/basal cells in the palatal epithelia of E13.5 wild-typemice. (C, D,
G andH) In contrast, plakoglobin and nectin-1 expression are markedly down-regulated in the E13.5 p63-/- palatal epithelia. (K and L) Nectin-4 expression
levels in p63-/- palatal shelves are comparable to those of wild-typemice; however deconvolution images reveal that expression of nectin-4, which is
normally restricted to the periderm/basal junction, is mis-localized in the epithelia of E13.5 p63-/- palatal shelves and is expressed between adjacent basal
cells. (M) qPCR analysis of palatal shelves dissected from E14.0 wild-type and p63-/- mice indicates that Pvrl1 transcripts are significantly reduced in p63-/-
palatal shelveswhilePvrl4 levels are comparable to wild-type.** = P <0.01, MannWhitney U test, n = 5 for each genotype. Scale bars: A, C, E, G, I, K,
50 μm; B, D, F, H, J, L, 20 μm.

https://doi.org/10.1371/journal.pgen.1006828.g005
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Fig 6. Development of the palatal shelves in E14.5Krt5-tTA;pTRE-ΔNp63α bi-transgenic mice. (A) The
horizontal palatal shelves of wild-type embryos have formed amidline epithelial seamwhich has started to
degenerate. (B) In contrast, the palatal shelves of Krt5-tTA;pTRE-ΔNp63α embryos have approximated and
adhered via a thickened epithelial midline. (C,D). BrdU immunostaining confirmed that the persistent MES
continued to proliferate with no evidence of apoptosis (E, F). (G-J) Immunostaining revealed a persistent
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Immunofluorescence analysis of the E14.5 bi-transgenic embryos which exhibited a persis-

tent MES revealed that occasional proliferative cells were present in the epithelium, unlike

wild-type littermates in which the seam cells had ceased proliferation (Fig 6). However, anti-

BrdU staining revealed no significant difference in the percentage of cells proliferating either

in the epithelium or the mesenchyme between wild-type or bi-transgenic littermates (S9 Fig-

ure). Activated caspase 3 staining revealed occasional dying cells in the oral and nasal epithelial

triangles in the wild-type embryo compared to very infrequent cells in the Krt5-tTA;pTRE-

ΔNp63α bi-transgenic embryos, although this was not quantitated (Fig 6E and 6F). Immuno-

fluorescence analysis using K17 indicated that the midline seam in the Krt5-tTA;pTRE-

ΔNp63α bi-transgenic embryos contained a thick layer of periderm cells with anti-p63 immu-

nostaining demonstrating the proliferative nature of the basal layer (Fig 6G–6J). Immunofluo-

rescence analysis of E15.5 embryos with anti-HA and anti-p63 antibodies confirmed transgene

expression in the MEE thereby driving ectopic ΔNp63α expression in these cells (S8 Figure).

Molecular consequences of increasing p63 expression in the medial
edge epithelia
Based on the above results, we performed microarray analysis of palatal shelves dissected from

E14.5 bi-transgenic mice and their wild-type littermates. Principal Components Analysis indi-

cated that the results fell into two broad groups, one of which segregated with those obtained

from analysis of wild-type mice. Analysis of the results that segregated away from wild-type

mouse data led to the identification of 3125 upregulated genes (p<0.05) including numerous

p63 transcriptional targets; for example: Krt5; Col7a1; Trp73; Pkp1; Pkp3; Ripk4; Perp, Lamb3
(S4 Table).

Given the large number of differentially-expressed genes, we intersected the results with

those obtained from microarray analysis of E14.5 p63-/- palatal shelves and selected genes that

exhibited a diametric expression pattern. One hundred and four genes identified as being

down-regulated in the p63-/- microarray were up-regulated in the Krt5-tTA;pTRE-ΔNp63α
microarray (S5 Table). Enrichment analysis (http://amp.pharm.mssm.edu/Enrichr/) of these

genes indicated that the most significantly enriched Gene Ontology terms identified were ‘epi-

thelium’ and ‘epidermis development’. Clustergram analysis, ranked on P value, highlighted

several genes known to be important in periderm and craniofacial development, including the

known p63 targets Jag2 [6], Znf750 [37] and Perp [38], as well as Bcl11b which has not been

implicated in p63 signalling previously. In the latter case, we identified p63 binding to an active

enhancer approximately 48 kb upstream of the transcription start site of Bcl11b.

