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Abstract
Facing an exploding population growth with consequent increase of agriculture intensification,

new chemical technologies are being sought to limit organic matter losses and reduce land

degradation. Here, we report that an effective organic carbon sequestration in different cropped

soils of Italy is obtained by an in situ photo‐oxidative coupling among soil humic molecules, when

catalyzed under solar irradiation by a water‐soluble biomimetic iron‐porphyrin catalyst amended

to field soils. A 3‐year long field study showed that the catalyst‐assisted in situ photochemical

polymerization of humic matter enabled a yearly sequestration of soil organic carbon that ranged

from 2.2 to 3.9 t ha−1 y−1, despite the periodical soil disturbance due to a conventional tillage

management. This significant stabilization of organic matter was observed not only in bulk soils

but also in water‐stable aggregates, whose loss of organic carbon during separation was limited

in catalyst‐treated soils. Although crop yields were the same in treated and control soils, measure-

ments of phospholipids fatty acids and soil enzyme activities indicated that the catalyzed in situ

photo‐oxidative coupling of humic molecules did not alter the structure and activity of microbial

communities and the biological functions of soils. This innovative and ecologically safe catalytic

technology may be developed as a useful soil management practice to stabilize organic matter

in situ in arable soils, while concomitantly ensuring soil functions and sustainability of crop

production.
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1 | INTRODUCTION

Agricultural lands under food and bioenergy crops, managed grass, and

permanent crops, including agro‐forestry, account for about 40–50%

of the Earth's land surface (FAOSTAT, 2016). Land‐use changes,

technological advancement, and varietal improvement enabled world
wileyonlinelibrary.com/journal/
grain harvests to double from 1.2 to 2.5 billion t y−1 between 1970

and 2010, thus ensuring food to population growth (FAOSTAT,

2016). This intensive land exploitation occurred at the cost of an

annual total greenhouse gases (GHGs) emission from cropland, that

in 2010 is estimated to be 5.2 to 5.8 Gt CO2‐eq y−1 and composes

10–12% of global anthropogenic emissions (Smith et al., 2014).
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However, only agricultural non‐CO2 sources are reported as anthropo-

genic GHG emissions in Intergovernmental Panel on Climate Change

calculations. It is thus overlooked that much of carbon lost from

cropland upon conventional tillage practices is due to the heterotro-

phic respiration of the most stable organic carbon pool contained in

soil aggregates and hardly reestablished by a short‐term photosyn-

thetic cycle (Bradford et al., 2016; Fontaine et al., 2007; Janzen,

2004; Keiluweit et al., 2015).

The increasing pressure for food production and renewable forms

of energy to support a predicted global population of 10 billion by

2050 put cropland soils at larger risk of soil organic carbon (SOC)

depletion, and, consequently, degradation, erosion, and desertification

(Ostle, Levy, Evans, & Smith, 2009). Measures to mitigate carbon

losses from agricultural land by reducing SOC oxidation are now lim-

ited to management practices such as the use of leys and green

manures in crop rotation, addition of organic fertilizers or biochar, crop

residue incorporation, no‐till (NT)/reduced tillage (RT) management,

agroforestry, and return to natural vegetation (Smith et al., 2014).

These practices do not only fail in substantially reducing GHGs emis-

sions from soil or permanently stabilizing soil organic matter (Kirkby,

Richardson, Wade, Passioura, et al., 2014; Schlesinger & Lichter,

2001; Smith et al., 2014), but are also predicted to hardly match more

than a maximum of 25% of the GHGs reductions required by the

Kyoto Protocol within 2050 (Read & May, 2001). For example, the

RT practice for SOC sequestration is ineffective on poorly drained soils

(Franzlubbers, 2010), or when crop residues are removed from soil (Lal,

2011). Despite the widespread adoption of NT/RT farming, its global

rate of SOC sequestration is rather small (<0.5 t C ha−1 y−1; Minasny

et al., 2017; West & Post, 2002), highly variable among soils and land

uses (>50% error; Smith et al., 2007), and effective only over a long‐

term (Six et al., 2004). Moreover, NT/RT practices do not persistently

sequester SOC, because C is concentrated in upper soil layers (Alvarez,

2005), and, as tillage is resumed (possibly by lack of sufficient

incentives to farmers), the temporary fixed carbon may be rapidly lost

again from soil (Manley, van Kooten, Moeltner, & Johnson, 2005).

