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Abstract

Through-the-Thickness Jacketing (TTJ) is a technique for repairing and retrofitting
shell structures by inducing in the shell core a beneficial confining stress state cre-
ated by a net of broadly distributed retrofitting links crossing the shell thickness
and tying externally applied layers. The paper presents the systematic deriva-
tion, the algorithmic implementation and the numerical assessment of a predictor-
corrector computational strategy for the integration of a shell FE-model obtained
by combining a discrete MITC quadrilateral element with a layered continuum-
based generalized shell theory of structures reinforced by TTJ, essentially based
upon a Winkler-like idealization of TT reinforcements. This theory of Through-
the-Thickness-Jacketed Shells (TTJS) captures the onset of complex triaxial stress
states originated by the interaction between core and through-the-thickness rein-
forcements.

Results of a set of benchmark numerical applications in OpenSees with flat
and curved elastic–plastic shell structures are presented in order to assess and il-
lustrate the consistency and the general modelling features of the proposed TTJS-
MITC framework endowed with the Drucker-Prager elastic-perfectly-plastic ide-
alization of the nonlinear behavior of the material composing the shell. Numerical
results exhibit quadratic convergence of the proposed computational strategy and
indicate that the model is able to capture marked strength increments over the in-
plane membrane response, albeit these increments are much lower when the shell
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response is predominantly of out-of-plane flexural type.

Keywords: TTJ shells, retrofitted shells, confinement, elastic-plastic analysis,
seismic retrofit

1. Introduction

Retrofit reinforcement of shell structures is receiving growing attention in the
last decades due to the increased importance of repair and rehabilitation in several
fields of applied structural engineering such as seismic retrofit [1] and repair of
metallic and composite aircraft structures [2].

Continuum-based composite laminated shell theories and finite element inter-
polations are generally considered to be appealing first-choice tools for the stress
analysis of shell structures with in-built or retrofitted reinforcements [3, 4, 5, 6]
because of their capability to accurately describe both global and local behav-
iors of nonlinear structural elements without excessive computational effort [7, 8].
Among more recent trends, basis functions with a high degree of continuity, such
as NURBS of isogeometric analysis [9] or mixed shell-solid elements [10, 11, 12],
are being increasingly exploited for interpolating mid-plane kinematics [13, 14]
as well as for the Through-the-Thickness (TT) kinematics [15], given their abil-
ity to achieve an improved representation of stresses and, in particular, accurate
descriptions of three-dimensional stress states inside the shell core.

An important application in the repair of shell and frame structures – yet chal-
lenging from the modelling point of view – is the enforcement of retrofitted multi-
axial confining stress states. In civil engineering the beneficial effect of confine-
ment on ductility and strength of frictional materials is well known (with pre-
stressed concrete being its primary application) and largely employed also in the
design of retrofitted devices improving the behavior of masonry [16] and con-
crete [17] elements. In design practices, account of the interaction between the
retrofitted reinforcement and the primary structure object of repair is frequently
introduced in the analysis in a simplified uncoupled form by employing increased
strength and ductility parameters: for masonry and concrete these are experi-
mentally calibrated [18, 19] over confined columns [20, 21, 22]. This simplified
methodology is shortly referred to as Strength Increment-Based (SIB) approach.

On the other hand, more refined continuum-based structural models, inclusive
of the kinematic state of the reinforcement, permit to capture important and struc-
turally relevant features of the interaction between reinforced structures and con-
fining devices which cannot be surrogated by simpler uncoupled SIB approaches

2
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[23] The resort to continuum-based shell models is convenient, in particular, for
modelling Through-the-Thickness Jacketing (TTJ) in two-dimensional structures
[24].

TTJ is a confinement technique exploited in civil engineering for repairing
shell structures made of different materials, such as concrete and masonry. Con-
finement is created by applying broadly distributed retrofitted links crossing the
shell thickness and tying externally applied confining layers. For masonry rein-
forcements, links made of steel and FRP are employed [25, 26, 27] while, among
other solutions, textile reinforced plasters are employed for the confining layers
[28].

Recent experimental [29] and numerical investigations [30, 24] on planar shear
walls have shown that, in order to properly evaluate several structurally-relevant
effects of TTJ on the in-plane and out-of-plane responses, there is necessity of
fully 3D [23] and 2D [24] structural analyses comprehensively accounting for the
interaction of the retrofitting TTJ devices with the whole shell structure.

In particular, a continuum-based generalized laminated shell theory has been
proposed in [24] for the triaxial stress analysis of TTJ in laminated composite
Shell structures (TTJS), which is by far computationally less expensive than full
3D analyses. The action of the distributed links in TTJS is smeared by a Winkler-
like idealization. Such a continuum formulation was found to effectively cap-
ture complex triaxial stress states due to the interaction between the shell core
and the TT reinforcements. When this framework is combined with Von Mises
and Drucker-Prager elasto-plasticity for the constitutive response of the individ-
ual laminae, TTJ confinement determines a stress redistribution in the post-elastic
phase which results into non-negligible effects of increased stiffness, strength and
ductility of retrofitted panels; for instance, modelling concrete as a Drucker-Prager
material, strength increase of panels was numerically found to be of 20% approx-
imatively. Notably, these effects were observed not only in the in-plane response,
but also in the out-of-plane response, with the latter effect produced, in particular,
when an elasto-plastic constitutive behavior with different compressive and ten-
sile strengths, such as Drucker-Prager elasto-plasticity, is employed for the core
material.

The present paper presents the systematic derivation, the algorithmic imple-
mentation and the numerical assessment of a computational predictor-corrector
strategy for the time-integration of a FE-model obtained by combining the TTJS
formulation with a discrete MITC quadrilateral [31] shell element. A laminated
structure is addressed, with material properties that are piecewise constant across
the thickness and layers with elastic-plastic behavior. The algorithmic strategy

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

solving the nonlinear equilibrium–compatibility problem endowed with arbitratry
constitutive models for the individual laminae is reported, together with details on
the relevant numerical method implemented in OpenSees [32]. Numerical appli-
cations are finally presented illustrating the features of the TTJ response for flat
and curved shell structures.

2. Continuum TTJ shell formulation

A layered Through-the-Thickness Jacketed Shell formulation (TTJS) is hereby
defined as an enhancement of an Equivalent Single Layer First-order Shear De-
formation Theory (ESL-FSDT) [5]. The formulation is constructed on the basis
of the essential modeling features and assumptions detailed in the following bullet
list.

