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SUMMARY
While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogene-
ity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation
and gene expression data across 763 primary samples identifies very homogeneous clusters of patients,
supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alter-
ations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma.
Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as
readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic
Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma sub-
types identified through integrative clustering have important implications for stratification of future clinical
trials.
INTRODUCTION

Genomics has substantially advanced our understanding of

medulloblastoma (Northcott et al., 2012a; Ramaswamy et al.,
Significance

While medulloblastoma is widely recognized as comprising fou
four subgroups, and the extent of overlap between the four s
integrate gene expression and DNA methylation profiling, we
and 4 is minimal after accounting for both expression and DN
within each of the subgroups that have distinct somatic copy
disparate clinical outcomes. Integrated analysis has refined the
and identified clinically and biologically relevant subtypes, wh
refine our current clinical classification.
2011). While historically considered one entity, it is now clearly

accepted that medulloblastoma comprises at least four distinct

entities: WNT, SHH, group 3, and group 4; as reflected in the

current revision of the WHO classification (Louis et al., 2016;
r distinct subgroups, the degree of heterogeneity within the
ubgroups is unknown. Applying similarity network fusion to
demonstrate that the degree of overlap between groups 3
A methylation data. We identify medulloblastoma subtypes
-number aberrations, differentially activated pathways, and
boundaries between the four medulloblastoma subgroups,
ich will inform and improve preclinical modeling, as well as

Cancer Cell 31, 737–754, June 12, 2017 ª 2017 Elsevier Inc. 737

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ccell.2017.05.005&domain=pdf


Marta Perek-Polnik,12 Alexandre Vasiljevic,13,72 Cecile Faure-Conter,14 Anne Jouvet,15 Caterina Giannini,16

Amulya A. Nageswara Rao,17 Kay Ka Wai Li,18 Ho-Keung Ng,18 Charles G. Eberhart,19 Ian F. Pollack,20

Ronald L. Hamilton,21 G. Yancey Gillespie,22 James M. Olson,23,24 Sarah Leary,24 William A. Weiss,25 Boleslaw Lach,26,73

Lola B. Chambless,27 Reid C. Thompson,27 Michael K. Cooper,28 Rajeev Vibhakar,29 Peter Hauser,30

Marie-Lise C. van Veelen,31 Johan M. Kros,32 Pim J. French,33 Young Shin Ra,34 Toshihiro Kumabe,35
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Ramaswamy et al., 2016a). These four subgroups have distinct

transcriptional profiles, copy-number aberrations, somatic mu-

tations, and clinical outcomes (Morrissy et al., 2016; Northcott

et al., 2012a; Ramaswamy et al., 2016b; Ramaswamy et al.,

2013). Indeed, current clinical trials and risk stratification bio-

markers incorporate the four molecular subgroups (Ramaswamy

et al., 2016a), as do preclinical modeling and the development of

novel therapeutics (Pei et al., 2016). However, the extent to

which there are additional layers of heterogeneity within the me-
738 Cancer Cell 31, 737–754, June 12, 2017
dulloblastoma subgroups is unknown, and a concerted global

effort to analyze a very large cohort of tumors will be needed

to resolve the question.

WNT and SHH medulloblastomas are clearly identifiable and

separable across the majority of transcriptional and methylation

profiling studies, demonstrating minimal overlap with other sub-

groups (Taylor et al., 2012). Clear heterogeneity exists within the

SHH subgroup, which includes infants, children, and adults,

although the extent and nature of the substructure is not clearly
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defined (Northcott et al., 2011; Kool et al., 2014; Lafay-Cousin

et al., 2016). The transcriptomes of group 3 and group 4 medul-

loblastoma are more similar to each other, and several cytoge-

netic features, such as isochromosome 17q (i17q), are found

in both groups (Taylor et al., 2012). In response to this, the

recent revision of WHO Classification of CNS Tumors has as-

signed groups 3 and 4 as provisional entities, and a recent

consensus on high-risk medulloblastoma left this question unre-

solved (Louis et al., 2016). Establishing the nature of the bound-
ary between group 3 and group 4 is of clinical importance as

outcomes differ, particularly in the setting of upfront metastatic

dissemination (Ramaswamy et al., 2016a, 2016b; Thompson

et al., 2016).

Genome-wide transcriptional arrays and/or genome-wide

methylation arrays are the current gold standard for medullo-

blastoma subgrouping (Ramaswamy et al., 2016a). These ap-

proaches have been used independently with the underlying

assumption that they identify similar, perhaps even identical
Cancer Cell 31, 737–754, June 12, 2017 739
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Figure 1. Clear Separation of the Four Medulloblastoma Subgroups through Integrative SNF Clustering

(A) Tumor clusters obtained by spectral clustering (for k = 2 to 8 groups) on the SNF network fused data obtained from both gene expression and DNAmethylation

data on 763 primary medulloblastomas. Relationships between tumors are indicated by the gray bars between columns. k = 4 (red box), defines the four

recognized subgroups.

(B) Network representation of the relationships between tumors (k = 4). The shorter the edge between samples (nodes) is the more similar the samples are (only

edges with a similarity value above the median value of all patient to patient similarity values are displayed).

(C) Heatmap representation of the sample-to-sample fused network data sorted by cluster for k = 4. Sample similarity is represented by red (less similar) to yellow

(more similar) coloring inside the heatmap.

(D) Venn diagram showing the number of samples intermediate between groups 3 and 4when using k-means or NMF clustering method on just expression or just

methylation datasets of group 3 and 4 tumors (n = 470) between k = 2 and 3.

(legend continued on next page)
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patient clusters. However, the subgroups identified using the

two data types in isolation have not been compared head to

head. More recently, methods of integrative clustering that

analyze multiple data types in aggregate have been developed,

including similarity network fusion (SNF) (Wang et al., 2014). Inte-

grative approaches using multiple data types have been sug-

gested to provide superior results compared with the analysis

of single data types in isolation. SNF creates a unified view

of patients based on multiple heterogeneous data sources, as

it can integrate both gene- and non-gene-based data. SNF

avoids the bias of genes or features pre-selection, is robust to

different types of noise, is highly scalable, and has been shown

to outperform other approaches for data integration (Wang

et al., 2014).

Prior reports have recognized the existence of additional

substructure within the four consensus subgroups, particularly

within groups 3 and 4 (Cho et al., 2011). Consequently, a medul-

loblastoma consensus conference established that subdivisions

within the known subgroups would be defined as subtypes, and

labeled a, b, g, d, ε, etc. (Taylor et al., 2012). In this study our goal

was to resolve intra-subgroup heterogeneity and identify biolog-

ically distinct and clinically relevant medulloblastoma subtypes

by studying a very large cohort of primary tumor samples.

RESULTS

Integrated Clustering of Primary Medulloblastomas
Recovers the Four Subgroups and Further Separates
Group 3 from Group 4 Tumors
Through the Medulloblastoma Advanced Genomics Interna-

tional Consortium, we assembled a cohort of 763 primary frozen

medulloblastoma samples with high-quality DNA and RNA, and

generated genome-widemethylation and expression profiles. Of

these, 491 had DNA copy-number profiles generated by Affyme-

trix SNP6 microarrays (Northcott et al., 2012b). Clinical data

including age, tumor histology, metastatic status, and survival

were available on 95.7%, 76.9%, 75.2%, and 82% of cases,

respectively (Table S1). Arm-level somatic copy-number aberra-

tions (SCNA) were inferred from methylation arrays in 100%

of cases.

To these samples, we applied SNF to integrate both gene

expression andDNAmethylation data, followed by spectral clus-

tering ranging from 2 to 12 groups. At k = 4, four distinct sub-

groups are clearly identified. Those groups correspond clinically

and structurally to the previously described consensus sub-

groups:WNT (n = 70), SHH (n = 223), group 3 (n = 144), and group

4 (n = 326) (Figures 1A–1C and S1A–S1F) (Taylor et al., 2012).

Groups 3 and 4 aremore similar to each other than to SHH and

WNT (Figures 1B and 1C). We tested the stability of these core

subgroups, by counting samples that switch subgroup affiliation

when the number of clusters increases (Figure 1A). Following

each sample from k = 4 to k = 12, no sample changed affiliation

between WNT and SHH, while a small minority of samples

moved between groups 3 and 4.
(E) Tumor clusters obtained through spectral clustering on the SNF network fuse

2.8%) that were initially classified as group 3 samples at k = 2, subsequently mov

These samples are tracked up to k = 8 (orange).

See also Figures S1, S3 and Table S1.
To determine the degree of overlap between groups 3 and 4,

we undertook unsupervised clustering of 470 group 3 and 4 tu-

mors using DNA methylation array data only, and then subse-

quently using transcriptional profiling data only. Both k-means

and non-negative matrix factorization (NMF) consensus clus-

tering revealed a small subset of tumors (2.9%–8.9%) that

switched subgroup between k = 2 and k = 3 as determined

through analysis of either transcriptional or methylation data

(Figures S1G and S1H). Strikingly, the set of ‘‘ambiguous group

3–4 tumors’’ identified by gene expression profiling had very little

overlap with those identified by DNA methylation profiling (Fig-

ure 1D) suggesting that the identification of the ambiguity may

be a limitation of the particular type of measurement or data,

rather than the identification of a truly distinct biological subtype.

