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ABSTRACT: In our ongoing pursuit of CXCR4 antagonists as potential anticancer agents, we recently developed a potent,
selective, and plasma stable peptide, Ac-Arg-Ala-[D-Cys-Arg-Phe-Phe-Cys]-COOH (3). Nevertheless, this compound was still
not potent enough (IC50 ≈ 53 nM) to enter preclinical studies. Thus, a lead-optimization campaign was here undertaken to
further improve the binding affinity of 3 while preserving its selectivity and proteolytic stability. Specifically, extensive structure−
activity relationships (SARs) investigations were carried out on both its aromatic and disulfide forming amino acids. One among
the synthesized analogue, Ac-Arg-Ala-[D-Cys-Arg-Phe-His-Pen]-COOH (19), displayed subnanomolar affinity toward CXCR4,
with a marked selectivity over CXCR3 and CXCR7. NMR and molecular modeling studies disclosed the molecular bases for the
binding of 19 to CXCR4 and for its improved potency compared to the lead 3. Finally, biological assays on specific cancer cell
lines showed that 19 can impair CXCL12-mediated cell migration and CXCR4 internalization more efficiently than the clinically
approved CXCR4 antagonist plerixafor.

■ INTRODUCTION

The chemokine receptor CXCR4 plays a central role in
multiple physiological and pathological processes including
tumor growth and metastasis.1 CXCR4 is indeed highly
expressed in more than 20 different solid and hematological
cancer types, characterized by high aggressiveness, and eager to
metastasize toward secondary organs where the endogenous
CXCR4 ligand CXCL12/SDF-1α (stromal-cell derived factor
1α) is produced.2 Emerging evidence demonstrates that
primary tumor releases soluble factors able to remodel the
microenvironment in secondary organs predisposing “premeta-
static niches” where neoplastic cells will seed. CXCL12 plays a
pivotal role in this process through the recruitment of bone

marrow derived cells and neuthrophils.3 In fact, the clinically
approved CXCR4 antagonist plerixafor (1),4 also known as
AMD3100 (Chart 1), inhibits the tissue inhibitor of metal-
loproteinases (TIMP-1) that controls the liver premetastatic
niches in colorectal cancer patients.5 Along the same line, an
AMD3100 analogue had been previously shown to modulate
oncogenic mediators such as MMP2, GSK3, cMYC, AKT, and
STAT3, inhibiting the formation of a cancer nurturing
microenvironment and in turn metastasis.6 Moreover, it is
now well established that, besides being a fertile soil for cancer
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growth, the microenvironment can facilitate immune escape of
tumor cells. In this perspective, the aberrant recruitment of
CXCR4 expressing cells together with an increment of
CXCL12 in stroma represent key events in metastasis process
via both tumor-specific and T-cell based mechanisms. At this
regard, improved efficacy of targeting immune checkpoints
receptors (ICRs) was recently demonstrated by some of us
through coupling of immune checkpoints inhibitors with
CXCR4 antagonists such as 1.7 Moreover, interactions between
stromal cells producing CXCL12 such as cancer-associated
fibroblasts (CAFs) and neoplastic cells have been demonstrated
to have an impact on metabolic reprogramming of cancer cells.8

