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The discovery of the molecular mechanisms involved in the cardiac responses to anticancer drugs represents the current goal of
cardio-oncology research. The oxidative stress has a pivotal role in cardiotoxic responses, affecting the function of all types of
cardiac cells, and their functional crosstalks. Generally, cardiomyocytes are the main target of research studies on cardiotoxicity,
but recently the contribution of the other nonmyocyte cardiac cells is becoming of growing interest. This review deals with the
role of oxidative stress, induced by anticancer drugs, in cardiac nonmyocyte cells (fibroblasts, vascular cells, and immune cells).
The alterations of functional interplays among these cardiac cells are discussed, as well. These interesting recent findings
increase the knowledge about cardiotoxicity and suggest new molecular targets for both diagnosis and therapy.

1. Introduction

Cardiotoxicity is a severe adverse reaction of the heart in
response to anticancer drugs; this “toxicity that affects the
heart,” as defined by the National Cancer Institute, includes
both direct effects on cardiac muscle and indirect effects
caused by hemodynamic alterations or thrombotic events.
Cardiotoxic-derived phenotypes are highly variable in terms
of onset and severity of the disease. Indeed, early and late
cardiac events can occur after antineoplastic therapy and
may range from subclinical dysfunction to irreversible heart
failure. Typical cardiac responses to antineoplastic therapy
are left ventricular dysfunction, ischemia, or rhythm distur-
bances [1]. This high variability is not always related to the
drug (type, dose, and duration of administration). Indeed,
the cardiotoxic response is also associated with other
factors, such as genetic predisposition, systemic inflamma-
tory status, cardiovascular risk factors, and preexisting
cardiac dysfunction [2]. This complexity makes the clinical
management very challenging and negatively affects the
patient outcome [3, 4].

The current cardio-oncology research is going after the
possibility to avoid or reduce the cardiotoxic effects of
antitumoral agents, to enhance the oncologic benefits of
the therapy and the identification of early markers of heart
failure, and to promptly start an effective therapy. To date,
several molecules have been suggested to be useful bio-
markers of cardiotoxicity, such as cardiac troponin and
natriuretic peptides. Indeed, their serum levels increase in
response to anticancer therapy in a dose-dependent man-
ner and correlate with the degree of left ventricular
dysfunction [5, 6]. Moreover, other molecular markers of
cardiotoxicity have been proposed, such as FABP, GPBB,
hs-CRP, IL-6, and MPO, even if further studies are needed
to better clarify their role in such phenomenon [7]. There-
fore, it is essential to understand the molecular mechanisms
that are involved in cardiotoxicity to identify potential
biomarkers and therapeutic agents.

The leading mechanistic hypothesis for drug-induced
cardiotoxicity is the increase of reactive oxygen species
(ROS) within the cardiac myocyte, which are highly toxic
and can cause direct damage to proteins, lipids, and DNA.

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 1089359, 12 pages
https://doi.org/10.1155/2017/1089359

https://doi.org/10.1155/2017/1089359


Indeed, antineoplastic agents can directly act as a source of
reactive species (anthracycline) or indirectly mediate
metabolic dysfunction or reduce the antioxidant capacity of
the cell [8]. ROS accumulation affects several cellular func-
tions, such as apoptosis, senescence, proliferation, cellular
migration, infiltration, and inflammation, all of which con-
tribute to cardiotoxicity [9, 10]. Moreover, ROS are able to
induce latent effects that lead to progressive alterations of
DNA, mitochondrial DNA, and cellular membranes
[11, 12]. For this reason, ROS have been proposed as
“molecular keepers” of metabolic memory that sustain an
ongoing damage, creating a state of susceptibility [13]. Adult
myocytes are more susceptible to these drugs because
myocytes are terminally differentiated and cannot sufficiently
replicate in order to replace cells damaged during treatment.
However, cellular alterations induced by ROS in response to
anticancer drugs can also affect other cellular components of
the heart, such as endothelial cells, cardiac fibroblasts,
vascular smooth muscle cells, and their functional crosstalk.
In this review, we deal with the effects of oxidative stress
induced by anticancer drugs in cardiac nonmyocyte cells.
This focus is becoming of great relevance since cardiac
nonmyocyte cells have a key role in response to pathological
stimuli, such as oxidative stress, and the study of their
functional interactions may offer the possibility to identify
new therapeutic targets for cardiotoxicity.