Finally, the potential contribution of NT to the sustainable intensifica-

tion of agriculture to feed increasing population has been recently

questioned (Pittelkow et al., 2015). It is thus necessary to develop

alternative management practices to enable soils to support the

expected intensification of food production, while reducing the

concomitant risk of land degradation due to soil carbon losses under

conventional tillage.

The humified organic matter in soil (70–80% of SOM) represents

the most persistent SOC pool with mean residence time of several

hundreds of years (Stevenson, 1994), and, thus, the principal long‐term

C sink in the biosphere (Bradford et al., 2016). It is expected that any

advanced comprehension of the chemical nature and reactivity of soil

humus should help to devise novel technologies to mitigate carbon

losses from soil (Paustian et al., 1997), and reduce the still large

uncertainties in SOC prediction models (Bradford et al., 2016). Humic

matter is a complex mixture of heterogeneous aliphatic and aromatic

molecules of plant and microbial origin (Nebbioso & Piccolo, 2011),

which accumulate on soil particles (Kleber & Johnson, 2010) by

progressively separating from the soil solution for thermodynamic rea-

sons (Tanford, 1991), and thus, giving rise to chemical and physical
protection of SOC (Kleber & Johnson, 2010; Piccolo, 2002). Recent

scientific evidence changed the paradigm on the chemical nature of

humus by describing humic molecules as heterogeneous, but relatively

small in mass (≤1,000 Da; Piccolo & Spiteller, 2003), rather than the

previously assumed macropolymers (Piccolo, Conte, & Cozzolino,

2001) de novo synthesized in soil. Soil humic molecules were shown

to be associated in supramolecular structures, which are prevalently

stabilized by weak non‐covalent bonds and may be easily disrupted

by interactions with organic acids (Piccolo, 2002; Piccolo, Conte,

Trivellone, Van Lagen, & Buurman, 2002; Smejkalova & Piccolo,

2008). This new view even led some scientists to the extreme assump-

tion that the persistence of SOM should be due less to the structure of

humic components and their arrangement with clay particles than to

the prevailing environmental and biological conditions in soil (Piccolo,

2016; Schmidt et al., 2011).

The new awareness of the chemical structure and conformational

arrangement of organic molecules in the soil matrix (Drosos et al.,

2017; Piccolo, 2016) conveys the possibility of controlling the dynam-

ics of humus by chemical technologies in order to enhance SOC persis-

tence (Piccolo, Spaccini, Nebbioso, & Mazzei, 2011). For example, it is

known that oxidative enzymes induce a free‐radical driven coupling

reaction among small humic‐like aromatic molecules (Bollag, 1992),

and this catalyzed formation of intermolecular covalent bonds may

be technologically exploited to increase the molecular mass of humic

molecules (Piccolo et al., 2000). As a more convenient alternative to

fragile enzymes, synthetic biomimetic metal‐porphyrin catalysts that

mimic the activity of oxidative enzymes, were found to produce larger

and chemically stable humic molecules during oxidative (H2O2)

treatments of soluble humus (Piccolo, Conte, & Tagliatesta, 2005;

Smejkalova & Piccolo, 2006; Smejkalova, Piccolo, & Spiteller, 2006).

Being more suitable for soil applications than H2O2, dioxygen

molecules under solar irradiation and in the presence of both homoge-

neous and heterogeneous metal‐porphyrin catalysts provide the highly

oxidizing singlet oxygen that induces the photo‐oxidative formation,

via a free radical mechanism, of intermolecular C–C and C–O–C bonds

among humic phenolic molecules (Nuzzo & Piccolo, 2013a, 2013b;

Smejkalova & Piccolo, 2005).