A combination of in situ hybridization and immunohistochemistry indicated that while

Bcl11b, Znf750, Jag2 and Perp were down-regulated in the MEE of wild-type mice immediately

prior to adhesion/fusion of the palatal shelves, their expression was maintained in the abnor-

mal MEE of Krt5-tTA;pTRE-ΔNp63α mice (Fig 7A–7H). In contrast, Mmp13 which is present

in the midline epithelial seam of wild-type mice was not expressed in ~50% of Krt5-tTA;

pTRE-ΔNp63α embryos (Fig 7I and 7J).

Discussion
Although previous research has identified a large number of genes that are transcriptionally

regulated by p63 to control epithelial development and differentiation, these studies have been

double layer of keratin 17-positive periderm cells and an underlying layer of p63-positive basal cells. Scale
bars: 50 μm.

https://doi.org/10.1371/journal.pgen.1006828.g006
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Fig 7. Molecular consequences of increasing p63 expression during palatal development. (A, B) The
expression of Bcl11b (A, B), Znf750 (C, D), Jag2 (E,F) andPerp (G, H), all of which are down-regulated in the
medial edge epithelia of wild-typemice, is maintained in the medial edge epithelia of their Krt5-tTA;pTRE-
ΔNp63α bi-transgenic littermates. In contrast,Mmp13which is normally expressed in the midline epithelial
seam of wild-typemice as they adhere until degeneration of the seam, is down-regulated in the medial edge
epithelia of Krt5-tTA;pTRE-ΔNp63α embryos. p: palatal shelves; t: tongue. Scale bars: 200 μm.

https://doi.org/10.1371/journal.pgen.1006828.g007
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performed in vitro using a variety of cell lines including differentiating and terminally-differ-

entiated keratinocytes [37,39–42]. The lack of genome-wide studies of p63 binding performed

in vivo has therefore limited our ability to dissect the molecular events controlled by p63 in

specific developmental systems such as the secondary palate. By performing functional annota-

tion analysis of microarray data generated from the palatal shelves of p63-/- embryos and inter-

secting them with the ChIP-seq data, we have demonstrated that p63 orchestrates a cell

adhesion network in the palatal epithelia, positively regulating formation of adherens junction

and desmosome complexes while suppressing tight junction formation in palatal epithelia.

These findings highlight the importance of p63 in regulating the balance of normal adhesion

junction formation in palatal epithelia. These findings are in agreement with previous studies

which have shown that p63 plays a critical role in transcriptionally regulating adhesion mole-

cules in keratinocytes and mammary epithelial cells [40].

McDade and co-workers noted that several p63 transcriptional targets identified from

human keratinocytes are associated with cleft palate [42]. Consistent with this work, we identi-

fied a large number of p63 binding sites that are known to regulate genes associated with cleft

palate including Pvrl1, Fgfr2and Pdgfa demonstrating for the first time that p63 transcription-

ally regulates these genes in the palatal epithelia. The observation that several genes required

for periderm development are direct targets of p63 led us to hypothesize that p63 signalling is

a master regulator of periderm formation and/or maintenance in the secondary palate. p63-/-

mice lack flattened periderm cells indicating that p63 signalling is critical for the ontogeny of

this transient epithelial layer and our results demonstrate that p63 functions in two phases:

p63 is initially required for periderm formation via regulation of Irf6, Ripk4, Sfn, Grhl3 and

Jag2 and subsequently functions to maintain adhesion between the periderm and basal epithe-

lia via regulation of a variety of cell adhesion molecules including the genes encoding desmo-

somal components such as plakoglobin, plakophilin-1 and plakophilin-3, and adherens

junction components such as cadherin-3 and nectin-1.

Paradoxically, previous reports have demonstrated that failure of periderm formation and/

or maintenance leads to pathological adhesions between apposed epithelial surfaces, a pheno-

type that is not observed in p63-/- mice [8,14,31]. Given the critical role that p63 plays in palatal

adhesion, we postulate that down-regulation of a large number of adherens junction- and des-

mosome-associated genes in the basal epithelia compromises epithelial adhesion in p63-/- mice

thereby preventing intraoral fusions from occurring despite the absence of periderm. In con-

trast, in Irf6 mutant mice, where periderm is absent, adhesion protein complex proteins are

up-regulated and mis-localized along the exposed apical epithelial surfaces leading to patho-

logical adhesions [5,7,8].