Examination of tumors within the ‘‘overlap’’ group does not

reveal any demographic, clinical, or genetic commonalities, sug-

gesting that it could be an artifact rather than a biologically

discrete, clinically important group. Subsequent application

of SNF and spectral clustering to this cohort of group 3 and 4

samples demonstrates that only 13/470 (2.8%) of samples

change subgroup between k = 2 to k = 3, and of these 13 only

3 (0.64%) do not track back to their original subgroup when

k > 3 (Figures 1E and S1I). We conclude that group 3 and group

4 medulloblastomas are stable, mostly non-overlapping molec-

ular subgroups, and that SNF followed by spectral clustering is

a more robust method of delineating subgroups than using a

single data type in isolation.

Integrated Clustering Identifies 12 Medulloblastoma
Subtypes
We applied SNF and spectral clustering within each of the four

subgroups as defined by k = 4 across the entire cohort to deter-

mine the extent and nature of intra-subgroup heterogeneity. SNF

and spectral clustering were selected to reduce the noise intro-

duced by biased feature selection, and to leverage the full spec-

trum of our dataset. We identified clusters from k = 2 to k = 8

within each subgroup. In addition, we applied seven different

machine-learning classifiers to predict the SNF subtypes. Clus-

ter assignments from spectral clustering on the SNF fused

similarity matrix was used as the ‘‘ground truth’’ subtype assign-

ments. We split the dataset into a 70% training set and 30%

testing set, trained the various classification models in 5-fold

cross-validation on the training set and repeated the procedure

100 times (Table S2). We then applied the following criteria a pri-

ori to select the optimal number of subtypes: (1) how similar are

the SNF clusters on the sample-to-sample heatmap? (2) How

subtype specific are the broad and focal SCNA? (3) How relevant

are the clinical associations? (4) How robustly can these sub-

types be predicted using supervised machine learning? Using

these criteria, we identified 12 subtypes: two WNT, four SHH,

three group 3, and three group 4. For each solution, we identified

focal SCNA from SNP6 data and arm-level copy-number gains

and losses using copy-number states inferred from the methyl-

ation arrays.
d data of group 3 and 4 samples (n = 470). A small minority of samples (n = 13,

e to group 4 at k = 3. Only 3/470 (0.64%) samples remain in group 4 after k = 5.
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Figure 2. Differential Set of Associated Genes and Methylation Probes across the 12 Subtypes

(A and B) Heatmap of the top 1%most associated genes (A) and the top 1%most associated methylation probes (B) for the subtypes inside each subgroup (left

side color bar), respectively. Top color bars indicate the subgroup and subtype sample affiliation. Samples are ordered by subtype.

(C) Percentage of genes associated for each subgroup; (1) that havemethylation probes in their promoter region, (2) for which thosemethylation probes are in the

top 1%associated probes of the respective subgroup, and (3) for which an anti-correlation can be detected between the gene expression andmethylation probes

levels inside the subgroup. The numbers of genes in each category are indicated.

See also Figure S2 and Tables S2 and S3.
For each subgroup,we identified the top associated genes and

methylation probes that best support the final subtypes. Analysis

of the top 1%of the associated genes andmethylation probes for
742 Cancer Cell 31, 737–754, June 12, 2017
each subgroup demonstrates that the subgroups are supported

by specific gene sets and methylation probes that vary sub-

stantially across subtypes (Figures 2A, 2B, and S2A–S2D;
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Figure 3. Clinical and Genomic Characteristics between Four SHH Medulloblastoma Subtypes

(A) Network representation map of k = 4 SNF-derived subtypes.

(B) Age at diagnosis for SHH subtypes at k = 4 (Kruskal-Wallis test). Boxplot center lines show datamedian; box limits indicate the 25th and 75th percentiles; lower

and upper whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, respectively. Outliers are represented by individual points.

(C) Overall survival of SHH subtypes (log rank test). + indicates censored cases.

(D) Frequency and significance of broad cytogenetic events across the four SHH subtypes. Darker bars show significant arm-level copy-number event (q% 0.1,

chi-square test). * indicates key statistically significant arm gain or deletion.

(E) Distribution of TP53 mutations across SHH subtypes (Pearson’s chi-square test).

(F) Overall survival stratified by TP53 mutation within SHH a and non-SHH a (log rank test). + indicates censored cases.

(G) Incidence of metastatic dissemination at diagnosis across the four SHH subtypes (chi-square test).

(legend continued on next page)
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Table S3). We evaluated the relationship between the asso-

ciated genes and methylation probes in each subgroup. We

first evaluated the number of associated genes that had

methylation probes in their promoter region. Then we iden-

tified the subset of associated genes for which those probes

were subgroup associated, and finally checked if we could

detect an anti-correlation between the associated gene expres-

sion and the associated probe methylation levels. Only 3.7%,

8.3%, 6%, and 13% of WNT, SHH, group 3, and group 4

associated genes, respectively, follow all the criteria described

above (Figure 2C). Therefore, only a small percentage of

the associated genes are directly affected by DNA methyl-

ation. This is in support of both DNA methylation and gene

expression contributing to the heterogeneity observed within

each subgroup.

Integrative Clustering of DNA Methylation and Gene
Expression Overcomes Discrepancies in Single Dataset
Analysis at Defining Subtypes
To determine whether analysis of a single data type in isolation

yielded similar results, we performed NMF clustering using

gene expression or DNA methylation data individually. Using

NMF clustering of the most variable expressed genes and

methylated probes, we found that the two different types of

data yield discordant subtypes as defined by both the cophe-

netic coefficient and silhouette value (>0.9) criteria (Figures

S3A–S3D). In addition, the group memberships between the

two modalities are divergent, indicating a lack of agreement

between expression and methylation when analyzed in isola-

tion (Figures S3E–S3H). When compared with the SNF sub-

types, we found important differences, suggesting that both

methylation and expression signatures contribute significantly

and differently to define heterogeneity within the four sub-

groups; the data types provide distinct but complementary

signals that improve over single-modality analyses. The sub-

types identified by SNF are truly a combination of information

present in both datasets, and therefore both data types are

required to gauge the true intertumoral heterogeneity of me-

dulloblastoma. For example, we observe that SHH a is mainly

supported by the methylation data, but the defined group

does not contain all SHH a samples (61%, Figure S3B). SHH

d is strongly supported by both the expression and methyl-

ation data (Figure S3B). In addition, groups 3b and 3g are

mainly defined by the signatures found in the expression

data and do not separate well using the methylation data

alone (Figure S3C). Finally, group 4g is very well supported

by the methylation data, and corresponds to a group obtained

with the expression data, but this latter group is missing

24.4% of group 4g samples (Figure S3D). Group 4b is well

supported by both data types (Figure S3D). We conclude

that methylation and expression data are complimentary,

and an integrated approach allows a unified view of the under-

lying groups that is very valuable in elucidating heterogeneity

within subgroups.
(H) WHO histological classification at diagnosis across the four SHH subtypes (c

(I) Overall survival within SHH g stratified by MBEN histology (log rank test). + ind

(J) Distribution of TERT promoter mutations across SHH subtypes (Pearson’s ch

See also Figures S4, S5; Tables S2, S4, and S5.
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SHH Subtypes
Applying SNF and spectral clustering on SHH subgroup samples

at k = 4 identified four clinically and cytogenetically distinct

groups: SHH a (n = 65), SHH b (n = 35), SHH g (n = 47), and

SHH d (n = 76) (Figures 3A, S4A, and S4B). SHH a tumors primar-

ily affect children aged 3–16 years (Figure 3B), have the worst

prognosis (p = 0.03, log rank test, Figure 3C), and are enriched

for MYCN amplifications (SHH a 8/37, b 3/23, g 0/29, d 1/48;

p = 0.0034 Pearson’s chi-square test), and GLI2 amplifications

(SHH a 6/37, b 0/23, g 0/29, d 0/48; p = 0.0002 Pearson’s chi-

square test, Figure S4C; Table S4). Specific CNAs including 9q

loss (SHH a 42/65, b 8/35, g 11/47, d 17/76; p = 2.94 3 10�7

Pearson’s chi-square test), 10q loss (SHH a 29/65, b 6/35,

g 7/47, d 6/76; p = 1.54 3 10�5 Pearson’s chi-square test), 17p

loss (SHH a 24/65, b 5/35, g 3/47, d 8/76; p = 3.44 3 10�5

Pearson’s chi-square test, Figure 3D), and YAP1 amplifications

(SHH a 3/37, b 0/23, g 0/29, d 0/48; p = 0.04 Pearson’s chi-

square test, Figure S4C; Table S4) are also enriched in SHH a.