• The presence of a TT reinforcement net within the shell is considered, con-
sisting of Winkler-like (i.e., smeared over the shell midplane) distributed
rod springs (in short, ties). The degree of reinforcement is defined by a
midplane scalar field of TT-reinforcement area ratio, µt = Ωt/Ωc, where Ωt

is the cross-sectional area of TT by-passing ties and Ωc the unit core shell
midplane area. The strain state of the ties is represented in a smeared form
by a scalar field εt of longitudinal dilatations of the bars. Examples of a
discrete net of ties and the corresponding geometric ratio µt are illustrated
in Figure 1.

• A layered structure is accounted for, divided into three primary subregions:
a central layered confined core region subject to a full triaxial stress state,
crossed by the (smeared) ties plus two optional inferior (-) and superior (+)
unconfined regions assumed to be in plane stress conditions (see Figure 1).

• Elongations along the thickness of the ties and of the confined shell core
are accounted for; to this end a field uz of TT displacement along the thick-
ness direction z is added among the kinematic descriptors of the standard
Mindlin shell formulation.

• The interaction between TT ties and shell core is described under the fol-
lowing two simple assumptions:

(i) at ties endpoints, a perfect constraint between the TT z displacement
of the ties, utz, and the core displacement, uz, at the external boundaries

4
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of the confined layers is considered by prescribing a common value of
TT displacement, viz.: uz = utz;

(ii) tie-core interaction is absent inside the core layer, so that differential
elongations between the (smeared) ties and the shell core are permitted
in the remaining part of the rods contained within the interior of the
confined region;

• Denoting by ε the strain tensor and by η a generic array of history variables
definining, for instance, elastic-plastic or elastic-damage behaviors, a 3D
generic inelastic constitutive behavior with internal variables is assumed
for each elementary layer, based on the assignment of a free energy function
Φ (ε, η) and of appropriate complementary evolution equations for η; a 1D
generic inelastic behavior is similarly considered for the (smeared) ties with
an energy function Φt (εt, ηt).

Shell midplane

Confined core region

Confining surfaceS+

Smeared ties

Unconfined region

Unconfined region

Confining surfaceS−

Ωc

Ωt

Sect.Ωt/Ωc

Sect.Ωt/Ωc

Figure 2: Nuova figura 1

3

Figure 1: Exploded view of interior confined and exterior unconfined regions of the shell with
details of TT reinforcements. S− and S− are the boundaries of the confined core.

A Cartesian reference frame x, y and z, with associated unit vectors x̂, ŷ and
ẑ, is considered with origin in the median plane S of the shell and x and y in-plane
axes, see Figure 2. Shell thickness δ is assumed uniform so that exterior surfaces
of the shell have coordinates z = −δ/2 and z = δ/2, respectively.

The shell has a laminated structure consisting of Nl layers. As shown in Fig-
ure 2, layers are enumerated from bottom to top (i = 1, . . . , Nl), with i−c and i+c
being the indexes of the lower and upper layers belonging to the confined region.

5
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Figure 1: Nuova figura 1

2

Π (x, y)

βy

uy
θy

ŷ

βx

ux

θx

x̂

ẑ

Shell midplane

δ

S

x
y

z

4

Figure 2: Tripartitioned staking sequence of the shell (left); midplane kinematic descriptors in the
ESL-FSDT (right)

As shown in Figure 2, a tripartitioned structure is addressed where the unconfined
lower, the internal confined, and the unconfined upper regions correspond to the
subsets of indexes (i = 1, . . . , i−c − 1), (i = i−c , . . . , i

+
c ), (i+c + 1, . . . , Nl), re-

spectively, so that the number of confined planes is i+c − i−c + 1. The thickness of
the generic i-th layer and the quota z along the thickness of the midplane of layer
i are denoted δi and zi, respectively.

2.1. Kinematics of the TTJ shell
According to the adopted ESL-FSDT kinematics and applying the layer-wise

discretization from the outset, displacements u of the midplane point of the generic
i-th lamina, placed at quota zi, are related to in-plane membrane displacements
u(m) and to generalized plate displacements β = ẑ × θ (where θ =

[
θx θy

]T
collects the counter-clockwise rotations about axes x and y) by

u(x, y, zi) = u(m)(x, y) + θ(x, y)× ziẑ + uz (zi) ẑ, i = 1, . . . , Nl . (1)

In the previous representation fields u(m) =
[
u

(m)
x u

(m)
y

]T
, andβ =

[
βx βy

]T
are defined, as usual, over the median plane S .

As stated, among the basic hypotheses of the model, the employed set of
generalized strain measures is enriched by both TT dilatations of the shell core

6
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εz = ∂uz/∂z and by longitudinal z strains in the ties, εt, that are added to the
primary strain descriptors.

Accordingly, the strain state of a given point of the shell midplane is defined
by the vector E , collecting Mindlin FSDT generalized shell strains, by the vector
ε collecting TT dilatations, plus the scalar εt. The scalar entries of these strain
quantities are displayed below altogether:

E =
[
Emx Emy γmxy κbx κby 2κbxy γsxz γsyz

]T
, εz = [εz(z1), . . . , εz(zNl

)] , εt ,
(2)

where the entries of E are FSDT membrane (Emx , Emy , γmxy) , bending (κbx, κ
b
y, κ

b
xy)

and shear (γsxz, γ
s
yz) strain components:

Em = sym
(
u(m) ⊗∇p

)
=

[
Emx γmxy/2
γmxy/2 Emy

]
, (3)

Eb = sym (β ⊗∇p) =

 κbx
κbxy
2

κbxy
2
−κby

 , (4)

Es =
[

∂uz
∂x

+ βx
∂uz
∂y
− βy

]T
=
[
γxz γyz

]T
. (5)

A Voigt-like notation for generic 3D second-order infinitesimal strain tensors
is adopted to separate strain components associated with the z longitudinal strain
moving them to the rightmost position in the array representation. Such a repre-
sentation reads, for the strain at quota zi:

ε(zi) =

[
ε0(zi)
εz(zi)

]
=

[
ε0(zi)︷ ︸︸ ︷

εx(zi) εy(zi) γxy(zi) γxz(zi) γyz(zi) εz(zi)

]T
.