Given the role of periderm is to prevent pathological adhesions between intimately

apposed, adhesion-competent epithelia during development [5,8,43], this cell layer must be

removed from the MEE to permit fusion of the palatal shelves. Previous results have suggested

that the periderm cells covering the MEE either slough away from the basal cells prior to con-

tact of the horizontally-positioned palatal shelves [44] or migrate out of the MES to the oral

and nasal epithelial triangles [11]. Here, we have used a combination of immunohistochemis-

try and ex vivo imaging to demonstrate that initial contact between the horizontal palatal

shelves is achieved via the periderm cells which subsequently migrate out of the MES. More-

over, the latter process does not occur in Tgfb3-/- embryos in which the palatal shelves remain

cleft. Intriguingly, while p63 is down-regulated in the MEE of wild-type embryos, p63 expres-

sion is maintained in the Tgfb3-/- MEE and the periderm cells fail to migrate to the oral and

nasal epithelial triangles [12, 19] (Figs 1 and 2).

Previously, it has been shown that the polarized expression of the adherens junction protein

nectin-1 between the basal cells and periderm is lost prior to palatal shelf fusion in wild-type
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mice but these processes do not occur in the presence of the TGFβ inhibitor SB431542 [45].

Based on these observations, together with the data presented here, we hypothesize that p63

signalling promotes adherens junction and desmosome formation to maintain periderm/basal

cell adhesion during the initial stages of palatal development. Subsequent TGFβ3-induced

down-regulation of p63 after palatal shelf elevation leads to loss of adhesion between the peri-

derm and basal cells, enabling periderm cells to migrate from the MEE into the nasal and oral

epithelial triangles, thus ensuring proper fusion of the palatal shelves. In support of this

hypothesis, reducing the level of p63 in the MEE of Tgfb3-/- embryos restored the migratory

periderm phenotype and rescued the cleft palate phenotype in Tgfb3-/-;p63+/- mice. Notably,

rescue of the cleft palate phenotype in Tgfb3-/-;p63+/- mice also restored Mmp13 expression to

the MEE. Although other groups have demonstrated that Mmp13 is transcriptionally regulated

by p63 in SaOs-2 Tet-on cells [46], we were unable to identify any p63 binding sites near to the

Mmp13 promoter in our palatal ChIP-seq dataset or in data from primary [41], proliferating

or differentiated keratinocytes [37]. These observations suggest that although Mmp13 lies

downstream of ΔNp63α, it is either controlled by a long-distance enhancer or it may not be a

direct transcriptional target, at least in the palatal epithelia.

To provide further support for these observations we expressed ΔNp63α ectopically in the

palatal epithelia in vivo and demonstrated that the resulting embryos exhibited sub-mucous

cleft palate in which the MEE failed to degenerate. Instead, the palatal shelves were composed

of a slightly expanded p63-positive basal layer covered by a thick layer of persistent periderm

cells (Fig 6). Despite the fact that both Tgfb3-/- and Krt5-tTA;pTRE-ΔNp63α embryos display

persistent periderm and p63 expression, there are phenotypic differences between the two

models, suggesting that TGFβ3 has p63-independent roles in regulating the fate of palatal epi-

thelial cells.

To provide insights into the p63-mediated events underlying MEE degeneration, we inter-

sected the results of microarray analysis of the palatal shelves of Krt5-tTA;pTRE-ΔNp63α
embryos with the ChIP-seq analysis and identified a number of p63 transcriptional targets,

including Jag2, Znf750, Perp and Bcl11b, which were upregulated in the MEE of the bi-trans-

genic embryos. Jag2, which is important for periderm formation, is down-regulated in the

MEE at E14.5 with expression being maintained in the MEE of Tgfb3-/- palatal shelves [43,47].

As we have now demonstrated that Jag2 is a direct transcriptional target of p63 in the palatal

epithelia and that Jag2 expression is maintained in the MEE of Krt5-tTA;pTRE-ΔNp63α mice

which fail to degenerate (Fig 7), we propose a model in which failure of TGFβ3-induced

down-regulation of p63 leads to loss of Jag2-Notch1-induced periderm migration from the

MES which contributes to the sub-mucous cleft palate observed in ΔNp63α over-expressing

mice. In this context, we have also shown that Znf750 expression, a known p63 transcriptional

target in keratinocytes [48], is maintained in the MEE of Krt5-tTA;pTRE-ΔNp63α mice. Previ-

ous research has shown that ZNF750 induces KLF4, appropriate function of which is impor-

tant in periderm differentiation [49].