The recent WHO classification includes SHH-activated TP53

mutant tumors as a distinct category based on studies showing

this group as being very high risk (Louis et al., 2016; Ramaswamy

et al., 2016a; Zhukova et al., 2013). To further explore this asso-

ciation, TP53 was sequenced across 145 SHH samples. TP53

mutations are highly enriched in SHH a (SHH a 14/40, b 2/27,

g 2/31, d 6/47; p = 0.0026 Pearson’s chi-square test, Figure 3E;

Table S5). When survival is analyzed stratified by TP53mutation

and SHH a subtype, TP53mutations are only prognostic in SHH

a (HR TP53mut versus WT: SHH a 6.006 [95% CI: 1.586–22.75;

p = 0.00832] and non-SHH a 1.222 [95% CI: 0.2795–5.342;

p = 0.79, Cox proportional hazards, Figure 3F]).

Interestingly, infant SHH tumors are mainly distributed across

SHH b and SHH g (age < 3: SHH a 5/65, b 23/35, g 34/47, d 0/76;

p = 2.2 3 10�16 Pearson’s chi-square test, Figure 3B), with

disparate outcomes and copy-number profiles. SHH b tumors

are frequently metastatic (33.3% versus 9.4% in SHH b and g;

p = 0.027 Pearson’s chi-square test, Figure 3G), harbor focal

PTEN deletions (25% in SHH b versus none in g), have multiple

focal amplifications (Figure S4C; Table S4), and have a worse

overall survival compared with SHH g (HR of SHH b versus g:

2.956 95% CI: 0.908–9.63; p = 0.059 Cox proportional hazards,

Figure 3C). The difference in outcomes between SHH b and g is

possibly related to the increased rate of metastatic dissemina-

tion in SHH b, as there is a clear trend toward metastases being

a marker of poor outcome within SHH b (HR of SHH bmetastatic

versus non-metastatic: 3.621 95% CI: 0.798–16.44; p = 0.096

Cox proportional hazards). Conversely, SHH g have a relatively

quiet copy-number landscape, with no recurrent amplifications,

only one low-level recurrent focal deletion, and no significant

arm-level gains (Figures 3D and S4C). Moreover, SHH g

are enriched for the MBEN (medulloblastoma with extensive

nodularity) histology (20.9%; p = 2.34 3 10�5, Pearson’s chi-

square test, Figure 3H), which is known to portendmore indolent

clinical behavior (Rutkowski et al., 2010). Although almost all

SHH tumors with MBEN histology (n = 10) were assigned to it,
hi-square test).

icates censored cases.

i-square test).



only a minority of SHH g tumors have MBEN histology, demon-

strating that histology alone is an inadequate surrogate to

identify SHH g tumors. The survival difference of SHH g patients

is not statistically significant between MBEN and non-MBEN

tumors, suggesting that subtype affiliation is a more powerful

biomarker than histopathology in infants with SHH medulloblas-

toma (p = 0.268, log rank test, Figure 3I). SHH d are primarily

composed of adults, have a favorable prognosis, and are

strongly enriched for TERT promoter mutations (SHH a 6/34,

b 2/22, g 7/26, d 38/42; p = 8.13 3 10�13, Pearson’s chi-square

test, Figure 3J).

To interrogate other possible solutions and to present

the full results (Figures S5A–S5E), we also compared SHH

subtypes when divided into three or five SNF groups. We refer

to the clusters obtained by SNF for other numbers of groups

(k = 3, k = 5 here) as c1, c2, c3, etc. (see Figures S4A and S4B).

When comparing k =4with k = 3, SHHa and d correspond closely

to c2 and c1, respectively, with c3 representing a group of infants

comprising SHH b and g (Figures S4A, S4B, and S5A). SHH k = 5

reveals an additional group comprised primarily of a subset of

SHH a patients with a group (c3) enriched for 9q loss with a

good prognosis and a second group (c5) with a poor prognosis

enriched for anaplasia (Figures S4B and S5C–S5E). Several ma-

chine-learning classifiers using both data types suggest poor

confidence (<80%) in predicting the c5 group. The machine-

learning classifier with the best performance, elastic net (Zou

and Hastie, 2005), is able to distinguish between four groups

with >90% accuracy (Table S2). The identification of two groups

of infant medulloblastoma with distinct clinical behavior allows

for more precise and rational planning of clinical trials for infants

with SHH medulloblastoma (Lafay-Cousin et al., 2016).

WNT Subtypes
We identify two WNT subtypes, WNT a (n = 49) and WNT b (n =

21) (Figures 4A, S6A, and S6B); WNT a is comprised mainly of

children (Figure 4B), has similar survival as WNT b (p = 0.5, log

rank test, Figure 4C), and has ubiquitous monosomy 6 (WNT a

48/49, b 6/21; p = 2.3653 10�10 Pearson’s chi-square test, Fig-

ure 4D). WNT b is enriched for older patients (p = 4.013 3 10�6,

Kruskal-Wallis test, Figure 4B) who are frequently diploid for

chromosome 6 (Figure 4D). Monosomy 6 has previously been

described as a defining WNT medulloblastoma feature; clearly,

patients with WNT b will be misdiagnosed if this criterion is

used alone. Prior reports suggesting that adult WNT medullo-

blastoma might have a different biology and worse prognosis

than childhood WNT medulloblastoma, are supported by our

current analysis (Remke et al., 2011; Zhao et al., 2016). At

k = 3, we observe a new group, comprised primarily of WNT b

without monosomy 6 (Figures S6A and S6B); however, in the

absence of any other defining feature or clear clinical relevance,

we chose k = 2 as our preferred solution.

Group 3 Subtypes
Three very distinct subtypes of group 3 emerge from our anal-

ysis, each with characteristic copy-number and clinical vari-

ables: group 3a (n = 67), group 3b (n = 37), and group 3g

(n = 40) (Figures 5A, S6C, and S6D). A total of 60% of infants un-

der the age of 3 years are in group 3a (age < 3: group 3a 14/63, 3b

4/36, 3g 5/36; p = 0.021, Kruskal-Wallis test, Figure 5B).
Clinically, groups 3a and 3b have a more favorable prognosis

compared with group 3g (Figure 5C). Group 3b are slightly older

(p = 0.021, Kruskal-Wallis test, Figure 5B), and are infrequently

metastatic (group 3a 23/53, 3b 5/25, 3g 15/30; p = 0.058

Pearson’s chi-square test, Figure 5D). Group 3a and 3g have a

similar frequency of metastatic dissemination at diagnosis (Fig-

ure 5D). Chromosome 8q (MYC locus at 8q24) loss is more

frequent in group 3a and gain more frequent in group 3g

(8q gain: group 3a 0/67, 3b 3/37, 3g 22/40; p = 2.2 3 10�16

Pearson’s chi-square test, Figure 5E), group 3b tumors have a

higher frequency of activation of theGFI1 andGFI1B oncogenes,

previously shown to be drivers of group 3 through a process

termed enhancer hijacking via focal gains and losses on chromo-

somes 1 and 9, with a paucity of arm-level chromosomal gains

and losses (GFI1 or GFI1B activation: group 3a 1/67, 3b 26/37,

3g 3/40, p < 2.2 3 10�16 Pearson’s chi-square test, Figures

S7A and S7B) (Northcott et al., 2014). OTX2 amplifications are

also enriched in group 3b, as are losses of DDX31 on chromo-

some 9; previously described to lead to activation of GFI1B

through enhancer hijacking (OTX2: group 3a 0/35, 3b 6/28, 3g

0/24; p = 0.0013; DDX31 deletion: group 3a 1/35, 3b 9/28, 3g

0/24; p = 0.0031 Pearson’s chi-square test, Figure S7A; Table

S4). Group 3g have the worst prognosis (p = 0.036 log rank

test, Figure 5C), a trend to enrichment of i17q (group 3a 17/67,

3b 5/37, 3g 10/40; p = 0.32 Pearson’s chi-square test, Figure 5E)

and frequently harbor increasedMYC copy number (group 3a 0/

35, 3b 2/28, 3g 5/24; p = 0.012, Figures 5F and S7A; Table S4),

without other focal aberrations (Taylor et al., 2012). Group 3g

have a poor prognosis independent of MYC amplification, ex-

panding the group of high-risk group 3 tumors beyond just

MYC status (p = 0.026, log rank test, Figure 5G).

We find less support for other solutions of group 3, specifically

k = 2 and k = 4 (Figures S6C, S6D, S7C, and S7D). At k = 2, we

observe a group enriched for MYC amplification (c1 0/38, c2

7/48; p = 0.014 Pearson’s chi-square test), and GFI1 family

of oncogene activations cluster together (GFI1/1B activation:

c1 1/71, c2 29/73; p = 1.14 3 10�8 Pearson’s chi-square test)

without any meaningful clinical differences (Figure S7C). At

k = 4, group 3a splits into two groups with minor contributions

from the other two groups without any new meaningful clinical

or copy-number enrichment (Figures S6D and S7D). In addition

the elastic net classifier performs strongly at k = 3 (89%–

98.8% per-group accuracy), while at k = 4 one group is less reli-

ably predicted (72% accuracy, Table S2).