2. Anticancer Drugs Inducing Oxidative Stress

Anticancer drugs that exert cardiotoxic effects are numerous
and can be divided into two classes depending on their direct
or indirect effect on ROS production (Table 1). The first class
of drugs comprises the ones that have a direct effect on the
generation of ROS production, including anthracyclines,
cyclophosphamide, 5-fluorouracil, and cisplatinum. To date,
the anthracycline-containing regimen, including cyclophos-
phamide, fluorouracil, and/or paclitaxel/docetaxel, repre-
sents the most adopted life-saving chemotherapy scheme in
the treatment of several cancers, such as breast cancer [14]
[15]. Despite the effectiveness as anticancer agents, the use
of anthracyclines, such as doxorubicin (DOX), is limited
due to their cardiotoxic effects, which can lead to severe heart
failure and death. Several studies demonstrate that these
toxic effects on the heart are directly associated with their
ability to generate ROS and, in particular, to trigger a vicious
circle of ROS production [16, 17]. The reaction starts with a
reduction of doxorubicin by NADPH-cytP450 reductase that
results in semiquinone radical formation; this doxoradical
reacts with iron, inducing the formation of the complex
anthracycline-iron (Fe2+) [18]. This complex is able to react
with and reduce oxygen, producing superoxide and regener-
ating doxorubicin, thus triggering a vicious circle of ROS
production. DOX is also able to bind the endothelial nitric
oxide synthase, eNOS, leading to an increase of superoxide
and a reduction of nitric oxide synthesis, that negatively
affect the cardiovascular homeostasis [19]. Moreover, DOX
causes further reduction of the antioxidant capacity of the
heart, inducing a global high cardiac oxidative stress [20].
Although other classes of anticancer drugs also affect the

oxidant balance, ROS production in response to anthracy-
clines is the most studied and better characterized. Indeed,
also cyclophosphamide (CP) is able to generate reactive
metabolite but the involved molecular mechanism is not fully
delineated. CP is an anticancer drug widely used in the treat-
ment of several types of cancer, such as leukemia, ovarian,
and breast cancer, and also in association with anthracyclines
[21]. It has been shown that the cardiotoxic effects of CP are
due to the accumulation of mitochondrial superoxide radi-
cals that lead to the damage of the inner mitochondrial mem-
brane resulting in the increase of calcium permeability and
rapidly impairment of cellular respiration [22].

The antimetabolite 5-fluorouracil (5-FU) is also able to
induce alterations of oxidative balance. It is widely used as
an adjuvant drug in the treatment of colon, pancreas, and
liver cancer [23]. In vitro studies show that the exposition
to 5-FU induces a dose- and time-dependent ROS produc-
tion in both endothelial and cardiac cells [24, 25].

The association between oxidative damage and toxicity
was observed also in the case of cytostatic drug administra-
tion, such as cisplatinum. A diffuse oxidative damage in sev-
eral tissues was observed in vivo after exposure to this drug
[26, 27]. It has been demonstrated that ROS generation
occurs in the mitochondria due to the impairment of protein
synthesis and that ROS-related cytotoxicity of cisplatinum
varies depending on the mitochondrial redox status [28].

A second class of drugs, including taxanes, trastuzumab,
and sorafenib, indirectly affects redox balance. Indeed, they
are able to enhance the oxidative stress induced by other
chemotherapeutics or to affect key pathways involved in
cellular responses to oxidative damage. Taxanes, such as
paclitaxel, usually used in combination with anthracycline,
potentiate the toxic effects of DOX by increasing its plasma
levels and enhancing the production of DOX-reactive
metabolite in the heart [29].

A target-specific anticancer drug, trastuzumab, induces
cardiotoxic effects by affecting survival pathways. Indeed, it
inhibits heregulin-HER signaling thus protecting the cells
from apoptosis induced by oxidative stress [30, 31]. A similar
mechanism is also activated by the antiproliferative and
antiangiogenetic drug sorafenib. In fact, its toxicity seems
to be related to its inhibitory effect on RAF1. RAF1 is able
to block two proapoptotic kinases, ASK1 and MST2, impor-
tant in ROS-induced damage [32]. Therefore, sorafenib-
dependent RAF1 inhibition promotes apoptosis in response
to oxidative stress [8].