In addition to its role in periderm development, p63 plays a major role in maintaining the

proliferative potential of palatal epithelial cells in part by transcriptional regulation of the cell

cycle regulator Cdkn1a [50]. However, analysis of the ChIP-seq data shows that p63 binds to

an active enhancer ~48 kb upstream of Bcl11bwhich encodes the COUP-TF interacting pro-

tein CTIP2. Loss of Ctip2 results in reduced proliferation and increased apoptosis in mouse

keratinocytes [51]. Notably, expression of Ctip2, which is normally down-regulated in the

MEE of wild-type mice coincident with loss of p63 expression, is maintained when ΔNp63α is

over-expressed. These observations support the concept that transcriptional regulation of

Bcl11b by p63 plays a central role in the fate of the palatal epithelia.
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In summary, together with published data, our observations support a model whereby

ΔNp63α controls the spatio-temporal regulation of palatal epithelial cell fate to ensure appro-

priate palatal adhesion: p63-induced periderm formation and subsequent maintenance pre-

vents premature adhesion between immature, adhesion-competent intra-oral epithelia,

TGFβ3-induced down-regulation of p63 in the MEE driving Jag2-induced periderm migration

to the oral and nasal epithelial triangles thereby preventing sub-mucous cleft palate. In addi-

tion, as observed in the epidermis, ΔNp63α plays a central role in maintaining the proliferative

potential of the basal layer of the MEE, down-regulation of p63 leading to cell cycle arrest and

cell death.

Methods
Maintenance and housing of mutant mice
All mice were housed with free access to food (Nutrients Rat and Mouse Standard Diet no.1

expanded; Ban Kingman) and water at the University of Manchester at a temperature of 20–

22˚C, with a humidity of 40–60% under specified mouse pathogen free conditions with 12

hours light/dark cycle. Genotyping of the BALB/c p63 mouse line has been described previ-

ously [14].Tgfb3mutant mice have been described previously [23]; genotyping was achieved

using modified primers (S5 Table) and the mice were maintained on a mixed CD1/C57Bl/6J

background. mKrt17-GFP, Krt5-tTA and pTRE-ΔNp63α mice, maintained on a C57Bl/6J

background, have been described previously [26,34–36]. Embryos were dissected from time-

mated pregnant female mice, the morning on which the vaginal plug was detected being desig-

nated embryonic day (E) 0.5. No randomisation was performed and all results were analysed

by two independent researchers, one of whom was blind to the genotype of the samples.

RNA sequencing
RNA was isolated from E13.5 and E14.5 mouse palatal shelves using the Qiagen RNeasy kit.

RNA-Seq libraries were generated using the SOLiD™ Total RNA-Seq Kit. Samples were run on

SOLiD™ v4 for single-end 50 bp reads. Poor reads were filtered from the data with SOLiD Pre-

process Filter [52]. TopHat software [53] was used to align reads against the mm9 reference

genome. The RNA-Seq data are available from ArrayExpress: E-MTAB-3157.

ChIP-sequencing
Palatal shelves dissected from E13.5 and E14.5 mouse were cross-linked with 1% formaldehyde

for 20 minutes. Chromatin was prepared by homogenizing the tissue in PBS using an Ultra-

Turrax Homogenizer and incubating the resultant cells in PIPES buffer according to the

Upstate ChIP assay protocol (Merck Millipore). Chromatin was sonicated using a Sonics

Vibracell with seven 10 second pulses set to an amplitude of 40. Chromatin was prewashed

with protein A-agarose beads (SC-2001; Santa Cruz,) and incubated with 2 μg of α isoform-

specific p63 antibody (H129; Santa Cruz) overnight at 4˚C. Antibody-bound chromatin was

recovered using protein A-agarose beads (Santa Cruz). Sample preparation for sequencing was

performed according to the manufacturer’s instructions (Illumina) and sequenced using the

Illumina GAII. 32 base-pair single end reads were mapped to the mouse genome (mm9, NCBI

Build 37) using bowtie 0.12.7 [54] reporting unique, full-length alignments with a maximum of

1 nucleotide mismatch to the reference sequence. Mapped reads were peak-called using MACS