(6)
In this way, the enriched ESL FSDT strain state acting in the generic i-th layer
(with 1 ≤ i ≤ Nl) can be synthetically represented as follows [24]:

ε(zi) = P0(zi)E + εz(zi)Pz . (7)

7
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Matrix projectors entering (7) are defined as follows:

P0 (zi) =

[
P?(zi)

0

]
=


1 0 0 −zi 0 0 0 0
0 1 0 0 −zi 0 0 0
0 0 1 0 0 −zi 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

 , Pz =
[

0 0 0 0 0 1
]T

.

(8)
In order to simplify some matrix operations reported in the sequel, we denote

by P? (zi) 5 × 8 the submatrix of P0(zi) obtained by removing the last row in
the P0(zi) matrix in (8). This lastly introduced symbol permits to represent ε0 as
ε0 (zi) = P? (zi)E .

A split completely analogous to (6), is applied to the 3D stress tensors by
setting:

σ (zi) =

[
σ0 (zi)
σz (zi)

]
=

[
σ0(zi)︷ ︸︸ ︷

σx (zi) σy (zi) τxy (zi) τxz (zi) τyz (zi) σz (zi)

]T
.

(9)
As stresses are related to the free energy function by work-association, σ =

∂Φ/∂ε, the previous split yields the following relation associated with (6):

σ (zi) =

[
σ0 (zi)
σz (zi)

]
=

[
∂Φ (ε(zi), ηi)

∂ε0 (zi)

∂Φ (ε(zi), ηi)

∂εz (zi)

]T
, (10)

where ηi are the i-the layer inelastic history variables.
We further denote by σ the generalized stress measures of the shell; their

definition naturally stems from the kinematics so far detailed on account of work-
association:

σ =
∂ΦΠ

∂E , (11)

where ΦΠ is the energy of the laminated shell chord Π (x, y) located at x, y:

ΦΠ =

∫ δ/2

−δ/2
Φ (x, y, z) dz. (12)

8
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Accordingly, since it trivially turns out to be P0 = ∂ε/∂E for the projector in
(8), the 8–components stress vectorσ associated with the generalized strain E , is
represented as follows:

σ =

∫ δ/2

−δ/2

∂Φ

∂ε
(z)

∂ε

∂E (z) dz =

∫ δ/2

−δ/2
(P0 )T σ dz . (13)

In particular, for the considered layered structures, the components of the gener-
alized shell stress resultants turn out to be:

σ =

Nl∑
i=1

(P0(zi) )T σ(zi)δi

=

Nl∑
i=1

δi
[
σx(zi) σy(zi) τxy(zi) −ziσx(zi) −ziσy(zi) −ziτxy τxz τyz

]T .

(14)
The stress state of Π (x, y) is thus completely represented by the arrays σ

and σz = [σz(z1), . . . , σz(zNl
)] plus the scalar σt. Observe also that, due to the

hypothesis of zero TT normal stress in the unconfined layers, σz specializes to
σz =

[
0, . . . , 0, σz(zi−c ), σz(zi−c +1), , . . . , σz(zi+c ), 0, . . . , 0

]
.

2.2. TTJ equilibrium and compatibility equations
With the employed layered discretization of the shell, the equations describing

the perfect constraint between ties and the external boundaries of the confined
layers (corresponding to the main assumption (i) stated at the beginning of this
section) are written in rate form as follows:

u̇z
(
zi−c
)

= u̇tz
(
zi−c
)
, u̇z

(
zi+c
)

= u̇tz
(
zi+c
)
. (15)

Due to the hypothesis of absence of tie-core interaction in the confined region,
composed by layers i = i−c , . . . , i

+
c , the (smeared) z longitudinal strain of the ties

εt will differ, in general, from εz(zi). A second consequence of this hypothesis is
that σt is uniform over the length of the smeared tie. Consequently, translational
equilibrium in the z direction over a plane parallel to S and located at quota zi

reads Ωcσz (zi) + Ωtσt = 0. Indicating by δt =

i+c∑
i=i−c

δi the total length of the ties,

corresponding to the thickness of the confined region, the following equilibrium

9
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and compatibility equations

σ̇z (zi) + µtσ̇t = 0, i = i−c , . . . , i
+
c , (16)

i+c∑
i=i−c

ε̇z(zi)δi = ε̇tδt . (17)

are obtained in time-rate form for the layered discretization at hand.
Denoting as Ci and Ct the 3D tangent operators of the i-th layer and of the

transverse ties at time (or pseudo-time) t, constitutive relationships of the i-layers
and of transverse ties are respectively written in rate form as follows:

σ̇ (zi) = Ciε̇ (zi) (18)

σ̇t = Ctε̇t . (19)

Note that, for brevity, the actual dependency on history variables of Ci and Ct has
been omitted.

By combining (18) and (7) one obtains:

σ̇ (zi) = Ci

(
P0 (zi) Ė + ε̇z (zi) Pz

)
, i = i−c , . . . , i

+
c . (20)

Consistently with the Voigt-like split already used for strains and stresses, we
apply to the 6 × 6 matrices representing the tangent stiffness operators Ci the
following partitioning scheme for a generic stiffness matrix C:

C =

[
C00 C0z

Cz0 Czz

]
=


Cxxxx Cxxyy Cxxxy Cxxxz Cxxyz Cxxzz
Cyyxx Cyyyy Cyyxy Cyyxz Cyyyz Cyyzz
Cxyxx Cxyyy Cxyxy Cxyxz Cxyyz Cxyzz
Cxzxx Cxzyy Cxzxy Cxzxz Cxzyz Cxzzz
Cyzxx Cyzyy Cyzxy Cyzxz Cyzyz Cyzzz
Czzxx Czzyy Czzxy Czzxz Czzyz Czzzz

 ,

(21)
so that Eqs. (20) become:

σ̇0 (zi) = C00
i P? (zi) Ė + ε̇z (zi) C0z

i , i = i−c , . . . , i
+
c , (22)

σ̇z (zi) = Cz0
i · P? (zi) Ė + Czz

i ε̇z (zi) , i = i−c , . . . , i
+
c . (23)

10
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Eqs. (23), combined with (16) and (19) read:

Czz
i ε̇z (zi) + µtCtε̇t = −Cz0

i · P? (zi) Ė , i = i−c , . . . , i
+
c . (24)

Finally, from Eqs. (24) and Eq. (17) a closed system of equations is obtained in
the unknowns ε̇z and ε̇t. This system is written below in matrix form:



Czz
i−c

0 . . . 0 µtCt
0 Czz

i−c +1
. . . 0 µtCt

. . . . . . . . . . . . . . .
0 0 . . . Czz

i+c
µtCt

δi−c δi−c +1 . . . δi+c −
i+c∑
i=i−c

δi




ε̇z
(
zi−c
)

ε̇z
(
zi−c +1

)
. . .