We thus conceived that an oxidative polymerization of SOM can

be conducted directly in situ in soil by the activity of a biomimetic

photocatalyst under field solar irradiation. The catalytic formation of

multiple covalent bonds among humic molecules and the consequent

increase of chemical energy in SOM would result in a reduction of its

bioaccessibility to microbial mineralization and in a concomitant OC

accumulation in soil. Furthermore, larger and branched humic

molecules would promote the association of soil particles into greater

soil aggregates, thus improving soil physical quality (Baldock &

Skjemstad, 2000; Tisdall & Oades, 1982). These hypotheses were

proved earlier by treating whole soils with the biomimetic

photocatalyst in either laboratory or mesocosm experiments under

natural light, whereby the enhanced chemical stabilization of SOC sig-

nificantly reduced microbial respiration, increased plant roots system

(Gelsomino, Tortorella, Cianci, et al., 2010; Nuzzo, Madonna, Mazzei,

Spaccini, & Piccolo, 2016; Piccolo et al., 2011), and improved soil

structural stability even after several wetting and drying cycles (Piccolo

et al., 2011).
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The aim of this study was thus to apply the in situ photocatalyzed

polymerization technology of carbon sequestration directly on differ-

ent agricultural soils during a 3‐year field experiments and follow the

soil organic carbon content, microbial community distribution, and

enzymes activities.
2 | MATERIALS AND METHODS

Catalyst. The biomimetic catalyst used here was a water‐soluble

iron–porphyrin (FeP) synthesized in the laboratory as meso‐tetra

(2,6‐dichloro‐3‐sulfonatophenyl)porphyrinate of iron (III) chloride,

[Fe‐(TDCPPS)Cl], as previously described (Piccolo et al., 2005, 2011).
2.1 | Soils and experimental field sites

Three different sites along an Italian North–South climate gradient

were selected for the field experiments to represent important condi-

tions of intensive agricultural production. The sites are located within

the Experimental Stations of the University of Torino, the Catholic

University of Sacro Cuore at Piacenza, and the University of Napoli

Federico II. At all sites, volumetric (undisturbed soil cores) and bulk soil

mixed samples were collected from surface horizons (0–30 cm). Core

samples were used to determine soil bulk density, whereas mixed

samples were stored at field moisture at 4 °C until further use (see

Table S1 for soil classification, textural composition, and other

properties of selected site soils).
2.2 | Field treatments

The field experiments were conducted for three consecutive years on four

replicates of 1 × 1 m plots inserted in larger (7 × 7 m) plots cultivated with

wheat (Triticum durum) and managed with a 35 cm depth ploughing,

followed by surface harrowing. Both ploughing and harrowing on the

catalyst‐treated 1 × 1 m plots were conducted manually in order to avoid

soil losses and/ormixing over the plot borders. Treatmentswere (a) control

soils managed with conventional tillage and mineral fertilization with urea

at the rate of 130 kg ha−1of N; (b) soils managed as control but added with

the water‐soluble iron‐porphyrin at a rate 10 kg ha−1. For each replicate of

the FeP‐treated plot, 1 g of catalyst was dissolved in 10 L of water and

added to soil plots by a sprinkling irrigation each year before sowing (see

Table S2 for time schedule of agronomic operations at the three sites).

At the end of the cropping cycle, about 1 kg of soil was sampled from

the first 30 cm (resulting from the mixing of five subsamples from each

plot) of both control and FeP‐treated plots, air dried, and stored for

subsequent analyses.
2.3 | Aggregate‐size distribution

Water‐stable aggregates (WSA) were isolated from bulk soils as

reported earlier (Spaccini & Piccolo, 2013) by applying a wet sieving

method (Kemper & Rosenau, 1986). An air‐dried sub‐sample (30 g)

was placed on the top sieve of a set of three nested sieves (1.0, 0.50,

and 0.25 mm). The sample was gently rewetted and then submerged

into 2 cm of distilled water for 30 min. After this time, the sieves were

manually oscillated (up and down 4 cm) for 30 times during 1 min. The
recovered aggregate fractions, which represented the 4.75–1.00,

1.00–0.50, 0.50–0.25, <0.25 mm size ranges (Tables S3–S5), were

oven‐dried at 60 °C, weighed, and stored at room conditions.