1.3.7 [55] with default parameters and a P value threshold of 1 x 10−5. Binding sites were associ-

ated to genes using RnaChipIntegrator (Briggs PJ, Donaldson IJ, Zeef LAH. RnaChipIntegra-

tor, available at: https://github.com/fls-bioinformatics-core/RnaChipIntegratorversion0.3.2).
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Microarray analysis
Amplified sense-strand cDNA was generated from 100 ng of total RNA (Ambion WT Expres-

sion Kit). Fragmentation, labelling (Affymetrix Genechip WT Terminal labelling kit), and sub-

sequent hybridization utilizing Affymetrix Genechip Mouse Exon 1.0 ST Array was performed

in the Genomic Technologies Core Facility, University of Manchester. Microarray data were

analyzed using Partek Genomics Solution (version 6.6, Partek Inc. St. Charles, MO, USA).

Probe sets of a core subset were quantile normalized and Robust Multi-array Average (RMA)

background correction applied. Exons were summarized to genes by calculating the mean of

the exons (log 2). To establish relationships and compare variability between replicate arrays

and experimental conditions, principal components analysis (PCA) was used [56]. Correction

for false discovery rates was completed using the method of QVALUE [57]. Heatmaps were

generated for 62 genes. These genes were clustered based on expression profiles. For each sam-

ple, expression levels (log2) were normalized prior to clustering by z-transformation

(mean = 0, Standard deviation = 1 for each gene). Genes were segregated into two clusters

using a K-means algorithm (Manhattan distance) followed by hierarchical clustering of each

resulting K-means cluster using the maxdView software ‘Super Grouper’ plugin (available

from http://bioinf.man.ac.uk/microarray/maxd/).

qPCR analysis
RNA was extracted as above and total RNA transcribed into cDNA according to the manufac-

turer’s protocol (Invitrogen). Primers were designed using Primer 3 (http://frodo.wi.mit.edu),

and qPCR reactions were performed using Power SYBR Green PCR Master Mix according to

the manufacturer’s protocol (Life Technologies). For qPCR analysis of cDNA, exon-spanning

primer sets for p63 candidate target genes were used (S6 Table). Mouse β-actin was used to

normalize the amount of cDNA. Differences in relative transcript expression between wild-

type and p63 mutant samples were calculated by the 2ΔΔCt method [58]. Statistical significance

was assessed using the Mann Whitney U test with at least five biological replicates for each

genotype.

For qPCR of ChIP results, one primer set was used for each tested binding region (S6

Table). Each binding region was tested using chromatin extracted from E14.5 palatal shelves

using at least three independent litters to ensure appropriate biological replicates. ChIP effi-

ciency of binding sites was calculated using percentage of immunoprecipitated DNA against

input chromatin. Occupancy used in ChIP experiments was calculated using ChIP efficiency

of candidate binding regions standardized against that of a region within exon 2 of the myo-

globin gene. Statistical significance was assessed using the Students T-test.

Histological analysis, immunofluorescence and in situ hybridization
Heads dissected from E12.5, E13.5 and E14.5 mice were fixed in 4% paraformaldehyde and

processed for histological examination using standard protocols. For immunofluorescence

analyses, sections were treated with 10 mM citrate buffer at 96˚C for 10 min for antigen

retrieval. Sections were incubated overnight at 4˚C with antibodies against E-cadherin (1:200;

Clone-36, BD Bioscience), keratin 17 (1/1000), keratin 14 (1/200, clone MS-115-P1, Neomar-

kers) nectin-1, (1:200; Santa Cruz SC-28639), nectin-4 (1:100; HPA010775 Sigma), plakoglo-

bin (1/200; clone 15F11 Sigma), p63 (1:1000; Santa Cruz 4A4) and Bcl11b (1/500 Ctip2, clone

25B6, Abcam). In situ hybridization was performed as described previously with detection

using BM Purple (Roche) [8]. Sections were counterstained and visualized using a Leica

DMRB microscope. Littermates were used as controls wherever possible, in order to correctly

stage the mutant (Tgfb3-/-;p63+/- or Krt5-tTA;pTRE-ΔNp63α bi-transgenic embryos), and to
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provide control tissue. In all cases, the histological analyses were performed on at least five

mutant embryos from all gestational ages (two for the neonatal Krt5-tTA;pTRE-ΔNp63α bi-

transgenic embryos due to ethical considerations). Immunofluorescence and in situ hybridiza-

tion assays were performed in duplicate.