ε̇z
(
zi+c
)

ε̇t

 =


−Cz0

i−c
· P?

(
zi−c
)
Ė

−Cz0
i−c +1
· P?

(
zi−c +1

)
Ė

. . .

−Cz0
i+c
· P?

(
zi+c
)
Ė

0


(25)

Solution of system (25) is achieved by first solving equations (24) for ε̇z (zi),
viz.:

ε̇z (zi) = − 1

Czz
i

µtCtε̇t −
1

Czz
i

Cz0
i · P? (zi) Ė , i = i−c , . . . , i

+
c , (26)

and by inserting the previous expression into the last equation of system (25) to
obtain an equation in the only unknown ε̇t. To this end, the sum

∑i+c
i=i−c

δiε̇z (zi)
entering this last equation is first computed:

i+c∑
i=i−c

δiε̇z (zi) = −

 i+c∑
i=i−c

δi
1

Czz
i

µtCt

 ε̇t−
 i+c∑
i=i−c

δi
1

Czz
i

(P? (zi))
T Cz0

i

 · Ė . (27)

Substitution of the previous expression into the last equation of system (25) yields

−

 i+c∑
i=i−c

δi
1

Czz
i

µtCt

 ε̇t −
 i+c∑
i=i−c

δi
1

Czz
i

(P? (zi))
T Cz0

i

 · Ė − i+c∑
i=i−c

δiε̇t = 0 (28)

whose right-hand side contains ε̇t as the only unknown. Collection of terms in ε̇t

11
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provides

−

 i+c∑
i=i−c

δi
1

Czz
i

µtCt +

i+c∑
i=i−c

δi

 ε̇t −
 i+c∑
i=i−c

δi
1

Czz
i

(P? (zi))
T Cz0

i

 · Ė = 0 , (29)

so that the rate of the TT strain of the smeared ties can be represented as follows:

ε̇t = V · Ė (30)

with

V = −

 i+c∑
i=i−c

δi
1

Czz
i

µtCt +

i+c∑
i=i−c

δi

−1  i+c∑
i=i−c

δi
1

Czz
i

(P? (zi))
T Cz0

i

 . (31)

Solution of the rate problem is completed by back-substitution of ε̇t into the
previous equations, through (30). In particular, back-substitution in Equation (26)
yields:

ε̇z (zi) =

[
− 1

Czz
i

µtCtV −
1

Czz
i

(P? (zi))
T Cz0

i

]
· Ė , i = i−c , . . . , i

+
c . (32)

Relations (32) describe the evolution of TT longitudinal strains in compliance
with equilibrium and compatibility equations (16) and (17), and in compliance
with the constitutive equations of each layer. Consistency with such equations is
also kept by the stiffness tangent operator HV , associated with a generic in-plane
point of the shell, that linearizes the relation E → σ between generalized shell
strains and generalized shell stress resultants

σ̇ = HV Ė , HV =
∂σ
∂E

∣∣∣∣ rel.︷ ︸︸ ︷
εz, εt

(33)

while ε̇z and ε̇t keep evolving in compliance with the stated set of TT equilibrium
(16), TT compatibility (17) and with the constitutive equations of each layer. We
specify that, in order to recall that ∂σ/∂E is not a partial derivative, yet a deriva-
tive computed while εz and εt keep the fullfillment of such equations (i.e., while
these variables remain relaxed over these equations), such compliance is notated

in (33) by addition of the subscript
rel.︷ ︸︸ ︷
εz, εt to HV . Accordingly, HV is computed

12
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from (14)

HV =
∂σ
∂E

∣∣∣∣ rel.︷ ︸︸ ︷
εz, εt

=

Nl∑
i=1

(P0(zi) )T δi
∂σ(zi)

∂E

∣∣∣∣ rel.︷ ︸︸ ︷
εz, εt

, (34)

where the term ∂σ(zi)/∂E| rel.︷ ︸︸ ︷
εz, εt

is provided by the following equation:

σ̇ (zi) =
∂σ(zi)

∂E

∣∣∣∣ rel.︷ ︸︸ ︷
εz, εt

Ė =

[
C00
i P? (zi) +

C0z
i

Czz
i

⊗
(
− (P? (zi) )T C0z

i +
µt
δt
CtV

)]
Ė

(35)
which is obtained from substitution of (30) into (22). It should be observed that
(35) holds for layers of both the confined and of the unconfined regions, where the
plane stress condition is recovered by setting for unconfined layers µt = 0. This
last condition, as it can be checked, recovers the plane stress tangent operator
resulting from static condensation over strain εz. It can be similarly observed that
the limit behavior of zero TT stretch is recovered as µt → ∞. In presence of
pure in-plane membrane deformation of the shell, the zero TT stretch condition is
equivalent to plane strain.

2.3. Algorithmic implementation
The algorithmic implementation of procedures for integrating the enhanced

TTJ shell formulation and for computing the associated algorithmic consistent
tangent operator is now described. The algorithm presented herein is based on
a recursive procedure to address FE analyses of structures with layers having
generic nonlinear constitutive behavior, such as elasto-plasticity and damage mod-
els. In this type of analyses the equilibrium-compatibility equation system is
strongly nonlinear and closed-form solutions are possible only in simple and very
limited cases.

Integration in time (or pseudo-time) of the evolution equations, presented in
rate form in the previous subsection, is obtained here employing a full implicit
backward-Euler finite time-step scheme. Accordingly, the time interval of the
analysis is divided in a finite number of time steps and, for the generic time step
[θn, θn+1], the variables at the initial time instant (En, εnz , εnt , ηni (i = 1, . . . , Nl),
ηnt ) and the updated shell strain En+1 are assigned. The problem of determining
the updated state variables ( εn+1

z , εn+1
t , ηn+1

i (i = 1, . . . , Nl), ηn+1
t ) and the

updated FSDT shell stress σn+1 of a shell point (typically, a Gauss point belong-

13
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ing to the middle plane of the shell) is solved by enforcing fulfillment of the rate
equation at time θn+1 by a predictor-corrector procedure.