Group 4 Subtypes
Group 4 is the most prevalent subgroup comprising >40% of all

medulloblastomas; previously described features include i17q,

tandem duplications of SNCAIP, and high-level amplifications

of MYCN and CDK6 (Northcott et al., 2012b). We observe clear

enrichment of key focal and arm-level SCNA at k = 3: group 4a

(n = 98), group 4b (n = 109), and group 4g (n = 119) (Figures

6A, S8A, and S8B). Clinically we observe group 4b have a slightly

higher median age at diagnosis (8.22, 10, and 7 years for groups

4a, 4b, and 4g; p = 1.34 3 10�5 Pearson’s chi-square test, Fig-

ure 6B); however, there is no statistically significant difference in

the overall survival (Figure 6C) or rate of metastatic dissemina-

tion at diagnosis (groups 4a 30/75, 4b 35/86, 4g 36/94; p =

0.94 Pearson’s chi-square test, Figure 6D). Group 4a are
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Figure 4. Clinical and Genomic Characteristics between Two WNT Medulloblastoma Subtypes

(A) Network representation map of k = 2 SNF-derived subtypes.

(B) Age at diagnosis for WNT subtypes at k = 2 (Mann-Whitney U test). Boxplot center lines show data median; box limits indicate the 25th and 75th percentiles;

lower and upper whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, respectively. Outliers are represented by individual

points.

(C) Overall survival comparing WNT a with WNT b (log rank test). + indicates censored cases.

(D) Frequency and significance of broad cytogenetic events across the twoWNT subtypes. Darker bars show significant arm-level copy-number events (q% 0.1,

chi-square test). * indicates key statistically significant arm gain or deletion.

See also Figure S6.
enriched forMYCN amplifications (11/66, compared with none in

group 4b and 4g; p = 2.463 10�6 Pearson’s chi-square test, Fig-

ure S8C; Table S4). Group 4a and 4g are strongly enriched for 8p

loss (group 4a 47/98, 4b 24/109, 4g 87/119; p = 1.22 3 10�13

Pearson’s chi-square test) and 7q gain (group 4a 57/98, 4b

9/109, 4g 62/119; p = 9.5 3 10�31, Pearson’s chi-square test,

Figure 6E). Group 4b are strongly enriched for SNCAIP duplica-

tions (group 4a 4/66, 4b 11/74, 4g 0/73; p = 0.0019 Pearson’s

chi-square test) and almost ubiquitous i17q (group 4a 40/98,

4b 87/109, 4g 31/119; p = 9.75 3 10�16 Pearson’s chi-square

test) with a paucity of other SCNA (Figures 6E and S8C; Table

S4). In addition, groups 4a and 4g are enriched for focal CDK6
746 Cancer Cell 31, 737–754, June 12, 2017
amplifications (group 4a 4/66, 4b 0/74, 4g 6/73; p = 0.051 Pear-

son’s chi-square test, Figure S8C; Table S4). Previous studies

have suggested GFI1 and GFI1B activation to be present in

group 4, however we see GFI activation to be largely restricted

to group 3b (Figure S8D).

At k = 2, we observe groups 4a and 4g forming one group, and

group 4b being largely preserved (Figures S8A, S8B, and S8E).

At k = 4, group 4b continues to segregate from the other groups;

however, no new groups emerge with any significant clinical or

copy-number differences (Figures S8A, S8B, and S8F). Due to

the enrichment of key SCNA at k = 3, we chose this as our

preferred solution. Moreover, our classifier exhibits a decline in
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Figure 5. Clinical and Genomic Characteristics between Three Group 3 Medulloblastoma Subtypes

(A) Network representation map of k = 3 SNF-derived subtypes.

(B) Age at diagnosis of group 3 subtypes at k = 3 (Kruskal-Wallis test). Boxplot center lines show data median; box limits indicate the 25th and 75th percentiles;

lower and upper whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, respectively. Outliers are represented by individual

points.

(C) Overall survival of group 3 subtypes (log rank test). + indicates censored cases.

(D) Incidence of metastatic dissemination at diagnosis for the three group 3 subtypes (chi-square test).

(E) Frequency and significance of broad cytogenetic events across the group 3 subtypes. Darker bars show significant arm-level events (q% 0.1, chi-square test).

* indicates key statistically significant arm gain or deletion.

(legend continued on next page)
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Figure 6. Clinical and Genomic Characteristics of the Three Group 4 Medulloblastoma Subtypes

(A) Network representation map of k = 3 SNF-derived subtypes.

(B) Age at diagnosis of group 4 subtypes at k = 3 (Kruskal-Wallis test). Boxplot center lines show data median; box limits indicate the 25th and 75th percentiles;

lower and upper whiskers extend 1.5 times the interquartile range (IQR) from the 25th and 75th percentiles, respectively. Outliers are represented by individual

points.

(C) Overall survival of group 4 subtypes (log rank test). + indicates censored cases.

(D) Incidence of metastatic dissemination at diagnosis across the three group 4 subtypes (chi-square test).

(E) Frequency and significance of broad cytogenetic events across the three group 4 subtypes. * indicates key statistically significant arm gain or deletion. Darker

bars show significant arm-level events (q % 0.1, chi-square test).

See also Figure S8 and Tables S2, S4.
confidence at k = 4, suggesting these groups are not as robust as

k = 3 (Table S2).

Comparable Subtypes with Key Clinical Differences Are
Identified by Other Integrative Analyses
Two other integrative clusteringmethods have been employed by

the The Cancer Genome Atlas (TCGA) consortium in previous

studies of other cancer histologies. We applied both methods to
(F) Distribution of MYC amplifications across group 3 subtypes (Pearson’s chi-sq

(G) Overall survival of group 3 subtypes without MYC amplifications for each

censored cases.

See also Figures S6 and S7; Tables S2 and S4.
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our dataset; when applying the cluster of clusters (COCA) method

used by TCGA in low-grade glioma and pan-cancer studies (Brat

et al., 2015; Hoadley et al., 2014) we observed that the method

was quite limited in the potential to leverage information from our

two data types in the current manuscript. The COCA subgroups

were driven by the samples that agree or disagree between the

two data types clustered in isolation, which is the COCA input.

COCA failed to identify one SHH infant subtype or group 3b.
uare test).

subtype compared with MYC-amplified tumors (log rank test). + indicates



iCluster was used successfully by TCGA to identify relevant

subtypes (Collisson et al., 2014). When applying iCluster to our

dataset, at k = 4, the four groups did not have the demographics

and SCNA consistent with the four previously described groups.

When comparing the four iCluster groups with those defined by

SNF,WNT and group 3 do not separate, and SHH comprises two

groups. When we analyze the iCluster results for five groups, we

recover two SHH groups, plusWNT, group 3, and group 4, which

in this case corresponds very well to the SNF subgroup (when

considering the two SHH groups together). We then asked if

we could recover similar subtypes to SNF using iCluster. As

we could not recover the four main groups, subgroups defined

by SNF were then individually analyzed using iCluster. We

observe a near 80% concordance with the SNF subtypes. The

childhood and the adult SHH subtypes as well as the group 4

subtypes are recapitulated (along with a single SHH infant

group). However, we identified key differences particularly within

the WNT, SHH, and group 3 subgroups. Only one WNT group is

identified, the two infant SHH subtypes are not identified, and the

two distinct group 3 subtypes withMYC amplifications and GFI1

activation are not observed. Clearly, the SNF method is superior

at leveraging information of multiple datasets to identify mean-

ingful groups of patients in a cancer cohort, specifically in a me-

dulloblastoma cohort.

Differential Pathway Activation Defines Subtypes
across All Four Medulloblastoma Subgroups
Pathway enrichment analysis was performed for each of the

identified subtypes across all four subgroups using the top

10% of associated genes across each subtype. We observe

several significantly enriched pathways for all identified subtypes

(adj. p value < 0.05), supporting subtype-specific biological pro-

cesses and transcriptional networks (Figures 7A–7D). In partic-

ular, in SHH we observe several pathways enriched in SHH b

and g, with developmental pathways more enriched in SHH g

over b (Figure 7A). Genes involved in DNA repair and cell cycle

are significantly enriched in SHH a. Several actionable path-

ways, as defined by the availability of approved drugs, are sub-

type specific. Specifically, sumoylation is enriched in SHH a, ion

channels are enriched in SHH b and g, and telomere mainte-

nance is enriched in SHH a and d. Receptor tyrosine kinase

signaling is enriched in SHH g and, to a lesser extent, in b.

DNA repair pathways are enriched in SHH a, suggesting that

strategies to inhibit the DNA damage response and increase

replicative stress are more likely to be effective in this group.