In summary, ROS-induced cellular injury represents a
common off-target effect of many anticancer drugs, with car-
diotoxic activity. It is known that ROS have a key role in the

Table 1: List of anticancer drugs that exert direct or indirect effects
on ROS production.

Direct effects Indirect effects

Anthracyclines Taxanes

Cyclophosphamide Trastuzumab

5-Fluorouracil Sorafenib

Cisplatinum

2 Oxidative Medicine and Cellular Longevity



development of cardiovascular diseases since they affect
several cellular processes, such as cellular migration, prolifer-
ation, hypertrophy, angiogenesis, apoptosis, and senescence
[33]. The most common drugs used in the treatment of car-
diovascular diseases exert a double effect, regulating not only
the adrenergic receptor activation but also ROS production.
Indeed, β-blockers, such as carvedilol and nebivolol, showed
significant cardiac protection in patients under anthracycline
treatment [34]. Besides their effect on adrenoceptors,
carvedilol is able to reduce ROS formation in doxorubicin-
treated cardiomyocytes [35], whereas nebivolol prevents
the generation of peroxynitrite and nitric oxide synthase
uncoupling [36].

3. Cellular Targets in the Heart

It has been estimated that the adult murine heart, approx-
imately, consists of 56% of myocytes, 27% of fibroblasts,
7% of endothelial cells, and 10% of vascular smooth
muscle cells and immune cells [37]. All these cardiac cells
are functionally related and cooperate to guarantee the
appropriate cardiac output. Indeed, if cardiomyocytes gen-
erate the contractile force, the fibroblasts produce essential

components of extracellular matrix ensuring a functional
cardiac architecture, and the endothelial cells act as a
functional barrier of the vessels, regulating not only the
fluxes of nutrients and oxygen but also the flux of xenobi-
otic from circulation toward the heart [38–40]. Cardiac
endothelial cells also release paracrine factors that regulate
cardiomyocyte metabolism, survival, and contractile func-
tion [41]. Several studies demonstrate that all cell types
in the heart are involved in ROS production, in response
to anticancer drugs (mainly doxorubicin), contributing to
the cardiotoxic phenotype (Table 2). Here, we report an
overview of nonmyocyte cardiac cells which are affected
by anticancer drug-induced oxidative stress and contribute
to the development of cardiotoxicity.

3.1. Cardiac Fibroblasts. It has been recently demonstrated
that cardiac fibroblasts are involved in the processes of
cardiac remodeling after stress [42]. Moreover, a role has
been identified for these cells in oxidative stress induced
by chemotherapeutics and, in particular, by doxorubicin.
DOX induces accumulation of fibrotic tissue as a result
of excessive ROS generation; in particular, in cardiac
fibroblast, DOX induces ROS-dependent activation of

Table 2: Summary of major pathways affected by cardiotoxic drugs within the different cardiac cell types.

Type of cell Drug Molecular pathway

Cardiac fibroblasts
Doxorubicin

(i) Activation of TGF-β and collagen deposition
(ii) Activation of ATM
(iii) Release of Fas-L and activation of apoptosis

Cobalt (i) Reduction of MnSOD and reduced ROS scavenger capacity

Endothelial cells

Doxorubicin

(i) Increase of cellular permeability
(ii) Reduction of GSH, MnSOD, and reduced ROS scavenger capacity
(iii) Reduction of ATP and mitochondrial dysfunction
(iv) Inhibition of NO synthase
(v) Activation of NFκB and release of IL-1/IL-2/IL-6

Cyclophosphamide
(i) Increase of cellular permeability
(ii) Activation of NFκB and release of IL-1/IL-2/IL-6

Cisplatinum
(i) Reduction of GSH, MnSOD, and reduced ROS scavenger capacity
(ii) Activation of NFκB and release of IL-1/IL-2/IL-6

Trastuzumab (i) Inhibition of NO synthase

Sorafenib (i) Activation of endothelin 1

Vascular smooth muscle cells Doxorubicin
(i) Activation of senescence
(ii) Downregulation of α-adrenoreceptor and reduction of contractility