2.4 | OC determination

Total amount of OC in bulk soils and in WSA were determined on

finely ground samples (<0.5 mm) by an Elemental Analyzer EA 1108

(Fisons Instrument). The amount of OC (%) in each aggregate fraction

was normalized to the weight of each fraction: OC content in each

fraction (g kg−1) × mass of each aggregate fraction (g kg−1) /total OC

content in all fractions (g kg−1).

2.5 | Activities of soil enzymes

Phosphatase (E.C. 3.1.2.1), β‐glucosidase (E.C. 3.2.1.21), urease (E.C.

3.5.1.5), and invertase (E.C. 3.2.1.26) enzymatic activities in soil were deter-

mined by colorimetry using, respectively, p‐nitrophenyl‐β‐D‐glucoside

(Eivazi & Tabatabai, 1990), p‐nitrophenyl‐phosphate and saccharose

(Sannino & Gianfreda, 2001), and urea (Kandeler & Gerber, 1988) as

substrates.

2.6 | Phospholipids fatty acids (PLFA)

PLFA were quantified with an Agilent 5,973 N GC–MS, equipped with

a 30 m × 0.25 mm ID cross‐linked methyl silicone (0.25 mm film

thickness) HP‐5‐MS capillary column, after extraction of the soil lipid

phase with a mixture of methanol, dichloromethane, and sodium

bromide, transesterification of fatty acids by saponification and column

separation of phospholipids (Ibekwe & Kennedy, 1998).

2.7 | Statistical analysis

Measured variables were tested by a two‐way analysis of variance

using year, FeP addition, and their interactions as factors. The compar-

isons among the means were made using Tukey's test (p < .05). All

statistical analyses were performed using Statgraphics Centurion for

Windows software (StatGraphics Centurion, version XV). PLFA

patterns were explored by Principal Component Analysis (PCA) and

distance‐based Redundancy Analysis.
3 | RESULTS AND DISCUSSION

The field scale effectiveness in SOC fixation by a water‐soluble FeP

treatment is reported here for three soils of different properties

(Table S1) under conventional soil management for wheat production.

In the silty‐loam soil of Torino (Table S3), the FeP added to soil signif-

icantly enhanced the OC content of the bulk soil after the first year in

respect to that of both control and original soil (Figure 1). The signifi-

cant increase of OC fixation in the bulk soil was confirmed after the

second year, whereas the still increasing trend lost significance after

the third year (Table S3). However, a significant SOC stabilization by

the FeP treatment after both the second and third year of manage-

ment was shown by the sum of OC content in the WSA, which were

separated by wet sieving from the bulk soil. In fact, despite the inher-

ent loss of the soluble OC during wet‐sieving separation (Piccolo et al.,



FIGURE 1 TOC content (g kg−1) in bulk soils and sum of separated classes of water‐stable aggregates (WSA) for original soil (ContT0) and control
(BulkCon, WSACon) and iron‐porphyrin (FeP)‐treated (BulkFeP, WSAFeP) soils from the Torino experimental field plots. The OC content in size‐
aggregates was calculated by multiplying the OC value in fraction by the ratio of the weight of each fraction over that of the sum of fractions. Error
bars indicate standard error (n = 4). Capital and small letters indicate significant differences between means by the Tukey's test (p < .05) for bulk
samples and sum of fractions, respectively. Analyses were conducted separately for each year by the one‐way ANOVA [Colour figure can be
viewed at wileyonlinelibrary.com]
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2011), the FeP‐treated soil maintained up to 97% of SOC in WSA at

the end of the third year of cultivation, as compared to only 93% of

SOC retention in WSA of the control soil (Figure 1; Table S3). The evi-

dence of SOC fixation in the Fe‐amended soil was also supported by

the significant shift of carbon content in WSA towards larger size‐

aggregates after the second and third experimental year, whereby

the relative SOC enhancement in larger particles (0.50–0.25 mm)

corresponded to a concomitant decrease of OC content in the

<0.25 mm microaggregates (Figure 1; Table S3). This indicates that

the occurred photo‐oxidative coupling among humic phenolic mole-

cules and consequent enhancement of SOM hydrophobicity induced

the association of microaggregates and the formation of larger soil par-

ticle‐sizes (Kaiser, Kleber, & Berhe, 2015; Nuzzo & Piccolo, 2013b;