Group 3a tumors are enriched for photoreceptor, muscle

contraction, and primary cilium-related genes (Figure 7B). Path-

ways involved in protein translation are enriched in groups 3b

and 3g, which are potentially actionable using modulators

of protein synthesis such as proteasome inhibitors. Telomere

maintenance is also more enriched in group 3g, suggesting

that telomerase inhibition may only be effective in one group.

Several pathways are identified across group 4 subtypes, which,

coupled with subtype-specific copy-number enrichment, further

supports the existence of three group 4 subtypes (Figure 7C).

Actionable pathways restricted to particular subtypes include

MAPK and FGFR1 signaling in group 4b and PI3K-AKT signaling

and ERBB4-mediated nuclear signaling in group 4g. Cell migra-

tion pathways are more enriched in group 4a.
DISCUSSION

Our study identifies and delineates the intertumoral heterogene-

ity present within medulloblastoma subgroups. Leveraging a

large cohort of medulloblastomas profiled by combined gene

expression and DNA methylation, we have identified different

subtypes within each of the four core subgroups. These sub-

types have particular clinical and copy-number features, which

allow for a refinement in our understanding of the genomic land-

scape of medulloblastoma (Figure 8). Combining expression and

methylation data using SNF adds further proof that groups 3 and

4 are largely different biological entities. The deeper we go in

clustering medulloblastoma samples, the less consistent the

groups become. This is exemplified by poor predictability of pu-

tative subtypes when a large number of subtypes is assumed.

Defining clinical features and CNAs also tend to lose their

distinctive profiles as we increase the number of clusters, sug-

gesting that heterogeneity is bounded by a discrete number of

optimal groups.

Comparison of SNF with consensus clustering of either gene

expression or DNA methylation data analyzed in isolation clearly

suggests that an integrated approach provides a much more

refined and accurate classification. This is particularly striking

when evaluating the boundary between groups 3 and 4, where

samples that are deemed indeterminate using gene expression

and DNA methylation in isolation are largely non-overlapping.

Moreover, in elucidating the heterogeneity within subgroups,

we observe significant disagreement between gene expression

and DNA methylation in isolation, suggesting that each data

type makes a unique and non-redundant contribution to defining

the subtypes. The very low number of samples that change sub-

group affiliation using SNF strongly advocates that definition of

these two groups is largely enhanced using an integrative

approach. A limitation of our approach is the bulk analysis of

samples. At a subclonal level, a greater degree of overlap across

groups 3 and 4 cannot be discounted.More detailed analysis at a

cellular level, specifically applying single-cell methods, will help

delineate the full subclonal structure, potentially uncovering sub-

sets of group 3 and 4 samples with common mechanisms and

cellular origins. Further studies integrating emerging technolo-

gies such as long non-coding RNA, proteomics, and histone

modifications may allow an even more refined description of

the medulloblastoma landscape; however, the large cohorts

of frozen tissue required for these studies are presently not

available.

The identification of subtypes has significant biological and

clinical implications. Several previously described copy-number

alterations within medulloblastoma subgroups such as amplifi-

cations/gains of MYC, MYCN, OTX2, CDK6, SNCAIP, and

ACVR1, as well as several arm-level events including i17q clearly

segregate between subtypes (Northcott et al., 2012b). Our iden-

tification of unique cytogenetic aberrations that occur in concert,

as well as specific biological pathways enriched within specific

subtypes, will serve to inform creation of rational preclinical

models that closely mirror the human diseases. Several of

these aberrations are actionable and largely restricted to sub-

types, which will also allow for a more personalized treatment

approach. Several subtypes, particularly in SHH and group 3,

have clear and drastic clinical and prognostic differences, which
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Figure 7. Subtype-Enriched Pathways

(A–D) Enrichment maps representing biological processes and pathways enriched in subtype-specific upregulated genes for SHH subtypes (A), group 3 subtypes

(B), group 4 subtypes (C), and WNT subtypes (D). Each node represents a process or pathway; nodes with many shared genes are grouped and labeled by

biological theme. Processes and pathways connected at edges have genes in common. Nodes are colored according to the subtype(s) in which the process is

enriched; processes enriched in more than one subtype have multiple colors. Nodes sizes are proportional to the number of genes in each process, in each

subgroup. Enriched processes were determined with g:Profiler (FDR-corrected q value < 0.05) and visualized with the Enrichment Map app in Cytoscape.

Connected nodes and unconnected but actionable nodes are shown.
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Figure 8. Graphical Summary of the 12 Medulloblastoma Subtypes

Schematic representation of key clinical data, copy-number events, and relationship between the subtypes inside each of the four medulloblastoma subgroups.

The percentages of patients presenting with metastases and the 5-year survival percentages are presented. The age groups are: infant 0–3 years, child >3–10

years, adolescent >10–17 years, and adult >17 years.
will allow for more robust risk stratification in future clinical trials.

Furthermore, a major hurdle to clinical trial design has been the

overlap of groups 3 and 4 in current studies, which if applied

today would make strata assignment difficult. The next genera-

tion of clinical trials for high-risk medulloblastoma will involve

subgroup-specific therapies. The inability to stratify 10% of

patients to either groups 3 or 4 has the potential to either deprive

a patient of an innovative therapy or, of more concern, expose

a child to an inappropriate escalation or de-escalation of

therapy.

Clinically, our observed groups have immediate implications.

It has been shown that TP53 mutations are highly prognostic in

SHH. We extend these findings whereby TP53 mutations are

not only enriched in SHH a but also only prognostic in SHH a.

This is highly relevant for clinical trial design, where TP53mutant

SHH has been identified as a very-high-risk group to be priori-

tized for novel therapies in both Europe and North America

(Ramaswamy et al., 2016a); clearly, the observation that TP53

mutations are highly enriched and prognostic in SHH a has sig-

nificant implications. A limitation of this is the absence of germ-

line status, which, based on previous studies, are likely TP53

mutant enriched in SHH a.

The identification of two infant SHH groups has clear and im-

mediate clinical significance. Currently, infant medulloblastomas

are stratified by the presence or absence of desmoplastic

morphology. However, several reports have suggested that in-
fant SHH as a whole have a favorable prognosis independent

of morphology. Our results suggest that clinical risk stratification

can be refined by incorporation of integrated subtypes, whereby

SHH g are clearly a very low-risk group and could be spared the

toxic effects of high-dose chemotherapy. Our observation that

MBEN histology is almost exclusive to SHH g, but represent a

minority of cases within SHH g, has significant implications for

clinical trials. Current infant clinical trials stratify patients based

on either classic or desmoplastic/MBEN histology. Indeed,

the frequency of desmoplastic histology is similar across all

four SHH subtypes, despite significant differences in survival

between SHH subtypes. The most recent infant medulloblas-

toma study from the Children’s Oncology Group ACNS1221

(NCT02017964) was closed prematurely due to an excess of

relapses. This study selected infants with a ‘‘desmoplastic’’

morphology for treatment de-escalation, of which the vast ma-

jority are SHH. Indeed, our identification of two infant subtypes

of SHH represents an example where more robust risk stratifica-

tion has the potential to accurately select patients for de-escala-

tion of therapy in future clinical trials. Overall, this further

supports the idea that the incorporation of molecular stratifica-

tion rather than subjective morphology alone has the potential

for immediate clinical benefit.

Similarly, for group 3, we identify a high-risk group that is en-

riched for MYC amplification, but for which not all patients are

MYC amplified. Interestingly, the majority of in vitro cell lines of
Cancer Cell 31, 737–754, June 12, 2017 751



medulloblastoma do not represent the clear intertumoral hetero-

geneity, but rather areMYC-amplified orMYC-activated models

that actually represent only group 3g. The identification of signif-

icant heterogeneity across group 3 underlies the urgent need to

developpreclinicalmodels that faithfully recapitulate thedifferent

subtypeswithin each subgroup. In group 4, there are currently no

robust preclinical models, and the subgroups we describe, spe-

cifically the mutually exclusivity of MYCN amplifications and

SNCAIP duplications, may help with future modeling.

Taken together, our results highlight the power of combining

multiple data types compared with the use of single data types

in isolation. This approach has identified that there may be a limit

to the degree of substructure across medulloblastoma samples;

however, only a study with a much larger cohort could fully

assess the extent of intertumoral heterogeneity within the sub-

groups. We identify clinically important substructure within sub-

groups, which will allow further refinement of our biological and

clinical risk stratification schemes. The identification of homoge-

neous subtypesmay simplify the identification of targets for ther-

apy, and could allow for therapies effective across subtypes. The

development of reliable biomarkers to identify subtypes will pro-

vide much needed prognostic information for patient stratifica-

tion, particularly in regard to SHH and group 3medulloblastoma.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

763 primary medulloblastoma samples This paper N/A

Deposited Data

Expression and methylation array raw and

analyzed data

This paper GEO: GSE85218

Expression array data (285 samples)

(included as well in GSE85218)

Northcott et al., 2012b GEO: GSE37382

SNP6 data Northcott et al., 2012b GEO: GSE37384

Oligonucleotides

Primer for P53 see Table S5 Zhukova et al., 2013 N/A

TERT forward primer, 50-CAG CGC TGC

CTG AAA CTC-30
Remke et al., 2013 N/A

TERT reverse primer, 50-GTC CTG CCC CTT

CAC CTT C-30
Remke et al., 2013 N/A

Software and Algorithms

Affy R Biocondcutor package Gautier et al., 2004 http://bioconductor.org/packages/release/

bioc/html/affy.html

custom chip definition file (CDF)

hugene11sthsensgcdf (v19.0.0).