Immune cells

Doxorubicin
(i) Activation of innate immune response
(ii) Activation of NLRP3 inflammasome and release of IL-1β and MCP-1

Trastuzumab
(i) Increase of NFκB expression
(ii) Increase of NADPH subunit levels

Sunitinib
(i) Increase of NFκB expression
(ii) Increase of NADPH subunit levels

Cardiac progenitor cells

Doxorubicin

(i) Oxidative DNA damage and activation of ATM and p53
(ii) Increase of p16 INK4 and activation of senescence
(iii) Reduction of IGF-1 and c-Met with reduction of survival and cell migration
(iv) Reduction of MnSOD, Cu/Zn SOD, catalase, and reduced ROS scavenger capacity
(v) Increase of apoptosis and inhibition of cardiac differentiation

5-Fluorouracil (i) Increase of apoptosis and inhibition of cardiac differentiation

Trastuzumab (i) Increase of apoptosis and inhibition of cardiac differentiation
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TGF-β, resulting in the pathological deposition of collagen
[43, 44]. Then, DOX-dependent ROS trigger a vicious
circle that deteriorates this condition: ROS activate TGF-β,
and this latter, in turn, activates further ROS production
[45] (Figure 1). It is known that TGF-β is produced as
an inactive precursor complex including the latency-
associated peptide (LAP) [46]. The interaction with LAP
can be disrupted not only by the specific proteolytic pro-
cess but also by chemical and physical conditions, such
as heat, acidification, and oxidation of LAP by ROS expo-
sure [47, 48]. Therefore, in cardiac fibroblasts, the high
levels of ROS, produced by DOX metabolism, induce
LAP dissociation and the release of active TGF-β. The
active form of TGF-β in turn increases NOX4 and
NOX2 gene expression resulting in a further increase of
ROS generation [49]. Furthermore, TGF-β mediates the
downregulation of antioxidant enzymes, such as catalase
and glutathione peroxidase [50], thus favoring oxidative
stress. Therefore, in this context, cardiac fibroblasts act
as “amplifiers” of oxidative stress induced by DOX expo-
sure. Accordingly, cardiac fibroblasts isolated from DOX-
treated rats are characterized by high levels of TGF-β
and a profibrotic phenotype [51]. Interestingly, these fibro-
blasts conserve these features also in vitro after several
passages, enforcing the putative role of ROS as the “molec-
ular keepers” of metabolic memory, and able to confer a

“signature” to the stressed cells that are also transmitted
to the progeny.

Apart from TGF-β, another protein is regulated in car-
diac fibroblasts in response to DOX, the oxidative stress-
sensing molecule, ATM protein. ATM is a kinase that is
recruited and activated in response to oxidative stress-
induced DNA damage [52]. Interestingly, ATM typical
response to oxidative stress occurs only in cardiac fibroblasts
after DOX exposure and not in cardiomyocytes. Indeed, mice
with selective deletion of ATM in fibroblasts were protected
from DOX-induced cardiotoxicity, compared with
cardiomyocyte-specific knockout mice [53]. These findings
are confirmed in an in vitro study showing that even if the
aconitase activity in basal condition is higher in fibroblasts
than in cardiomyocytes, fibroblasts also have the highest aco-
nitase inactivation after DOX, resulting in cell mortality [54].

Cardiac fibroblasts seem to have a role also in cardiotoxic
response to radiation, in particular to cobalt. In fact, it is
ascertained that cobalt affects the contractile function of the
heart [55]. In rats exposed to cobalt, there is a strong accu-
mulation of cobalt that leads to a significant reduction of
Mn-SOD activity, suggesting that the isotope is able to reduce
the intrinsic ROS scavenger capacity [55]. This effect is due to
the effects of cobalt on both cardiac myocytes and fibroblasts.
In vivo, this could lead to morphological alterations of the
heart due to reduced matrix deposition and the altered
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Figure 1: The vicious cycle of ROS production in cardiac fibroblast. DOX induces ROS production that mediates the activation of TGF-β
through its release from LAP. Through its paracrine action, TGF-β induces expression of genes involved in oxidative stress, NOX2, and
NOX4, promoting the further increase of ROS.
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interplay between contractile cells and fibroblasts which
cause a strong impairment of contractility.