Time-lapse confocal imaging
Palatal shelves were dissected from E14.0 embryos and cultured on filters suspended on

serum-free DMEM/F-12 medium. Palatal shelves were allowed to contact for 3 hours at 37˚C

in 5% CO2 before being embedded in 5% UltraPure Low Melting Point Agarose (Life Technol-

ogies) in DMEM/F-12 medium. Whole palates were then excised from the agarose gel in

blocks and sliced at the midpoint of the antero-posterior axis of the palatal shelves. Slices were

positioned mid-palate down in a 35 mm petri dish (Thermo Scientific) and covered in 1%

UltraPure Low Melting Point Agarose in DMEM/F-12 medium. Images were collected over a

24 hour period on a Nikon C1 confocal using a TE2000 PSF inverted microscope and a 10x/

0.50 Plan Fluor objective. The confocal settings were as follows, pinholes 30 μm, scan speed

400 Hz unidirectional, format 1024 x 1024. Images for FITC were excited with the 488 nm

laser line. When acquiring 3D optical stacks, the confocal software was used to determine the

optimal number of Z sections. Only the maximum intensity projections of these 3D stacks are

shown in the results. Images were acquired on a Cascade 512 EM CCD camera (Photometrics)

through the Elements Software (Nikon).

Supporting information
S1 Fig. Palatal development in E13.5 wild-type, Tgfb3-/- and Tgfb3-/-;p63+/- mice. (A—C)

The palatal shelves of wild-type, Tgfb3-/- and Tgfb3-/-;p63+/- mice lie in a vertical position lateral

to the tongue. (D—I) While the basal epithelial cells are proliferative and express E-cadherin

and p63, there is no evidence of cell death. (J—L) In all genotypes, the palatal epithelia consist

of a keratin 14-positive basal layer covered by a distinct keratin 17-positive layer of periderm

cells. p: palatal shelves; t: tongue. Scale bars: A-C, 250 μm; D-L, 100 μm.

(TIF)

S2 Fig. Histological analysis of E15.0 wild-type, Tgfb3-/- and Tgfb3-/-;p63+/- mice. Represen-

tative images taken from serial sections of wild-type, Tgfb3-/- and Tgfb3-/-;p63+/- embryos in

the anterior (A-C), mid (D-F) and posterior (G-I) regions of the palate at E15.0. p: palatal

shelves; t: tongue. Scale bars: 250 μm.

(TIF)

S3 Fig. Percentage of proliferative cells in the palatal shelves of wild-type and Tgfb3-/-;
p63+/- embryos at E14.5. Proliferative cells were assessed by phosphohistone 3 immunostain-

ing and the percentages calculated for the epithelium, mesenchyme and total palate. No signifi-

cant differences were found between the wild-type littermate controls and the Tgfb3-/-;p63+/-

embryos: epithelium, P = 0.21; mesenchyme P = 0.37; total palate P = 0.98, all Student’s T Test,

n = 3.

(TIF)

S4 Fig. Genome-wide distribution of ΔNp63α binding sites in the secondary palate. (A)

RNA-seq analysis indicates that transcripts encoding ΔNp63 isoforms predominate in the

developing secondary palate. Transcript reads are indicated by black bars. (B) ChIP-qPCR val-

idation of p63-bound sites. Fold-enrichment for each binding region was calculated relative to

a control region in exon 2 of myoglobin (set at 1; pale bar), to which p63 does not bind. Aster-

isks represent the level of significance: � = P <0.05, �� = P<0.01, ��� = P <0.001; Student’s t-
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test, n = 4. (C) p63 binding site distribution relative to RefSeq genes. Binding site regions are

divided into TSS flanking region (5 kb upstream of TSS, first exon & first intron), intragenic

region (all introns and exons excluding first), <25 kb (5–25 kb upstream or 25 kb downstream

of last exon), or intergenic regions. (D) GREAT functional annotation of the genes associated

with the p63-bound regions.

(TIF)

S5 Fig. Development of the palatal shelves in E13.5 Krt5-tTA;pTRE-ΔNp63α bi-transgenic
mice. (A, B) The palatal shelves of wild-type and Krt5-tTA;pTRE-ΔNp63α embryos lie in a

vertical position lateral to the tongue. (C, D) In both genotypes, the palatal epithelia consist of

a keratin 14-positive basal layer covered by a distinct keratin 17-positive layer of periderm

cells. (E—J) The palatal epithelia are proliferative and express E-cadherin and p63. p: palatal

shelves. Scale bars: A-C, 250 μm; D-L, 100 μm.