Spaccini, Piccolo, Conte, Haberauer, & Gerzabek, 2002).
FIGURE 2 TOC content (g kg−1) in bulk soils and sum of separated classes
(BulkCon, WSACon) and iron‐porphyrin (FeP)‐treated (BulkFeP, WSAFeP) s
aggregates was calculated by multiplying the OC value in fraction by the rat
bars indicate standard error (n = 4). Capital and small letters indicate signif
samples and sum of fractions, respectively. Analyses were conducted sepa
viewed at wileyonlinelibrary.com]
The FeP treatment on the silty clay loam soil of Piacenza (Table S4)

produced an increase of OC content in the bulk soil that was signifi-

cantly larger than control only after the second experimental year,

whereas a significant OC fixation as sum of WSAwas evident for every

year (Figure 2; Table S4). In fact, the particles mechanical separation in

water depleted only about 2% of SOC for the FeP‐treated soil,

whereas the OC loss from control was significantly greater than this

value for each experimental year (Figure 2; Table S4). The stabilization

of SOM by the photocatalyzed reaction after the second year was con-

firmed by the significant enhancement of OC content in each sepa-

rated aggregate‐size (Table S4). Moreover, the overall improvement

of soil aggregation due to the FeP treatment was shown by the signif-

icant relative increase in OC content in the largest size‐aggregate

(4.75–1.00 mm) at each experimental year.
of water‐stable aggregates (WSA) for original soil (ContT0) and control
oils from the Piacenza experimental field plots. The OC content in size‐
io of the weight of each fraction over that of the sum of fractions. Error
icant differences between means by the Tukey's test (p < .05) for bulk
rately for each year by the one‐way ANOVA [Colour figure can be

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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The effect of the catalyst addition to the clay‐loam soil of the

Napoli site was similar to that of the other two soils. However, a signif-

icant SOC increase (>10%) in the bulk soil and sum of fractions of FeP‐

treated plots was found only after the second experimental year and

maintained in the third year (Figure 3; Table S5). Nevertheless, a

different carbon distribution between FeP‐treated and control soils

was noted already after the first experimental year in the separated

size‐aggregates. In fact, the significant reduction in OC content

induced by the catalyst treatment in the 1.00–0.50 mm aggregate

fraction is in line with the observed relative percent increase of OC

content for the largest (4.75–1.00 mm) size‐ aggregate (Table S5), thus

indicating a progressive incorporation of carbon‐rich particles into soil

macroaggregates. The occurred OC fixation by the FeP treatment after

the second and third year of cultivation was shown by the significantly

larger OC content in the sum of WSA, in respect to control (Figure 3;

Table S5). This effect was accompanied by a significant OC stabiliza-

tion in the 0.50–0.25 and <0.25 mm size‐aggregates after the second

year, and a definite increase of OC content and relative percentage

in the largest aggregates (4.75–1.00 mm) in the third year.

The differences in fixed carbon among soils are likely to depend on

the specific soil properties, and local evapotranspiration rates and

rainfall events. In fact, adsorption/desorption equilibria of the biomi-

metic catalyst adsorbed on the surface of soil aggregates determine

its photocatalytic activity in the soil solution at the soil‐atmosphere

interphase, where maximum is the photochemical induction of natural

light (Nuzzo et al., 2016). Similarly, the periodical water fluxes due to

rainfall and soil evapotranspiration, favor the desorption from soil

particles of soluble humic molecules, which become the substrates of

photo‐oxidative couplings occurring in the soil solution (Keiluweit

et al., 2015; Narasimhan, 2009; Piccolo et al., 2011).

In order to account for these unpredictable variabilities in the com-

plex field soil systems, the measured TOC were elaborated by a two‐

ways analysis of variance for three sites using not only treatment but

also year, and their interactions as effect factors (Table 2). Despite the
FIGURE 3 TOC content (g kg−1) in bulk soils and sum of separated classes
(BulkCon, WSACon) and iron‐porphyrin (FeP)‐treated (BulkFeP, WSAFeP)
aggregates was calculated by multiplying the OC value in fraction by the rat
bars indicate standard error (n = 4). Capital and small letters indicate signif
samples and sum of fractions, respectively. Analyses were conducted sepa
viewed at wileyonlinelibrary.com]
complexity of the soil system, enhanced by the differences in soil man-

agement and climatic conditions at different sites, the effect of FeP

addition on soil carbon content and treatment year was generally highly

significant in both bulk soils and corresponding water‐stable separates.