Dai et al., 2005 http://brainarray.mbni.med.umich.edu/Brainarray/

Database/CustomCDF/19.0.0/ensg.asp

arrayQualityMetrics R Bioconductor

package (v3.22.0)

Kauffmann et al., 2009 https://www.bioconductor.org/packages/

release/bioc/html/arrayQualityMetrics.html

minfi R Bioconductor package (v1.6.0)

including SWAN normalization method

Aryee et al., 2014;

Maksimovic et al., 2012

http://bioconductor.org/packages/release/

bioc/html/minfi.html

NMF R package (v0.20.6) Gaujoux and Seoighe, 2010 https://cran.r-project.org/web/packages/

NMF/index.html

conumee R Bioconductor package (v0.99.4) Hovestadt et al., 2013;

Sturm et al., 2012

http://bioconductor.org/packages/release/

bioc/html/conumee.html

GISTIC2 method (v6.2) Mermel et al., 2011 http://portals.broadinstitute.org/cgi-bin/

cancer/publications/pub_paper.cgi?

mode=view&paper_id=216&p=t

ConsensusClusterPlus R Bioconductor

package (v1.24.0)

Wilkerson and Hayes, 2010 https://www.bioconductor.org/packages/

release/bioc/html/ConsensusClusterPlus.html

SNFtool R package (v2.2.0) Wang et al., 2014 https://cran.r-project.org/web/packages/

SNFtool/index.html

MethylMix R Bioconductor package (2.0.0) Gevaert, 2015 https://www.bioconductor.org/packages/

release/bioc/html/MethylMix.html

Infinium DNA Methylation BeadChip (450K)

probe annotation on hg38

Zhou et al., 2016 http://zwdzwd.github.io/InfiniumAnnotation

StratomeX tool as part of the Caleydo

suite (v3.1.5)

Streit et al., 2014;

Lex et al., 2012

http://caleydo.org/tools/stratomex/

g:profiler Reimand et al., 2016 http://biit.cs.ut.ee/gprofiler/

Cytoscape (v3.2.0) Shannon et al., 2003 http://www.cytoscape.org/

Cytoscape Enrichment map Merico et al., 2010 http://apps.cytoscape.org/apps/enrichmentmap

IClusterPlus R Bioconductor package (v1.10.0) Mo et al., 2013 https://www.bioconductor.org/packages/

release/bioc/html/iClusterPlus.html
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Michael D

Taylor (mdtaylor@sickkids.ca).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Acquisition of Patient Samples
All medulloblastoma samples were collected at diagnosis after obtaining informed consent from subjects as part of the Medulloblas-

toma AdvancedGenomics International Consortium. Approval was obtained from institutional research ethics boards at the following

institutions: The Hospital for Sick Children, Children’s Hospital of Pittsburgh, Seoul National University Children’s Hospital, The

Children’s Memorial Health Institute, Institute of Pediatric Hematology and Oncology, Mayo Clinic, The Chinese University of

Hong Kong, John Hopkins University School of Medicine, University of Alabama at Birmingham, Seattle Children’s Hospital, Univer-

sity of California San Francisco, Burdenko Neurosurgical Institute, McMaster University, Erasmus University Medical Center, Asan

Medical Center, Kitasato University School of Medicine, Hospital Pediatrı́a CentroMédico Nacional Century XXI, Masaryk University,

Fondazione IRCCS Istituto Nazionale Tumori, Emory University, Osaka National Hospital, University of Debrecen, University of Na-

ples, Washington University School of Medicine, Montreal Children’s Hospital, Hospital Sant Joan de Déu, Virginia Commonwealth

University, Chonnam National University Hwasun Hospital and Medical School, Children’s Health Queensland Hospital and Health

Service, University of Calgary, University of Sao Paulo, Cincinnati Children’s Hospital Medical Center, Hospital de Santa Maria, Lis-

bon, University of Arkansas forMedical Sciences, Catholic University Medical School, David Geffen School ofMedicine at UCLA, The

University of Sydney, Kumamoto University Graduate School of Medical Science, Saint Louis University School ofMedicine, Hospital

Infantil de Mexico Federico Gomez, Rainbow Babies & Children’s Hospital. Patients were selected only if their treatment plan

required surgical resection. Samples were obtained as fresh frozen tissue from the time of diagnosis and stored at -80�C until pro-

cessed for the purification of nucleic acids. Tumor isolates were partitioned for both DNA and RNA extraction. Using all information in

our hands, we selected only primary tumor medulloblastoma samples for this study and removed duplicates. The sex and gender of

the 763 medulloblatoma patients used in this study are presented in Table S1.

METHOD DETAILS

Nucleic Acid Extraction
DNA extraction was performed by incubation with proteinase K overnight at 55�C followed by three sequential phenol extractions and

ethanol precipitation. Total RNAwas isolated using the TriZol methodwhere tissue was homogenized in a Precellys 24 tissue homog-

enizer (Bertin Technologies, France) in Trizol using strict RNAase free conditions. DNA was quantified using the Picogreen method

and RNA quantified using a NanoDrop 1000 instrument (Thermo Scientific) and integrity assessed by agarose gel electrophoresis

(DNA) or Agilent 2100 Bioanalyzer (RNA) at the Centre for Applied Genomics (TCAG) at the Hospital for Sick Children in Toronto, Can-

ada. RNA with an RNA integrity number of 7 or higher was required for analysis by Affymetrix Gene Arrays.

Expression and Methylation Data
To generate gene expression array profiling, 400ng of total RNAwas processed and hybridized to the Affymetrix Gene 1.1 ST array at

the Centre for Applied Genomics (TCAG) at the Hospital for Sick Children (Toronto, Canada) according tomanufacturers instructions.

In addition, all samples were analyzed on the Illumina InfiniumHumanMethylation450 BeadChips at TCAG (Toronto, ON) according to

manufacturer’s instructions.

TERT Promoter and TP53 Sequencing
TERT promoter mutational status was determined using direct sanger sequencing and genotyping as previously described where

sufficient DNA was available (Remke et al., 2013). Two primers (forward primer, 50-CAG CGC TGC CTG AAA CTC-30; reverse primer,

50-GTC CTG CCC CTT CAC CTT C-30) were designed to amplify a 163-bp product encompassing C228T and C250T hotspot muta-

tions in the TERT promoter—corresponding to the positions 124 and 146 bp, respectively, upstream of the ATG start site. Two fluo-

rogenic LNA probes were designed with different fluorescent dyes to allow single-tube genotyping. One probe was targeted to

the WT sequence (TERT WT, 50-5HEX-CCC CTC CCG G-3IABkFQ-30), and one was targeted to either of the two mutations (TERT

mut, 50-56FAM-CCC CTT CCG G-3IABkFQ). Primer and probes were custom designed by Integrated DNA Technologies (Coralville,

Iowa, USA) using internal SNP design software, and sequence homogeneity was confirmed by comparison to all available sequences

on the GenBank database using BLAST (). Primers were optimized to avoid for hairpins and homo- and heterodimers. Primers and

probes were obtained from Integrated DNA Technologies.

Real-time PCR was performed in 25 ml reaction mixtures containing 12.5 ml of TaqMan Universal Master Mix II with UNG (Applied

Biosystems), 900 nM concentrations of each primer, 250 nM TERT WT probe, 250 nM TERT MUT probe, and 1 ml (25 ng) of sample

DNA. Thermocycling was performed on the StepOnePlus (Applied Biosystems) and consisted of 2 min at 50 �C, 10 min at 95 �C, and
40 cycles of 95 �C for 15 s and 60 �C for 1 min.
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Analysis was performed using StepOne Software, version 2.1. Samples were considered mutant if they had CT values of%39 cy-

cles. Each sample was verified visually by examining the PCR curves generated to eliminate false positives due to aberrant light emis-

sion. End-point allelic discrimination genotyping was performed by visually inspecting a plot of the fluorescence from the WT probe

versus the MUT probe generated from the post-PCR fluorescence read.