(TIF)

S6 Fig. Percentage of proliferative cells in the palatal shelves of wild-type and Krt5-tTA;
pTRE-ΔNp63α bi-transgenic mice at E13.5. Proliferative cells were assessed by phosphohis-

tone 3 immunostaining and the percentages calculated for the epithelium, mesenchyme and

total palate. No significant differences were found between the wild-type littermate controls

and the Tgfb3-/-;p63+/- embryos: epithelium, P = 0.97; mesenchyme P = 0.26; total palate

P = 0.31, all Student’s T Test, n = 3.

(TIF)

S7 Fig. Histological analysis of E15.0 wild-type and Krt5-tTA;pTRE-ΔNp63α bi-transgenic
mice. Representative images taken from serial sections of wild-type and Krt5-tTA;pTRE-

ΔNp63α bi-transgenic embryos in the anterior (A-C), mid (D-F) and posterior (G-I) regions

of the palate at E15.0. C, F and I are magnified regions of the boxes represented in B, E and H.

p: palatal shelves; t: tongue. Scale bars: A, B, D, E, G, H = 250 μm and C, F and I = 100 μm.

(TIF)

S8 Fig.Krt5-tTA;pTRE-ΔNp63α bi-transgenic mice exhibit sub-mucous cleft palate. (A) In

neonatal wild-type mice, the medial edge epithelia have degenerated to allow mesenchymal

continuity across the secondary palate. (B) In contrast, in 50% of neonatal Krt5-tTA;pTRE-

ΔNp63α mice, the medial edge epithelia remain intact leading to sub-mucous cleft palate

(arrowed). (C, D) Immunostaining with anti-HA and anti-ΔNp63" antibodies confirms that

the transgene is expressed ectopically in the medial edge epithelia of E15.5 Krt5-tTA;pTRE-

ΔNp63α mice (arrowed) thereby restoring ΔNp63" expression in these cells. p: palatal shelves.

Scale bars: 100 μm.

(TIF)

S9 Fig. Percentage of proliferative cells in the palatal shelves of E14.5wild-type and Krt5-
tTA;pTRE-ΔNp63α embryos. Proliferative cells were assessed by anti-BrdU immunostaining

and the percentages calculated for the epithelium, mesenchyme and total palate. No significant

differences were found between the wild-type controls and the Tgfb3-/-;p63+/- embryos: epithe-

lium, P = 0.31; mesenchyme P = 0.42; total palate P = 0.29, all Student’s T Test, n = 3.

(TIF)

S1 Video. Time-lapse imaging of palatal shelves dissected frommKrt17-GFP transgenic
mice. The periderm exhibits a migratory phenotype allowing completion of palatal fusion in

wild-type mice. The video is a series of representative images taken at the same Z position over

a 24-hour culture period.

(MP4)
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S2 Video. Time-lapse imaging of palatal shelves dissected frommKrt17-GFP;Tgfb3-/-

embryos in which the secondary palate remains cleft. No migration of the periderm cells

was observed. The video is a series of representative images taken at the same Z position over a

24-hour culture period.

(MP4)

S3 Video. Time-lapse imaging of palatal shelves dissected frommKrt17-GFP;Tgfb3-/-;
p63+/-embryos. Reducing p63 dosage in Tgfb3-/- mice restores periderm migration and palatal

fusion thereby rescuing the cleft palate phenotype. The video is a series of representative

images taken at the same Z position over a 24-hour culture period.

(MP4)

S1 Table. Classification of the 6295 genomic regions bound by ΔNp63α in the palatal
shelves of wild-type embryos.
(XLSX)

S2 Table. Results of the microarray analysis of palatal shelves dissected from E14 wild-type
versus p63-/- mice.
(XLS)

S3 Table. Genes encoding proteins implicated in cell adhesion that are differentially-
expressed in wild-type versus p63-/- mice.
(XLSX)

S4 Table. Results of the microarray analysis of palatal shelves dissected from E14.5 wild-
type versusKrt5-tTA;pTRE-ΔNp63αmice.
(XLSX)

S5 Table. A list of 104 genes that exhibit diametric expression with down-regulation in the
p63 loss-of-function (p63-/-) microarray analysis and up-regulation in the Krt5-tTA;pTRE-
ΔNp63αmicroarray analysis.
(XLSX)

S6 Table. Sequences of the oligonucleotide primers used in the study.
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