Only exception was the year factor for the Napoli site, although the

interaction between year and treatment factors in the same site has

maintained a p < .01 significance for both bulk and WSA samples.

These results showed that the soil treatment with the biomimetic

water soluble iron‐porphyrin in field conditions determined a significant

sequestration of organic carbon in respect to untreated soils in all three

experimental plots of this study. Already after 1 year of wheat cultiva-

tion following the FeP amendment, the photocatalyzed polymerization

of SOM in Torino and Piacenza bulk soils provided an OC fixation of

3.15 and 1.56 Mg ha−1 larger than control, respectively, although it

was not effective for the Napoli soil (Table 1). This may have been pos-

sibly due to the heavy rainfall that followed the first year catalyst

amendment to the Napoli soil, and have caused a substantial leaching

of the water‐soluble catalyst down the profile, thereby reducing its con-

centration at the soil surface where the photocatalysis is effective.

However, a significant net increase of OC fixation was induced by the

FeP treatment after the second and third experimental year for all three

field plots, with values as small as 2.75 Mg ha−1 and as large as

5.46 Mg ha−1 for Torino and Piacenza bulk soils, respectively. The mag-

nitude of carbon sequestration obtained by the photo‐oxidative cata-

lyzed coupling of humic molecules was also evident from the sum of

WSA, whose OC content larger than control varied from 1.96 Mg ha−1

in Torino soil after the first year of cultivation to 7.41 Mg ha−1 in

Piacenza soil for the second experimental year (Table 1).

Despite the variability in OC fixation due to heterogeneity of soil

matrices, and site conditions, and inherent randomness of represen-

tative samplings, the carbon sequestered in bulk soil by the photo‐

activity of the iron‐porphyrin catalyst for three consecutive years

reached an average of 3.54, 3.90, and 2.24 Mg ha−1 y−1 for the

Torino, Piacenza, and Napoli experimental sites, respectively
of water‐stable aggregates (WSA) for original soil (ContT0) and control
soils from the Napoli experimental field plots. The OC content in size‐
io of the weight of each fraction over that of the sum of fractions. Error
icant differences between means by the Tukey's test (p < .05) for bulk
rately for each year by the one‐way ANOVA [Colour figure can be

http://wileyonlinelibrary.com


TABLE 1 Sequestered carbon (Mg ha−1 y−1) in both bulk soil and sum of separated water‐stable aggregates (WSA) for three field sites (Torino,
Piacenza, Napoli) under wheat cropping, due to treatment with water‐soluble iron‐porphyrin (FeP) for three consecutive years

Bulk soil Sum of WSA

1st year 2nd year 3rd year Average 1st year 2nd year 3rd year Average

Torino

3.15* 4.72* 2.75* 3.54 1.96 2.75* 4.71* 3.14

Piacenza

1.56 4.68* 5.46* 3.90 4.29* 7.41* 5.85* 5.85

Napoli

−2.10 4.20* 4.62* 2.24 −1.26 4.20* 4.62* 2.52

Note. Values were obtained by multiplying the difference in average OC content (g kg−1) between FeP‐treated and untreated soil samples (Figures. 1‐3;
Tables S3–S5) by soil depth interested to conventional tillage (0.3 m), soil bulk density (Mg m−3 in Table S1), and hectare surface (10,000 m2).

*significant difference from control at P < 0.05 based on Tukey's test
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(Table 1). These significant yearly amounts of fixed SOC were

achieved under conventional tillage management, whereas the cur-

rent highly experimented NT or RT practices are far from reaching

such a large OC increase in cropped bulk soils even after several

years, whether under boreal North European (Sheehy, Regina,

Alakukku, & Six, 2015) or Mediterranean (Garcia‐Franco, Albaladejo,

Almagro, & Martínez‐Mena, 2015) agroecosystems.