All these findings suggest that, given their ability to
amplify the oxidative signal, fibroblasts could be the first cel-
lular target of oxidative stress induced by anticancer drugs,
which could be then able to trigger cardiomyocyte dysfunc-
tion through an active crosstalk between the two cell types.

3.2. Vascular Cells: Endothelial and Smooth Muscle Vascular
Cells. The ability of endothelial cells to regulate the vascular
tone and the absorption of metabolites and drugs, together
to their paracrine action on the other cardiac cells through
the active release of several factors, makes these cells key
mediators of cardiotoxic response. Indeed, several cardio-
toxic drugs affect endothelial function by inducing oxidative
stress [56]. It has been shown in endothelial cells that DOX
administration increases cellular permeability, leading to
edema formation that characterizes animals and humans
treated with anthracycline [57]. Moreover, in the same cells,
DOX reduces ATP and glutathione (GSH), suggesting that
the treatment with DOX depletes the cells of their antioxi-
dant capacity and induces mitochondrial dysfunction [56].
The toxic effect of DOX in endothelial cells was also derived
from its ability to react with NO synthase, blocking NO pro-
duction, which has a central role in endothelial homeostasis
(Figure 2). Besides its effect on endothelial cells, DOX also
affects vascular smooth muscle cells (VSMC) leading to a
senescence phenotype and impairment of contractility. This
latter effect is the result of a downregulation of α-adrenergic
receptors and the increase of oxidative stress. Indeed,

adrenoceptor expression and vessel contraction are partially
restored in the presence of SOD, an enzyme actively involved
in neutralization of superoxide [58].

An important endothelial injury is also mediated by
cyclophosphamide, which affects endothelial integrity result-
ing in extravasation of proteins, blood cells, and toxic metab-
olites, and induces a direct damage on the myocardium,
resulting in arrhythmias and heart failure [59].

The involvement of endothelial dysfunction in cardio-
toxic response to cisplatinum is suggested by studies in ani-
mal models. In particular, the treatment with cisplatinum,
by infusion of the rat mesenteric artery, induces severe endo-
thelial injury with vacuolation and subendothelial edema and
significant reduction of superoxide dismutase; all these
effects are minimal when the animals are treated with the
antioxidant vitamin E, thus proving the key role of ROS in
endothelial toxicity induced by cisplatinum [60]. Another
chemotherapeutic agent, 5-fluorouracil, also determinates
ROS-dependent endothelial damage. The role of 5-
fluorouracil in inducing cardiotoxicity by endothelial injury
is suggested by data from patients. In fact, the percentage of
incidence of cardiac events in response to 5-fluorouracil is
about 7,6%, including acute coronary syndromes, which is
likely caused by endothelial dysfunction [61]. The patho-
physiology is not clear, but an in vivo study shows that ani-
mals treated with 5-fluorouracil are characterized by
vascular endothelial damage, that can be prevented by probu-
col, a powerful antioxidant [62].

Endothelial injury is involved also in cardiotoxicity
induced by novel biological chemotherapeutics, such as
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inhibitor of Her2 (trastuzumab) and anti-angiogenetic com-
pounds (sorafenib). In cardiac endothelial cells, Her2 stimu-
lation by its ligand, NRG1, induces activation of AKT that is
able to modify mitochondrial respiration blocking ROS pro-
duction. The inhibition of Her2 by trastuzumab deprives the
endothelium of this protective mechanism, explaining the
ROS-mediated toxic effect of this drug on endothelial cells
[63, 64]. Moreover, Her2 inhibition by trastuzumab seems
to affect also NO production, with further impairment of
endothelial function [65] (Figure 2). It is known that inhibi-
tors of angiogenesis, such as sorafenib, induce ROS-
dependent endothelial dysfunctions even if the molecular
mechanisms are not clear yet [66, 67]. It is suggested that
the inhibition of angiogenesis could trigger activation of
endothelin-1, that could, in turn, affect oxidative stress [68].