TP53 mutational status was determined using direct sanger sequencing as previously described where sufficient DNA was avail-

able (Zhukova et al., 2013).We used amplitaq gold and after purification with ampure beads, forward and reverse sequencing primers

using dGTP BigDye Terminator v3.0 Cycle Sequencing Ready Reaction Kit (Life Technologies), and 5 % DMSO on the ABI3730XL

capillary genetic analyzer (Life Technologies). The sequencing primers are the same as the PCRprimers. The TP53 primers alongwith

the melting temperature are presented in Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microarray Gene Expression Analysis
To generate gene expression array profiling, 400ng of total RNAwas processed and hybridized to the Affymetrix Gene 1.1 ST array at

TCAG according to manufacturer’s instructions. Two hundred and eighty-five arrays were previously generated (GEO accession

GSE37382) and included in the analysis. Expression data were analyzed in the R environment (v3.1.1). We used the affy package

(v1.44.0) (Gautier et al., 2004) and the custom chip definition file (CDF) hugene11sthsensgcdf (v19.0.0).

(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/19.0.0/ensg.asp) (Dai et al., 2005) to load and summa-

rize the expression of 21,641 Ensembl (ENSG) genes and process the data. Samples flagged by the arrayQualityMetrics Bio-

conductor package (v3.22.0) (Kauffmann et al., 2009) were removed due to low quality. Expression data were normalized using

the rma method.

Unsupervised clustering using NMF using top 10,000 most variably expressed genes (determined by the standard deviation) was

carried out using the NMF package (v0.20.6) (Gaujoux and Seoighe, 2010). We reselected the top most 10,000 variably expressed

genes for each subset of samples on which we ran NMF.

Genome Wide Methylation Analysis
All samples were analyzed on the Illumina Infinium HumanMethylation450 BeadChips at TCAG (Toronto, Ontario) according to man-

ufacturer’s instructions. Bisulfite conversion was performed using the EZ DNA Methylation� Kit (Zymo, Irvine, CA). Samples were

processed as per manufacturer’s instructions. Raw data files (.idat) generated by the Illumina iScan array scanner were processed

in the R statistical environment (v3.0.0 and 3.1.1) using theminfi (v1.6.0) (Aryee et al., 2014) and IlluminaHumanMethylation450kmani-

fest (v0.4.0) R Bioconductor packages. We checked all samples for unexpected genotype matches by pairwise correlation of the 65

genotyping probes on the 450k arrays, allowing us to remove remaining duplicates. We ran the detectionP function from the minfi

package to identify probes and samples with low quality. Samples were removed if more than 1%of their probes had a p value above

0.01 and probes were removed if their p value was above 0.01 in at least 5% of samples. We removed probes on sex chromosomes

as well as those located on or close to known single nucleotide polymorphisms (SNP). We retained a total of 321,174 probes for the

analysis. The datawas normalized using the SWANmethod as part of theminfi package (Maksimovic et al., 2012).We generated both

the beta and logitB values matrix values. Unsupervised clustering using the top 10,000 most variably methylated probes defined by

the standard deviation was carried out using the NMF package (v0.20.6). We reselected the top most 10,000 variably methylated

probes for each subset of samples on which we ran NMF.

Methylation Array Copy Number Analysis
Copy number inference from methylation arrays and identification of recurrent broad events. Copy number segmentation was per-

formed from genome wide methylation arrays using the conumee package (v0.99.4) in the R statistical environment (v3.2.3) as pre-

viously described (Hovestadt et al., 2013; Sturm et al., 2012). Segment files were generated for each subgroup and subtype.

Identification of recurrent broad copy number events (arm level chromosomal events) was performed from segmented copy num-

ber derived from methylation data (as described above). The log2 R ratio (LRR) of each chromosome was calculated using a size-

weighted mean of all segments mapping to the chromosome. A chromosome was declared gained if its LRR was greater than

0.2, lost if the LRRwas less than -0.2, and balanced otherwise. Unlike GISTIC, gained and lost broad events were analyzed together.

The significance of the frequency of each broad event was tested using the exact binomial test. Each broad event frequency was

compared to the background frequency, which was determined from a robust regression of the observed frequencies with respect

to gene content (i.e. number of RefSeq genes) across all chromosomes. This approach was motivated by GISTIC’s broad event

analysis.

SNP6 Copy Number Analysis
Affymetrix SNP6 CEL files were processed as previously described (Northcott et al., 2012b) (GEO accession GSE37384). Copy num-

ber stateswere estimated as described previously using the hg18 reference genome. Segmented copy number estimates fromSNP6

arrays were processed for input with the GISTIC2 method (v6.2) using the default parameters (Mermel et al., 2011) for the identifica-

tion of recurrent focal copy number events.
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Clinical Correlation and Survival Analysis
Progression-free survival and overall survival was right-censored at 5 years and analyzed by the Kaplan-Meier method and p value

were reported using the log-rank test. Associations between covariates and risk groups were tested by the Fisher’s exact test.

Continuous variables were tested using non-parametric measures, specifically the Mann-Whitney U test or Kruskal-Wallis test.

The significance of chromosome arm frequencies were evaluated using the exact binomial test, comparing the observed frequency

to the expected frequency derived from a robust regression of event frequency and gene content, in a similar manner to the ‘broad

analysis’ in GISTIC2. All statistical analyses were performed in the R statistical environment (v3.2.3), using R packages survival

(v2.37-7), and ggplot2 (v1.0.0).

Group 3 and Group 4 Analysis
K-means clustering was performed using the top 10,000 most variable methylation probes (determined by median absolute devia-

tion) of Group 3 and Group 4 samples (n=470). Consensus clustering was obtained using the ConsensusClusterPlus R Bioconductor

package (v1.24.0) (Wilkerson and Hayes, 2010) with 1,000 repetitions in the R statistical environment (v3.2.2). Similar approach was

used on the top 10,000most variable genes of this set of 470 Group 3 and Group 4 samples. In addition, the NMFmethod was run (as

described above) for both expression and methylation data on the same set of Group 3 and Group 4 samples.

We identified the outlier samples moving from Group 3 to Group 4 from the gene expression and DNA methylation NMF results

using the following rule. We identified at k=2 the Group 3 and Group 4 clusters using the known subgroups of the samples (each

group had a larger proportion of samples of a particular subgroup). At k=3, we identified which cluster(s) are largely composed of

Group 3 and Group 4 (two Group 3 and one Group 4 clusters for the expression data, and one Group 3 and two Group 4 clusters

for the DNAmethylation data, Figure S1G). Then we counted the number of samples that were initially considered to be of a particular

subgroup for k=2 andmoved to be in another subgroup at k=3 (Figure 1D). Similar approach has been used to detect the outlier sam-

ples moving from Group 3 to Group 4 in the k-means consensus clustering (Figures 1D and S1H).

Similarity Network Fusion Analysis (SNF)
The Similar Network Fusion (SNF) method was run on 763 primary tumor samples using both gene expression and DNA methylation

data (Wang et al., 2014). The SNF method does not require any prior feature selection so we used the full matrix of gene expression

(21,641 genes) and the full matrix of methylation data (logitB values, 321,174 probes). We used the SNFtool R package (v2.2.0) with

the parameters K = 50, alpha = 0.6, T = 50. Spectral clustering implemented in the SNFtool package was run on the SNF fused sim-

ilarity matrix to obtain the groups corresponding to k=2 to 20.

We obtained four cluster at k=4 corresponding to the four medulloblastoma subgroups; WNT (n= 70), SHH (n=233), Group 3

(n=144), Group 4 (n=326). For each of these four subgroupswe then ran the SNFmethod independently with the following parameters

and clustered the resulting fused similarity matrix with spectral clustering using k=2 to 8.

Parameters:

WNT: K = 10, alpha = 0.6, T = 50

SHH: K = 40, alpha = 0.6, T = 50

Group 3: K = 40, alpha = 0.6, T = 50

Group 4: K = 60, alpha = 0.6, T = 50

Group 3 and Group 4: K = 80, alpha = 0.6, T = 50

We identified the top associated genes andmethylation probes that have the largest agreement with the final fused network struc-

ture. To do sowe computed the NormalizedMutual Information (NMI) score (as part of the SNFtool package) for each feature (i.e each

gene and methylation probe). For each feature, we constructed a patient network based on the feature alone and subsequently used

spectral clustering. We then compared the result of the resultant clustering to the one obtained from the whole fused similarity matrix

by computing the NMI score as previously described (Wang et al., 2014). As mentioned in this paper, a score of 1 indicates the stron-

gest feature and shows that the network of patients based on the given feature leads to the same groups as the fused network. A

score of 0 means that there is no agreement between the groups that can be derived from the feature and the fused network groups.

We therefore ranked all features according to their NMI scores that represent their importance for the fused network. We then

selected a list of top 1% and top 10% features (also called associated genes and methylation probes) for each dataset (Figure 2

and S2A–S2D) for subsequent analysis. Those top features have expression or methylation patterns that are the most informative

when determining our final subtypes using individual features.