To retain generality of the presented scheme, we do not consider any specific
constitutive assumption or stacking sequence for the component layers, and we
assume that generic time-integration external subroutines are available for each
lamina, consistently based on full implicit backward-Euler integration schemes.
Given the state variable at the previous time instant (ε (zi)

n, ηni ) and the updated
strain ε (zi)

n+1, the generic constitutive updating routine of the i-th layer returns
the updated stress σn+1(zi), the updated inelastic variables ηn+1

i , and the consis-
tent algorithmic stiffness tangent operator Cn+1

i at time θn+1. An algorithm with
analogous properties is considered to be available for updating the 1D mechanical
state of the smeared ties, viz., given εnt , ηnt , and εn+1

t , the scalars σn+1
z and Cn+1

t

are returned.
The algorithm is divided in two nested subroutines. The outer algorithm is

deputed to handle the tripartitioned unconfined-confined-unconfined sequence of
layers and assemble the overall vector of generalized shell stress resultants and
the stiffness operator. This routine calls the inner algorithm which consists of a
Newton-Raphson scheme implementing an iterative predictor-corrector procedure
that enforces the finite-step counterparts of the equations of TT equilibrium and
compatibility (16) and (17) for the layers in the confined region. In the following,
adopting a common convention to display a less dense notation, time subscripts
and superscripts n + 1 are omitted for all trial quantities evaluated at time θn+1,
so that, for instance, a generic variable qn+1,k is more simply indicated by qk.

In the implemented Newton-Raphson scheme the trial vector of unknowns
related to the generic iteration k is

xk =
[
εkz
(
zi−c
)
, εkz

(
zi−c +1

)
, . . . , εkz

(
zi+c
)
, εkt
]T

=
[
εkz , ε

k
t

]T
(36)

while the target vector Ψ at iteration k, to be set to zero, contains the residuals of
equations (16) and (17), viz.:

Ψk = [Ψσ
k , Ψε

k]
T (37)

with

Ψσ
k,i = σkz (zi) + µσkt , i = i−c . . . i

+
c , Ψεz

k =

i+c∑
i=i−c

εkz(zi)δi − εkt δt . (38)

14
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The recursive instruction in the Newton Raphson scheme is

xk+1 = xk − J−1
k Ψk (39)

with

Jk =
∂Ψ

∂x

∣∣∣∣
k

. (40)

We note in passing that, since rate form equations (16) and (17) can be also written
as Ψ̇ (x, E) = 0, it follows immediately from the chain derivation rule that

Ψ̇ =
∂Ψ

∂x
ẋ +

∂Ψ

∂E Ė , (41)

so that J is the square matrix in (25) while k =
∂Ψ

∂E Ė forms the vector of

known terms in the same equation. For the computation of ∆xk = xk+1 − xk =[
∆εkz , ∆εkt

]
= −J−1

k Ψk required in (39) we can consequently take advantage of
developments formally analogous to those in (26)–(31) to infer

∆εkt = −

 i+c∑
i=i−c

δi
1

Czz
i,k

µtC
k
t +

i+c∑
i=i−c

δi

−1

·

Ψε
k −

i+c∑
i=i−c

δi
1

Czz
i,k

Ψσ
k,i

 (42)

∆εkz (zi) = − 1

Czz
i,k

µtC
k
t ∆εkt +

1

Czz
i,k

Ψσ
k,i, i = i−c , . . . , i

+
c . (43)

For the reader’s convenience, the outer and the inner algorithms are summa-
rized in Boxes 2.4 and 2.5, respectively. The set of indexes of layers belonging to
unconfined region is indicated by Iu = (1, . . . , i−c − 1, i+c + 1, . . . , Nl). Symbol
Cpl,i is used in Box 2.4 to indicate the plane-stress tangent operator relevant layer
i, with the usual convention of adding of superscripts 00, 0z, z0, zz referring to
partitioning of the form in (21). In the norm employed for the convergence cri-
terion in Box 2.5, Ec is a characteristic modulus of the shell core. For greater
clarity we remind that time subscripts and superscripts have been omitted for all
trial quantities evaluated at time θn+1.

15
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2.4. Outer algorithm

(i) Read εn0 , εnz , εnt , ηni (i = 1, . . . , Nl), ηnt , E ;

(ii) Compute ε0 strain components at each layer:

ε0 (zi) = P0 (zi)E ; i = 1, . . . , Nl ;

(iii) Get contribution from confined layers to the
generalized shell stress σ and to the tangent
operator HV . To this end, preliminarily solve
the nonlinear equilibrium-compatibility problem
by calling Inner algorithm 2.5 to get:

(
σ(zi), εz(zi), Ci, ηi, i = i−c . . . i

+
c

) Inner algorithm 2.5

←− −−−−−
(
E , En, εn (zi) , η

n
i , ε (zi) , i = i−c . . . i

+
c

)
;

(44)

(iv) Get the plane-stress contribution to
generalized shell stress and to tangent
operator from unconfined layers: call external
constitutive routines of i-th unconfined layer
to get relevant trial updated stress vector σ0

and plane-stress tangent operator Cpl,i:

σ0(zi), ηi, C00
pl,i

plane stress
←− −−− εn0 (zi) , η

n
i , i ∈ Iu ;

(v) Assemble final updated shell stress resultants:

σ =

Nl∑
i=1

(P0(zi) )T σ(zi)δi ;

(vi) Assemble TTJ shell consistent algorithmic
tangent operator by using Eqs. (31), (34) and
(35):

16
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V = −

 i+c∑
i=i−c

δi
1

Czz
i

µtCt +

i+c∑
i=i−c

δi

−1  i+c∑
i=i−c

δi
1

Czz
i

(P? (zi))
T Cz0

i

 ;

HV =

i+c∑
i=i−c

δi (P?(zi) )T
[
C00
i P? (zi) +

C0z
i

Czz
i

⊗
(
− (P? (zi) )T C0z

i +
µt
δt
CtV

)]
+
∑
i∈Iu

δi [P? (zi)]
T C00

pl,iP? (zi) ;

(vii) Return.