Several intracellular proteins are able to affect endothelial
function by modulating ROS production, even if their role in
response to anticancer drugs has not been elucidated yet.
Among them, G-protein coupled receptor kinase 2 (GRK2)
is known to favor the development of cardiovascular dis-
eases [69], and recently, it has also been recognized as a
modulator of mitochondrial function, including ROS pro-
duction [70, 71]. It is a “stress molecule,” that, in response
to cellular stress, rapidly moves within the different cellu-
lar compartments to activate specific pathways [72]. It
has been shown that GRK2 removal compromises vascular
phenotype and integrity by increasing endothelial ROS
production [73]. Thus, it is likely to believe that such
kinase could be a potential target of cardiotoxic drugs
which triggers ROS production and endothelial dysfunc-
tion to induce cardiac damage.

3.3. Immune Cells. The influence of both resident and
infiltrating immune cells in the heart is fundamental in path-
ological cardiac remodeling. Also, in cardiotoxic response,
the contribution of immune cells is relevant, since the high
oxidative stress can trigger cardiac inflammatory status.
Indeed, in hypertensive rats, DOX treatment induces an
increase of dendritic cells, suggesting that DOX-induced
damage in cellular membranes could stimulate the immune
response, which is prevented by the pretreatment with an
antioxidant, dexrazoxane [74]. In particular, several studies
demonstrate that DOX induces the innate immune response.
In fact, TLR4-deficient mice, after exposure to DOX, show
reduced oxidative stress and inflammatory status and an
amelioration of cardiac function [75]. The same occurs in
TLR2 KO mice (TLR2) [75]. Therefore, cardiotoxic antican-
cer drugs induce a condition known as “sterile inflamma-
tion.” Little is known about this phenomenon, but it seems
to start with the activation of inflammasomes, multiprotein
complexes that regulate the release of proinflammatory cyto-
kines. Among them, NLRP3 inflammasome seems to be the
one implicated in sterile inflammation [76, 77]. It has been
shown that DOX is able to activate NLRP3 inflammasome,
inducing the release of IL-1β in macrophages in vitro [78].
Accordingly, in mice exposed to DOX, there is an increase
in serum levels of IL-1β and other inflammatory factors
(CCL2/MCP-1) [78]. Moreover, the treatment with the IL-
1β receptor blocker protects against DOX cardiotoxicity [79].

Thus, it is clear that DOX is able to induce an inflamma-
tory status but the mechanisms by which it regulates inflam-
masome activation is still unknown. Given the ability of DOX
to induce ROS production, it is likely that such phenomenon
could depend on oxidative stress. Indeed, DOX-dependent
inflammation is prevented in presence of ROS inhibitors,
N-acetyl-cysteine, and diphenyl iodonium [78]. Moreover,
the inflammasome can be activated by mitochondrial ROS,
which are produced by macrophages in response to different
stimuli, including angiotensin II [80, 81]. The correlation
between cardiotoxicity, inflammation, and oxidative stress
also emerges from clinical data. Indeed, in patients treated
with DOX, high serum levels of proinflammatory factors
(IL-6, TNF, and its soluble receptors, sIL-6R) are detected
and correlated with levels of ROS, antioxidant enzymes,
and markers of heart dysfunction (CK-MB, BNP) [82].

Similarly, also trastuzumab and sunitinib are able to
induce inflammatory responses in cardiac tissue [83, 84]. In
sunitinib-treated rats, for instance, high NFκB mRNA levels
and accumulation of profibrotic factors and a NOX2 subunit
of NADPH oxidase were detected [84].

Thus, all these findings suggest a hypothetical mecha-
nism by which inflammation is activated in heart tissue
in response to anticancer drugs. Likely, drugs induce
ROS production with consequent cell membrane damage,
apoptosis, and necrosis which activate the process of anti-
gen presentation. This mechanism contributes to the acti-
vation of resident immune cells and to the infiltration of
circulating immune cells, triggering inflammatory response
through inflammasome activation. Besides inflammasome
activation, the inflammatory status is also sustained by
the activation of several transcription factors, such as
NFκB, PPAR-γ, p53, and HIF-1α, which favor the expres-
sion of inflammatory genes [85, 86]. Moreover, immune
cells, in turn, produce a “respiratory burst,” due to the
increase of oxygen uptake, which determinates further
ROS production in the site of damage [87, 88]. Also, in
these cell lines, the potential role of GRK2 could be of
great interest. Indeed, in RAW267.4, GRK2 levels are
increased in response to inflammatory stimuli and the
kinase is mainly localized in the mitochondria where it
regulates ROS production [81]. Moreover, GRK2 is able
to activate NFκB signaling in the heart to induce cardiac
hypertrophy [69]. These findings strongly suggest that this
kinase could be involved in the crosstalk between cardiac
immune cells and myocytes and could be a potential target
of cardiotoxic agents.