This considerable SOM incorporation even under conventional

tillage management was not due to a reduced exposure of SOC to

microbial respiration, as in NT and RT management (Franzlubbers,

2010), but rather to an enhanced chemical and biochemical stabiliza-

tion of SOM achieved by the in situ catalyzed photo‐oxidative coupling

among soil humus molecules. The phenolic or other molecules suscep-

tible to undergo the catalyzed coupling reaction in soil (Nuzzo et al.,

2016; Piccolo et al., 2011) are likely to originate from the large mass

of carbon moieties circulating in the soil solution during and after the

crop growing season. These may be either soluble humic molecules

in equilibrium with those adsorbed on soil particles, or lignin monomers

released from heterotrophically respired crop residues, or exudates of

plant roots, or their transformed metabolites by the intensified soil

microbial metabolism (Bradford et al., 2016; Keiluweit et al., 2015; Kell,

2012). All that soluble carbon in the soil solution may follow the soil

evapotranspiration/precipitation hydrological cycles (Narasimhan,

2009) and periodically become the substrate of the polymerization

reaction at the soil‐atmosphere interface, under the activity of the

photocatalyst, that is concomitantly desorbed in the soil solution from
FIGURE 4 Principal component analysis of total phospholipids fatty acids p
Results for control and iron‐porphyrin treatments are indicated with empty
highlighted in different colors with ordination ellipses [Colour figure can be
the surface of soil particles. This photo‐oxidatively coupled carbon in

catalyst‐treated soils can thus be removed from solution and protected

from microbial mineralization, due to a thermodynamic shift, referred

to as the “hydrophobic effect” (Tanford, 1991), towards adsorption

on aggregates surfaces. Conversely, in the untreated control soils,

most of the carbon present in the soil solution is rapidly consumed

by microbial metabolism and released as CO2 to the atmosphere,

thereby reducing significantly the percent of SOC measured in control

samples at the end of the growing season. In fact, our results indicate

that a significant part of organic matter molecules is fixed in the soil

each year due to the FeP treatment, and is, therefore, subtracted to

the OC losses that occur in control soils.

The SOC accumulation in the cropped field plots of this study is to

be attributed to the abiotic coupling reaction induced by the synthetic

FeP catalyst, without any influence on the soil biological processes.

The invariance of soil biological activity upon FeP treatment was

shown by the PLFA (Figure 4) and the activities of soil β‐glucosidase,

phosphatase, urease, and invertase enzymes (Table S6), which were

measured on the same cultivated soils and over the three experimental

years (Puglisi & Trevisan, 2012). The PCA multivariate elaboration of

PLFA results failed to reveal significant differences between untreated

and FeP‐treated plots in terms of structure of living soil

microorganisms (Figure 4). In particular, results from Torino and

Piacenza sites grouped separately according to sampling time for all

3 years of experimentation, whereas in the Napoli site, the grouping

became evident only at the third year. No significant clustering was
atterns found in the plot soils of (a) Torino, (b) Piacenza, and, (c) Napoli.
and solid diamonds, respectively, whereas the three sampling years are
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


TABLE 2 Significant difference (P) on measured TOC content by a two‐way ANOVA (year and water‐soluble FeP treatment) for both bulk soils
and corresponding water‐stable aggregates (WSA) sizes (mm) for three field sites (Torino, Piacenza, Napoli) under wheat cropping

WSA sizes

Bulk soil 4.75–1.00 1.00–0.50 0.50–0.25 <0.25

Torino

Year (Y) 0.0115 <0.0001 <0.0001 <0.0001 <0.0001

Treatment (T) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

YxT 0.3684 <0.0001 <0.0001 <0.0001 <0.0001

Piacenza

Year (Y) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Treatment (T) <0.0001 <0.0001 0.0643 <0.0001 0.0038