2.5. Inner algorithm
(i) Get variables E , En, εn (zi) , ηi, ε0 (zi) , i = i−c . . . i

+
c upon

calling outer algorithm;

(ii) Set iteration index k = 1;

(iii) Initialize xk to its converged value of the
previous time step:

xk =
[
εkz , ε

k
t

]T
= [εnz , ε

n
t ]T ; (45)

(iv) Call constitutive routines of ties and confined
layers to get stress values σk (zi) and σkt and the
relevant tangent operators Ck

t and Ck
i :

σkt , C
k
t , η

k
t ←− εt, ηt, ε

k
t ,

σk (zi) , Ck
i , η

k
i ←− ε0 (zi) , ε

k
z (zi) ;

17
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(v) Compute residual Ψk = [Ψσ
k , Ψε

k]
T by Eqs. (38):

Ψσ
k,i = σkz (zi) + µσkt , i = i−c . . . i

+
c , Ψεz

k =

i+c∑
i=i−c

εkz(zi)δi − εkt δt ;

(vi) Convergence check of the normalized residual
with tolerance λ:∥∥∥∥∥

[
1

Ec
Ψσ
k

1

δ
Ψε
k

]T∥∥∥∥∥ ≤ λ (46)

• If Eq. (46) is not fulfilled:

(a) Update xk by Eqs. (42) and (43):

∆εkt = −

 i+c∑
i=i−c

δi
1

Czz
i

µtCt +

i+c∑
i=i−c

δi

−1 Ψε
k −

i+c∑
i=i−c

δi
1

Czz
i

Ψσ
k,i

 ,

∆εkz (zi) = − 1

Czz
i

µtCt∆ε
k
t +

1

Czz
i

Ψσ
k,i, i = i−c , . . . , i

+
c ,

xk+1 = xk +
[
∆εkz (zi) ∆εkt

]T
;

(b) Set k = k + 1;

(c) Go to step iv;

• If Eq.(46) is fulfilled: exit algorithm and
return σkt , σk (zi), Ck

t , Ck
i , ηkt and ηki .

As shown by the numerical applications illustrated in the next section, the
reported algorithm is capable of efficiently computing the triaxial stress-strain
state for a variety of constitutive models and geometrical layouts. Clearly, such
efficiency remains subordinated to the requirement, typical of Newton-Raphson
schemes, that time–steps are not exceedingly large so that the root of the nonlinear
algebraic problem solved by the inner algorithm is not too far from the initial trial
solution.

18
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A further important requirement to avoid convergence pathologies is that the
underlying finite–step problems related to the constitutive updating of component
models of layers and of transverse links permain not ill-conditioned. Actually, the
inner algorithm exhibits instabilities when strong discontinuities or null eigenval-
ues in the relevant tangent operators arise in the component constitutive models.
In particular, numerical tests have shown instability of the Newton–Raphson al-
gorithm when elastic–perfectly plastic constitutive laws are assumed for the trans-
verse links, within the perfectly plastic plateau regions. In such a case, the resid-
ual Jacobian Jk becomes singular. Conversely, employment of constitutive laws
for the transverse links with minimal degrees of convexity and smoothness have
proved to ensure stable convergence trends.

3. Numerical applications

The algorithm of Section 2.3 has been implemented in the object–oriented
framework for FE analysis OpenSees [32], v.2.5.0, as a new user-defined ShellSec-
tion class. Such a class, deputed to integrate the complex triaxial stress-strain in-
teraction originated by through-the-thickness jacketing across the layered chords
of the shell, is combined with a 4-noded MITC shell element [31, 33] with 6 dofs
per node. The tolerance value adopted for all the presented analyses is λ = 10−6

and, since in all examples the shell material is isotropic, Ec is set to the relevant
Young modulus.

Numerical analyses have shown general quadratic convergence of the imple-
mented schemes. Results of a set of analyses related to two selected benchmark
examples, described each in a dedicated subsection, are hereby reported to assess
and illustrate the consistency and the general modelling features of the TTJS-
MITC numerical framework in describing confinement in the response of TTJ-
retrofitted shell structures.

Space integration employs a standard Gaussian quadrature with 4 integration
points per element while thickness is discretized by 10 layers at each Gauss point.
In the reported examples, layers are endowed with elastic-plastic behavior em-
ploying J2 or Drucker-Prager yield functions. In particular, J2 examples are in-
cluded to compare the present results with nonlinear elastic-plastic shell bench-
marks retrievable in the literature, which employ Von Mises yield criterion [34]–
[35].

A Drucker-Prager yield function [36] is considered in further examples as a
simple elastic-plastic description of materials with internal friction. Among sev-
eral available representations of Drucker-Prager criterion we refer to the represen-
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tation of the yield condition [37, 38] f = J2 + ρI1 −
√

2/3σY ≤ 0, where I1

and J2 are, respectively, the first invariant and the second deviatoric invariant of
the stress tensor (I1 = trσ, J2 = (devσ · devσ)1/2, with devσ = σ − (1/3)I11,
being 1 the Voigt vector representing the unit tensor), and where ρ and σY are
parameters related to Mohr-Coulomb friction angle φ and to cohesion c by:

ρ =
2
√

2 sinφ√
3(3− sinφ)

, σY =
6c cosφ√

2(3− sinφ)
. (47)

As the entity of confinement is affected by both the area ratio µt and the Young
modulus Et of TT ties, the equivalent stiffness parameter

kt = µtEt (48)

is introduced to specify the degree of TT confinement. In the numerical examples
this parameter is spanned from the unreinforced plane stress condition, corre-
sponding to the limit of kt = 0, to zero TT stretch, recovered when kt = ∞, in
order to investigate the sensitivity of the structural response to the full range of
conceivable degrees of confinement.

3.1. Dvorkin et al. plastic TT stretching of membrane panel
We first consider the five element patch of an elastic-plastic 10 × 10mm

square panel subject to in-plane membrane uniaxial stretching, described in [34].
Mesh geometry, with node coordinates, and loading of the panel, having thickness
δt = 1mm, are shown in Fig.3 (left). Elastic properties are those in [34]: linear
isotropic elasticity with Young modulus E = 2.1 · 106MPa and ν = 0.3.