3.4. Cardiac Progenitor Cells. Several pieces of evidence dem-
onstrate that the adult heart of humans and animals contains
a pool of progenitor cells (cardiac progenitor cells (CPC))
which are able to differentiate in myocytes and coronary ves-
sels [89–91]. These cells have a relevant function during the
response to cardiac damage, mediating tissue repair and
regeneration, but are more sensitive to oxidative stress than
myocytes, rapidly inducing apoptosis [92], suggesting that
they could be the primary target of cardiotoxic drugs. In a
model of DOX-induced cardiomyopathy, a significant
reduction of viable CPCs occurs [92]. Moreover, if the
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implantation of healthy CPCs determines cardiac functional
recovery, the use of DOX-treated CPCs does not provide
benefits [93]. The effects of DOX on CPCs are multiple:
oxidative DNA damage, which in turn affects cellular cycle,
apoptosis, senescence pathways, prosurvival pathways, and
antioxidant capabilities of CPCs. Indeed, DOX-treated CPCs
are characterized by a significant increase of 8-OH-
deoxyguanosine in nuclei and an increased expression of
phosphorylated form of histone H2, markers of ROS-
dependent DNA damage [92, 94]. Moreover, an increase of
p-ATM (Ser1981) and p-p53 (Ser15), involved in cell cycle
arrest and apoptosis, also occur [94, 95]. The increase of cell
cycle inhibitor p16-INK4 together with the reduction of telo-
merase activity in DOX-treated CPCs triggers the cellular
senescence pathways [95, 96]. These data are confirmed by
studies in human which show that in patients with
anthracycline-induced cardiomyopathy, there is a significant
increase of senescent CPCs characterized by accumulation of
p16 INK4 compared with age-matched controls [94, 97].
Besides these effects on oxidative DNA damage, it has also
been demonstrated that DOX reduces the expression of
IGF-1R, affecting the activation of prosurvival pathways
[94, 98] and C-Met, compromising the migration of CPCs
in the site of cardiac damage [94, 99]. Doxorubicin also
affects the antioxidant capacities of CPCs by affecting the
activity of MnSOD, Cu/ZnSOD, and catalase [92]. All these
effects on CPCs trigger a latent cardiac damage that arises
only in response to stress conditions. Indeed, the treatment
with DOX in mice in juvenile age induces a reduction of
CPCs and accumulation of senescence markers without
apparent morphological and functional cardiac alterations.
However, these mice in adult age are more sensitive to
physiological and pathological stress (exercise, myocardial
infarction) [96].

Less is known about the effects on CPCs of other cardio-
toxic drugs. The ability of cyclophosphamide to affect cardiac
differentiation from primitive cells has been tested only in
embryonic cardiac stem cells and not in adult CPCs, showing
that embryonic cardiac precursors are more sensitive to
cyclophosphamide than late mature cardiomyocytes [100].
It has been shown that 5-fluorouracil (5-FU) induces deple-
tion of cardiac stem cells with drastic reduction of cardiac
neogenesis but the exact mechanism is still unknown [101].
The effects of trastuzumab on CPCs have been tested only
in in vitro studies showing that the drug does not affect apo-
ptosis and cell viability but reduces the ability to differentiate
in cardiomyocytes and to form microvascular networks
[102]. Moreover, animals with myocardial infarction treated
with CPCs and trastuzumab does not show a recovery of
cardiac phenotype compared with the animals treated only
with CPCs [102].