Groups Visualization Using Stratomex
Weused the StratomeX tool as part of the Caleydo suite (v3.1.5) to visualize the grouping of samples and the relationship between the

groups resulting from different datasets, methods and/or parameterization of clustering (Streit et al., 2014; Lex et al., 2012). Sample

group labels obtained by spectral clustering of the SNF fused similarity matrix or independent NMF clustering was imported to

StratomeX software. The groups were colored according to the subgroup or subtype (if any) and reordered to show the relationship

between the different clustering results (columns). In this study, we only used StatromeX for visualization and did not use its analytical

functionalities.
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Network Visualization with Cytoscape
From the fused similarity matrix returned by the SNFmethod, we retrieved all the patient pairs for which the values (W) was superior to

themedian values of all W pairs and imported those paired in Cytoscape (v3.2.0) (Shannon et al., 2003). We used the edged-weighted

Spring embedded layout with the W values for visualization showing the edges in Figure 1B, and hiding the edges to only show the

nodes (i.e patients) for Figures 3A, 4A, 5A, and 6A.

Relationship between Associated Genes and Probes
We evaluated the relationship between the gene expression features and the DNAmethylation probe features in each subgroup. We

applied theMethylMix R Bioconductor package (Gevaert, 2015) developed to identify potential cancer driver genes affected by hypo

or hypermethylation changes, i.e. looking for anti-correlation between the methylation level and gene expression levels across sam-

ples. We obtained the probes annotations for hg38 from Zhou et al. (Zhou et al., 2016, Online supplemental data, http://zwdzwd.

github.io/InfiniumAnnotation). We focused on probes within 1500 bp of the transcription start site (TSS) and identify 1342, 1573,

1673 and 1673 candidate driver genes for WNT, SHH, Group 3 and Group 4, respectively. Among those, 8, 18, 13 and 28 WNT,

SHH, Group 3 and Group 4 genes, respectively, where in our features genes and had anti-correlated probes present in the top

DNA methylation features, representing therefore only 3.7, 8.3, 6 and 13% of the feature genes (Figure 2C).

Pathway Enrichment Analysis
Pathway enrichment analysis was performed with g:Profiler and visualized as Enrichment Map in Cytoscape (Reimand et al., 2016;

Merico et al., 2010; Shannon et al., 2003). We considered the top 10% associated genes (as described above) that were the most

relevant for the final subtypes. For each subtype, we ranked up-regulated genes by their z-scores and analyzed the resulting

gene lists with the ordered query setting of g:Profiler using pathways and processes with more than 5 and up to 1000 genes. Multiple

testing correction was conducted with the default method of g:Profiler. Biological processes from the GeneOntology, pathways from

Reactome and KEGG, and protein complexes from CORUM were included in the enrichment analysis and other data sources were

excluded. Electronic annotations (IEA) from Gene Ontology were excluded to only cover high-confidence gene annotations. Pro-

cesses and pathways with g:profiler FDR corrected q values <0.05 were considered significant. Enriched categories were further

filtered: pathways and processes with less than three associated genes were discarded.

Enrichment maps represent biological processes and pathways enriched in subtype-specific up-regulated genes. Each node

represents a process or pathway; nodes with many shared genes are grouped and labeled by biological theme. Nodes sizes are

proportional to the number of genes in each process, in each subgroup. Process and pathways connected by edges have genes

in common, shorter edges represent stronger edges with Jaccard and Overlap coefficient combined by the Enrichment Map app

of Cytoscape at cutoff value 0.66. Nodes are colored according to the subtype in which the process is enriched; processes enriched

in more than one subtype have multiple colors.

Enrichment map visualization was manually curated to group functionally similar groups of pathways and to remove redundant

groups and singletons. Connected nodes and unconnected but actionable nodes are shown.

Classifier Description
In this study, we used seven classifiers based on diverse machine learning approaches. Ridge logistic regression (labeled as Ridge

LR) is a regression model, assigning weight to each feature to make a binary prediction. L2 regularization shrinks the weights to avoid

overfitting. Lasso logistic regression (labeled as Lasso LR) works the same way as Ridge but uses L1 regularization instead, which

sets some of the weights to zero, effectively performing feature selection again to avoid overfitting. Elastic net logistic regression

(labeled as Elastic Net) also works similarly to Ridge but uses a linear combination of L1 and L2 regularizations and is able to select

correlated features (through L2) while still performing feature selection (setting some of the weights to zero) through L1. Decision tree

(labeled as Decis.Tree) utilizes a tree-structured graph with inner nodes representing decision rules and end nodes representing the

classification decisions. Each path from root to a leaf in such a tree represents a classification rule. The individual decision rules are

selected according to the information gain criterion. Random forest (labeled as Rand.Forest) uses an ensemble of decision trees to

make classification predictions. Each decision tree uses a random subset of features trained on a bootstrapped set of samples. The

output is the mode of the classification from all decision trees in the random forest. Support Vector Machines (SVM) make classifi-

cation predictions by first transforming the data according to a chosen kernel and then constructing a maximum margin classifier

such that the different classes are separated by the decision hyperplane as much as possible. SVM with linear kernel (labeled as

SVM lin) performs a linear transformation of the data, whereas SVM with radial basis function kernel (labeled as SVM rbf) performs

a Gaussian transformation of the data.

Prior to training any of the classifiers, we used Kruskal-Wallis H test, also know as ‘‘one-way ANOVA on ranks’’ to constrain the

feature space. This way we selected top 1% of genes (resulting in 216 genes) and top 1% of CpG methylation probes (resulting

in 3212 methylation probes) whose expression and methylation, respectively, is most predictive of the cluster assignment (done

by the spectral clustering on the SNF fused similarity matrix) of samples in the training set. This feature selection procedure was

repeated in each training / testing split of the data set, using the training set only.
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All analyses were performed in R version 3.2.3. We used the glmnet package for Elastic Net, Lasso, and Ridge; the rpart package

for Decision tree; the randomForest package for Random forest, the kernLab package for SVM. Training of Random forest and SVM

was done using the caret package. The AUPRC (area under the precision-recall curve) values were calculated using the PRROC

package.

Training and Selection of the Classifiers
We performed five classification tasks: the medulloblastoma subgroup classification, and then subtype classification within each of

the four medulloblastoma subgroups. Cluster assignment by spectral clustering on the SNF fused similarity matrix was taken as the

ground truth label assignment for the study cohort subgroup and subtype classification. For each of these tasks we trained 7 clas-

sification models using the concatenation of the top 1% expression and the top 1% methylation features as feature set.

For each task, we split the study cohort data set randomly to 70% training set and 30% testing set splits. The top 1% feature

selection procedure, as described above, was then run on the training set. The selected features were used for both training and

testing of the classifiers. Individual classification models were subsequently trained in 5-fold cross validation on the training set.

On the testing set we measured the performance of the classifiers in the terms of classification accuracy and the area under the

precision-recall curve (AUPRC). The entire described procedure was repeated 100 times. We report AUPRC and accuracy means

and standard deviation over these 100 runs, as well as the average percentages of subtype predicted for the reference subtypes

(Table S2).

COCA Analysis
We performed the COCA analysis as described in the TCGA pan cancer paper (Hoadley et al., 2014). We applied NMF clustering on

gene expression and DNA methylation data individually for each subgroup. We proceeded to create a matrix of 0 and 1 with all the

samples (as column) and the different groups (as row, one row per group obtained for each clustering). 1 indicated the presence of a

sample in a group. This matrix was then clustered with k-means consensus clustering as performed in the TCGA pan cancer paper.

iCluster Analysis
We also performedmulti-platform clustering using iCluster.We applied the RBioconductor IClusterPlus package (the newest version

of iCluster) to perform the analysis (Shen et al., 2009; Mo et al., 2013). It is necessary to select a set of features for each dataset to run

iCluster. We tested selection of features on the maximum variance and on the MAD (median absolute deviation) and different per-

centages of features. We selected the top 15%most variable expressed genes and 1%most variable methylated probes as defined

by median absolute deviation. We chose these numbers to allow for an equal representation of variable genes and methylated

probes, which resulted in 3000 features per dataset. We performedmultiple clusterings with different values of the lambda parameter

and settled on Lambda =1. After performing the clustering, we confirm that almost all features are used to some degree in the model

which implies that the results are not entirely driven by one data type. Indeed, this reassured us that the parameters we selected

would allow for a robust multi-platform integrated analysis.

When applying iCluster across the entire dataset, we are unable to recover the 4 subgroups of medulloblastoma at k=4. When

comparing the demographics of these 4 groups, and cross referencing to the SNF subgroups, WNT and Group 3 cluster together

with two SHH groups emerging. When we increased to 5 groups we are able to clearly split WNT and Group 3. To determine the

congruence between iCluster and SNF in defining the subtypes of subgroups, we first defined the subtypes using SNF, and then

applied iCluster individually to each subgroup. Overall the subtypes as defined by iCluster were in agreement with SNF/Spectral clus-

tering groups in 72-84% of instances. When we take into account that in some instances, iCluster recovered similar subtypes at a

different number of groups, then the agreement increases to 74-90% (for example, some groups in iCluster split in two but corre-

spond strongly to one cluster by SNF).

DATA AND SOFTWARE AVAILABILITY

The expression andmethylation array data has been deposited in GEO under the accession number GSE85218. The previously pub-

lished data is available in GEO under the accession numbers GSE37382 and GSE37384.
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