As a preliminary analysis we compare the results concerning a homogeneous
panel, considered in [34] by assuming a J2 yield criteron with yield limit σY =
2.1 · 103MPa and isotropic hardening with modulus Eh = 2.1 · 105MPa, with
those obtained by the proposed TTJS–MITC formulation in which it has been set
kt = 0. TT reinforcement is uniform with respect to the in-plane coordinates,
and the confinement condition is enforced to the whole shell thickness, so that no
unconfined regions are assumed.

The panel undergoes plastic shrinkage in the TT direction after the yield limit
is trespassed. The computed TT stretch is plotted vs. the displacement at the right
loaded edge of the panel in Fig. 3 (right) and compared with the corresponding
curve computed in [34] by finite-strain analysis with a Von Mises yield criterion
therein formulated in terms of Kirchhoff stresses. The curve computed with the
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Figure 3: Dvorkin et al. [34]: patch test, geometry (left); thickness ratio vs. end displacement
(right)

present framework is linear, and reasonably fits the curve in [34], yet, as expected,
with a deviation increasing with the end displacement magnitude. The reason
for such a deviation, as well as for the present recovery of a linear curve, is the
adoption in the current TTJS-MITC analyses of the linearized kinematics detailed
in Section 2.

Table 1 collects the values of the residual norm obtained in a sequence of it-
erations corresponding to a load step in the elastic-plastic yielding phase. The
sequence of residuals is plotted in logaritmic scale as function of the iteration
number k in Fig. 4 (solid line). The figure shows that quadratic convergence, cor-
responding to the ratio Rk = ‖Ψk+1‖ / ‖Ψk‖2 tending to a constant c in the limit
k → ∞, is fulfilled. This convergence trend is further highlighted by reporting
in the same figure an ideal quadratic sequence fulfilling condition Rk = c at each
iteration k. In particular, the reported approximation of the sequence in Table 1
is obtained by setting ‖Ψ1‖ = 30000 and c = 1.864 · 10−5. Analogous quadratic
convergence trends have been observed in the iterations relevant to each Gauss
point, element and loading step of the analyses.
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Table 1: Residual norm vs. itera-
tion number in a typical iteration
sequence within the inner algo-
rithm (taken from the J2 Dvorkin
et al. [39] patch test analyses)

Iteration k Residual norm ‖Ψk‖

1 9.8 · 10−3

2 2.4 · 10−3

3 2.2 · 10−4

4 1.7 · 10−5

5 1.1 · 10−10

6 7.7 · 10−19

Figure 4: Semilogarithmic plot of residual
norm vs. iteration number

The same five-element patch is used for investigating the response of com-
posite TT-reinforced panels. Transverse ties are modeled as linear elastic uniaxial
rod elements. As expected, the response of panels endowed with J2 plasticity is
found to be not significantly affected by confinement, given the unsensitiveness
of J2 criterion to spherical stresses. Conversely, numerical analyses show that
use of the Drucker-Prager criterion determines significant strength and stiffness
increments. To investigate this effect in presence of a compressive stress state in
the panel, a compressive test is considered by reversing the direction of forces P
in Fig. 3 (left). Parameters in the Drucker Prager criterion are ρ = 0.2127 and
σY = 355.176MPa.

Fig. 5 (left) reports the family of end force vs. end displacement curves ob-
tained at different values of kt and shows that strength and post-elastic stiffness
increase with kt. The corresponding TT stretch vs. end displacement curves, plot-
ted in Fig. 5 (right), consistently show that TT stretch decreases with the degree
of confinement.

Figure 6 analyzes the sensitivity to kt, ν and ρ of the strength increment pro-
duced by TT reinforcement, measured as the ratio Pkt/Pu between the strength
obtained with a given kt and the strength Pu of the unreinforced panel at kt = 0.
In particular, data shown in the left figure correspond to ν = 0.3 and end displace-
ment 0.1mm while data in the right figure correspond to ρ = 0.2127 and end
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Figure 5: Sensitiviy to TT confinement using a Drucker Prager criterion in Dvorkin et al. [34]
uniaxial membrane test with a five element patch: end point load vs. end displacement (left);
thickness ratio vs. end displacement (right).

Figure 6: Sensitiviy of strength increment Pkt/Pu to TT confinement using a Drucker Prager
criterion in Dvorkin et al. [34] uniaxial membrane test with a five element patch: ν = 0.3, end
displacement 0.1mm (left); ρ = 0.2127, end displacement 0.1mm (right)
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Figure 7: Sensitiviy of strength increment Pkt/Pu to TT confinement using a Drucker Prager
criterion in Dvorkin et al. [34] uniaxial membrane test with a five element patch with ρ = 0.2127,
end displacement 0.1mm and kt = 2700MPa
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Figure 8: Geometry, constraints and employed mesh for the composite TTJ-reinforced Scordelis–
Lo roof

displacement 0.1mm.
For completeness, we specify that the Poisson ratio has a nonzero influence

over the panel strength, albeit this is very limited and not apparent from the logar-
itmic plot of Fig. 6 (right). Figure 7 magnifies this effect by reporting the strength
ratio increment Pkt/Pu as function of ν for kt = 2700MPa.

3.2. Scordelis–Lo roof
Coupling of membrane and flexural shell responses in presence of TTJ con-

finement is investigated in a second benchmark which is a composite variant of
the Scordelis–Lo roof [40], herein endowed with a varying degree of TT rein-
forcement.

The geometry and the undeformed mesh are shown in Figure 8. The roof is
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Figure 9: Load – deflection static responses of the Scordelis–Lo roof subject to vertical uniformly
distributed load. Comparison with results available in the literature relevant to J2–plasticity con-
stitutive law (left); Responses relevant to the Drucker Prager constitutive model with increasing
values of confinement stiffness (right)

a L = 7.6m long isotropic barrel vault whose cross section is a circular arch of
40◦, with radius r = 7.6m and thickness δ = L/100 = 7.6 ·10−2m, pinned along
its curved edges and subject to a uniformly distributed vertical self-weight load
f0 = −4 kN/m2. Young modulus and Poisson ratio are E = 2.1 · 104MPa and
ν = 0.0, respectively. As in the first example, TT reinforcement is uniform, linear
elastic and there are no unconfined regions.