4. Cardiac Cell Crosstalk in Cardiotoxicity

Cardiotoxicity is a very complex phenomenon that is the
result of heart damage in toto, including all the different
cardiac cells (endothelial, cardiomyocytes, fibroblast, and
immune cells). Although these cells are different in metab-
olism, function, and structure, they are part of a complex

network in which they participate in active crosstalks.
Thus, each cell type is able to change its functional
features (metabolic demand, oxygen consumption, migra-
tion, and secretion) to maintain tissue homeostasis. To
date, this phenomenon is still poorly explored, even if
several pieces of evidence sustain the existence of cross-
talks between cardiac cells in both physiologic and patho-
logic conditions [103]. The effects of anticancer drugs on
this phenomenon are different (activation or inhibition of
cell crosstalks) due to the type of drug and affected path-
way. Generally, in response to oxidative stress, cardiac
endothelial cells release neuregulin, a peptide that activates
cardiomyocyte receptors HER4, which in turn dimerizes
with HER2 receptors and activates survival pathways
(inhibition of apoptosis and reduction of mitochondrial
ROS generation through activation of protein kinase B)
[63] (Figure 3(a)). Moreover, HER4/HER2 signaling also
increases NO production, which in turn acts on the endo-
thelium to preserve endothelial homeostasis [64]. This
interplay between cardiomyocytes and endothelial cells,
that represents a defensive mechanism during the stress
response, does not occur in the presence of trastuzumab
(Figure 3(b)). Thus, it appears clear that the effects of anti-
cancer treatment on cardiac function are amplified by the
disruption of cardiac cell crosstalks.

Also, anthracyclines are able to regulate cell crosstalks.
Indeed, DOX-dependent oxidative stress in cardiac fibroblast
induces the release of FAS-L which in turn activates apopto-
sis signaling in cardiomyocytes [104].

Moreover, the inflammatory response to cardiotoxic
drugs is itself the result of an active interplay between cardiac
cells. Indeed, the oxidative stress induced by cardiotoxic
drugs activates NFκB in the endothelium with consequent
release of proinflammatory cytokines (IL-1, IL-2, and IL-6)
which, in turn, acts in resident and circulating immune cells.
The latter affect the function of fibroblasts, inducing deposi-
tion of fibrotic tissue that influence contractile function of
cardiomyocytes (Figure 3(b)).

The mechanisms of cell interplay within the heart are
very complex, and further investigations are needed to
understand their involvement in the suiting of cardiotoxicity.
This could be the main target of next future studies which
will allow in this manner the identification of new thera-
peutic strategies, based on the targeting of molecules that
mediate cell communications.

5. Future Prospective

To date, cardiotoxicity is a rising issue for several onco-
logic patients which undergo chemotherapy to treat
cancer. This is due to the cardiotoxic effects of some che-
motherapeutic agents that although effective to increase
patient’s survival to cancer, in most cases lead to patient’s
death for cardiovascular diseases. This suggests the need
for new strategies to prevent or treat cardiotoxicity. Given
the key role of ROS in determining the cardiotoxic
response, a therapeutic strategy based on the use of
antioxidant could be useful. Also, given the important
contributions of the different cardiac cells in cardiotoxicity,
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Figure 3: A functional crosstalk between cardiac cells, affecting by cardiotoxic drugs. (a) In response to physiological stress, endothelial cells
secrete survival factors, NRG1. NRG1 acts on HER2/HER4 in cardiomyocytes, inducing survival pathways, blocking ROS production, and
favoring NO release. Cardiac fibroblasts produce components of extracellular matrix to ensure appropriate heart architecture also in
response to changes in cardiac homeostasis. (b)The defensive mechanism mediated by NRG1 does not occur in presence of trastuzumab.
Moreover, the oxidative stress induced by anticancer drugs, such as DOX or trastuzumab, induces activation of NFκB in the endothelium,
with an expression of proinflammatory cytokines, IL-2 and IL-6, activating immune cells. The activated immune cells promote a
profibrotic phenotype of fibroblasts, with abnormal deposition of extracellular matrix and pathological cardiac remodeling.

8 Oxidative Medicine and Cellular Longevity



cell-specific molecular targets could be identified to pre-
vent oxidative stress and the associated cell damage. In
this context, the specific inhibition of the GRK2 activity
or the regulation of its subcellular localization, that has
been shown to be an effective strategy for the treatment
of cardiovascular diseases, could also be useful in the treat-
ment of cardiotoxicity, even if further studies are needed
to sustain this hypothesis.
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