YxT 0.0919 <0.0001 <0.0001 0.012 <0.0001

Napoli

Year (Y) 0.2445 <0.0001 <0.0001 <0.0011 0.0031

Treatment (T) 0.0008 <0.0001 0.0072 <0.0001 <0.0001

YxT 0.0035 <0.0001 <0.0001 <0.0001 <0.0001
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instead found as a result of catalyst treatment, being control and

treated samples grouped together in all three sites at each sampling

time (Figure 4). The PCA description of results were confirmed by

applying the distance‐based redundancy analysis model (Legendre &

Anderson, 1999), in order to verify the significant effect of either

sampling time or FeP treatment, as a function of PLFA patterns found

for the three experimental sites. The model showed a significance

(p < .05) for sampling time in each site, with percent of explained

variance ranging from 26.7% in Napoli to 40.2% in Piacenza and

61.2% in Torino. Conversely, the model did not reveal any significant

difference between the control and catalyst‐treated soil, because the

FeP effect showed a very low percent of explained variance (<4%)

and was never significant (Table S7).

These results confirm that the considerable SOC accumulation

observed in FeP‐treated plots (Table 2) was not linked to changes in

structure and activity of microbial communities, and it must be most

likely related to the abiotic catalyst‐assisted photo‐polymerization of

SOM. Furthermore, the biochemical index of soil quality alteration

(Puglisi & Trevisan, 2012) based on enzymes activities measured in

the plot soils of this study excluded that the catalyst treatments had

any effects on the biological quality of soils (Table S6).

It is also important to underline that the significant SOC seques-

tered by the in situ photo‐catalytic treatment of these field plots did

not imply any reduction in crop yield (Table S8; Grignani et al., 2012).

This indicates that such an in situ sequestration technology is not only

effective towards SOC sequestration, but it also conserves the full

plant nutrition capacity of soil and its potential crop productivity.

Conversely, the NT and RT practices, aimed to increase carbon seques-

tration by reducing the bio‐oxidation of SOM, are reported to limit the

mineralization of plant nutrients in soils and result in lower crop yields

(Pittelkow, 2015; Salem, Valero Ubierna, Muñoz‐García, Gil Rodríguez,

& Silva, 2015; Zavattaro et al., 2015).

The conceptual approach of soil organic matter fixation has

long considered decreasing the rate of its biological decomposition

by reducing tillage and adding organic materials to soil (Powlson

et al., 2012), despite its poor effectiveness (Conant, Easter, Paustian,

Swan, & Williams, 2007). But this view is evolving and many now try
to develop chemical technologies to both reduce CO2 emissions from

soil and increase SOM, such as replacement of agricultural lime with

silicates (Renforth, Washbourne, & Taylder, 2011) or promotion of

carbonation with additions of Ca‐ and Mg‐rich salts to soils (Manning

& Renforth, 2013; ten Berge et al., 2012) or use of polyphenols to

complex SOM or inhibit enzymes that decompose it (Sinasbaugh,

2010).

Here, we showed that the innovative in situ photo‐oxidative

coupling reaction among humic molecules catalyzed by an eco‐friendly

water‐soluble metal‐porphyrin was highly effective in fixing organic

carbon in soil. Even under conventional soil management, the catalytic

technique increased, in treated plot soils, the carbon content from 2.24

to 3.90 Mg ha−1 y−1 more than control soil. This significant carbon sta-

bilization is attributed to the catalyst‐assisted abiotic enhancement of

covalent bonds in soil molecular components. In fact, the larger molec-

ular mass of humic molecules coupled under the catalytic photo‐oxida-

tion favours, in turn, the processes of chemical and physical protection

of OC in soil and reduces the extent of OM losses from soil. However,

more work would be needed with field samples to confirm that the

mechanism of catalyzed photopolymerization occurs as it is explained

here and was proved in previous homogenous and heterogeneous

experiments in the laboratory or mesocosms. Moreover, the objec-

tively considerable amount of carbon sequestered yearly in this study

by the applied photocatalytic technology was even achieved without

either altering the soil biological quality or reducing the crop yields.

Fixation of SOC by amending soils with a photocatalyst, such as

metal‐porphyrins, may be promising to establish an easy soil

management practice that not only controls SOM dynamics and

contributes to accumulate carbon stocks in agricultural soils, but also

sustains the intensification of agriculture required to feed an increasing

population.
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