On account of the symmetry of geometry and loads, a single quadrant of the
roof is analyzed, discretized by a 10 × 10 mesh (depicted in gray in Fig. 8) and
by 10 layers of equal thickness. Use of a more refined mesh yields no appreciable
change in the overall structural response.

Quasi-static analyses are performed in displacement control up to a desired
maximum displacement. The monitored kinematic parameter, controlling the ver-
tical load f = λf0, is the vertical deflection u at the node corresponding to the
middle point of the impost edge (i.e., the right–upper corner of the meshed quad-
rant shown in Figure 8, where the maximum deflection is attained). For the dis-
placement increment it is set δu = 0.001m.

A first test, in which the constitutive parameters are set to those of the original
benchmark of homogeneous roof, has been performed by setting kt to zero, in
order to compare the static response of the implemented formulation with results
presented by Brank et al. [41], Peric and Owen [42], Crisfield and Peng [43] and
Roehl and Ramm [35] who employed an elastic-perfectly plastic J2 constitutive
relationship for the roof material with yield stress σY = 4.2 · 103MPa.
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Figure 9 (left) presents the load–deflection curves obtained with the J2 Scordelis–
Lo roof. The vertical axis reports the ratio f/f0 while the horizontal axis reports
the maximum deflection at the impost edge (point A in Figure 8). Below 0.2
m, the curve matches with those reported in [41]–[35]. The comparison shows a
deviation which increases with the maximum deflection, what is explained, simi-
larly to the previous examples, by the employment of linearized kinematics in the
present analyses.

To investigate the effects of confinement of structures with internal frictional
behavior, a further set of analyses has been performed, also for this second ex-
ample, by assuming an associative Drucker-Prager elastic-plastic behavior with
σY = 0.29MPa and friction parameter ρ = 0.2127. For this second group of
analyses, material parameters more closely representative of masonry and con-
crete, have been used by setting ν = 0.3, and f0 = 725.8 kN corresponding to
the specific weight per unit volume of tuff masonry (18 kN/m3). Also in these
analyses transverse ties have been modeled as linear elastic.

Figure 9 (right) presents the load–displacement response of the Drucker–Prager
Scordelis–Lo roof by sweeping the equivalent stiffness kt of the transverse ties
between zero and infinite. As previously observed in [24] for planar shells, plane
stress and zero TT stretch conditions, corresponding to kt = 0 and kt = ∞,
represent lower and upper bounds to the structural response of the shell.

The two intermediate values, respectively, kt = 2.1 · 104MPa and kt = 2.1 ·
106MPa have been selected by considering TT steel reinforcements with Young
modulus Es = 2.1 · 105MPa arranged in equally–spaced square mesh with:
diameter φ = 8mm and spacing of about 0.2m (kt = 2.1·104MPa) and diameter
φ12mm and spacing of approximately 0.1m (kt = 2.1 · 106MPa).

The same figure shows that the load-displacement response turns out to be
scarcely sensitive to the presence of transverse confinement since curves relevant
to kt = 2.1·104 and kt = 2.1·106 are almost coincident with the curve correspond-
ing to kt = 0. This trend is in some part expected since, in this structural example,
the flexural behavior is predominant with respect to the membrane contribution.

Actually, as shown by a previous research [24], confinement substantially af-
fects the membrane response while its effect on the flexural response is nonzero
only when employing yield criteria with different tensile and compressive limits,
and mostly negligible compared to the same effect over the membrane response.
This trend is confirmed by the colormap in Figure 10 (left) representing the distri-
bution of the transverse stress σt for the same structural example, corresponding
to kt = 2.1 · 104MPa.

The confinement stress turns out to be quite limited and negligible in a large
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Figure 10: Colormaps of σt (kPa) of the Drucker-Prager Scordelis–Lo roof subject to vertical
uniformly distributed load computed with deflection of point A equal to 0.06m for kt = 2.1 ·
104MPa (left); and for kt =∞ (right)

Figure 11: Scordelis–Lo roof – Drucker Prager, Sensitivity: point A displacement ratioUkt/Ukt=0

with ν = 0.3 and load f = f0/2 (left); point A displacement ratio Ukt
/Ukt=0 with ρ = 0.2127

and load f = f0/10 (right)
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region of the roof. The relevant upper-bound zero TT-stretch condition is exam-
ined in the σt colormap of Figure 10 (right). The map shows that, in such a limit
situation, the confined region, depicted in red, turns out to be clustered nearby the
constrained edge of the roof, while wide regions of the roof domain (depicted in
blue) turn out to be subject to negative confinement. Noticeably, the region of
the roof at higher σt corresponds to the region where the membrane component
of deformation prevails over the flexural one, what is consistent with previous
observations.

Figure 11 shows the contour plots of the relative deflection as function of kt,
ν and ρ. Relative deflection is measured by the ratio Ukt/U0 where Ukt is the
deflection of point A in Figure 8 attained at a load value f = f0/10 whereas
U0 is the deflection of the same point for the unreinforced roof. Such a ratio is
decreasing with kt thus confirming that stiffness of the structural model increases
with kt. However, such an effect appears to be also in this case rather negligible.
Figures 11 (right) and 11 (left) finally show that deflection is decreasing with ν
and ρ.

4. Conclusions

A predictor-corrector strategy has been presented for the integration of a lami-
nated FE shell model with retrofitted through-the-thickness confinement, obtained
combining a formulation of layered TTJ generalized ESL-FSDT with a four-
noded MITC element. A systematic derivation of the related algorithmic imple-
mentation and of consistent algorithmic tangent operator has been reported.

Numerical applications have shown quadratic convergence of the implemented
schemes, and have confirmed efficiency of this strategy in effectively capturing a
complex triaxial interaction between confined shell core and retrofitted reinfor-
ment, essentially granted by the adopted simpler 2D shell description. Examples
with planar and curved shell structures have permitted to assess the consistency
of the response provided by the composite TTJS model against benchmarks of
homogeneous elastic-plastic shells considered in the literature.

Examples employing Drucker-Prager yield function have also assessed the
overall capability of the MITC-TTJS tool to capture, within the simpler elastic-
plastic idealization of the nonlinear behavior of frictional materials, marked strength
increments over the in-plane membrane response, albeit much lower when the
shell response is predominantly of bending/flexural type.
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