Also, recent evidence demonstrates that CXCL12 plays a role
in promoting a glycolytic shift, known as the “Warburg” effect,
in leukemic cells through the CXCR4/mTOR signaling axis.
Notably, plerixafor administration in acute myeloid leukemia
cells markedly reduces glucose uptake, mTOR activation, and
consequently basal glycolysis and glycolytic capacity.9 Besides
plerixafor and plerixafor-like derivatives, a number of peptidic
and nonpeptidic CXCR4 antagonist have been discovered so
far.10−17 Among these, prominent examples are the protein
epitope mimetic POL5551,10 the 14-mer peptides H-Arg-Arg-
Nal-Cys-Tyr-Arg-Lys-D-Lys-Pro-Tyr-Arg-Cit-Cys-Arg-OH
(T140),11 and 4F-benzoyl-Arg-Arg-Nal-Cys-Tyr-Cit-Lys-D-Lys-
Pro-Tyr-Arg-Cit-Cys-Arg-NH2 (BKT140)12 and their down-
sized cyclic derivatives such as cyclo[Arg1-Arg2-Nal3-Gly4-D-
Tyr5] (FC131),13 as well as cyclo[Phe-Tyr-Lys(iPr)-D-Arg-2-
Nal-Gly-D-Glu]-Lys(iPr)-NH2 (LY2510924).16 Also, several
CXCR4-targeting probes for molecular imaging were devel-
oped.18 Indeed, the in vivo assessment of CXCR4 expression
can provide relevant information on tumor biology and identify
patients eligible for CXCR4-targeted therapies. In this
perspective, AMD derivatives have been investigated for
64Cu-,19 18F-,20 and even 11C-labeling.21 Recently, a radiolabeled
CXCR4-ligand ([68Ga]pentixafor) for PET imaging has been
successfully utilized in patients with hematologic and solid
malignancies.22 As a part of our continued effort to find
effective CXCR4 antagonists,15 starting from a CXCL12-
mimetic cyclic peptide (H-Arg-Ala-[Cys-Arg-Phe-Phe-Cys]-
COOH)23 (2), we have recently reported the design and
synthesis of a plasma stable CXCR4 peptide antagonist (Ac-
Arg-Ala-[D-Cys-Arg-Phe-Phe-Cys]-COOH) (3) (Chart 1),
which was able to selectively bind the receptor with an IC50
of 53 nM.24 In spite of its promising pharmacological and
pharmacokinetic profile, 3 was still not suited for compre-
hensive in vivo studies since a low nanomolar or picomolar IC50
is generally required for such investigations.
Therefore, a lead-optimization study was here undertaken to

further improve the peptide binding potency, without affecting

its stability in biological fluids, with the final aim to achieve an
optimal CXCR4 response and minimize the potential side
effects due to off-target interactions. To reach this goal, we have
performed an extensive structure−activity relationship (SAR)
study around both the overall cycle conformation and the two
aromatic amino acids of 3. The novel cyclic peptides were
evaluated as CXCR4 antagonists through the inhibition of
receptor binding of anti-CXCR4 PE-antibodies (clone 12G5),
and for the most affine compound (19) the potency was further
quantified through a iodine-125 CXCL12 competition test in
human leukemic lymphoblast (CCRF-CEM cells). These assays
showed that 19 is able to displace the labeled chemokine with
an IC50 of 20 ± 2 nM, thus representing a new potent CXCR4
antagonist. The selectivity of action of 19 was then
demonstrated through binding assays on CXCR3 and
CXCR7 overexpressing cell lines. NMR and molecular
modeling disclosed the molecular bases for the binding of 19
to CXCR4, also explaining the structure−activity relationships
of all the other newly synthesized peptides. Finally, the
biological efficacy of 19 was demonstrated through the
evaluation of CXCL12-dependent cell migration and
CXCL12-mediated CXCR4 internalization in specific cancer
cell lines.

■ RESULTS AND DISCUSSION
Design. Our previous Ala-scan study on 3 pointed out that

L-Arg at both the 1 and 4 positions and the two L-Phe at 5 and
6 positions were fundamental for the interaction with the
CXCR4 receptor. In the attempt to improve the activity of 3, a
three-step structure−activity relationship study was designed.
In the first step, we explored the cycle conformation of 3 by
replacing either the L-Cys (position 7) or the D-Cys (position
3) or both with penicillamine (Pen) (compounds 4−6). The
most potent analogue (4) emerging from this first round of
modifications entered the second phase of the study. In detail,
the Phe residues at the 5 or 6 position were, one at a time,
replaced by amino acids bearing smaller aromatic side chains,
such as L-His (7, 13), or bulkier side chains, such as L-1- and L-
2-naphthylalanine (L-1-Nal, L-2-Nal) (11, 17 and 12, 18,
respectively), or substituted on the phenyl ring with electron
withdrawing (4-Cl and 4-NO2) (9, 15 and 10, 16) or electron
donor (4-OH) (8, 14) groups. Finally, the most effective
modifications (4, 12, and 13) were simultaneously applied into
a single compound (19) to check whether their combination
would result in a further increment of potency.

Chemistry. All the linear heptapeptides were assembled in
solid phase by standard Fmoc/tBu protocol using 2-chlorotrityl
resin as support in order to minimize the potential racemization
of the first amino acid during the loading process.25

Chart 1. Chemical Structures of 1 (plerixafor) and 3
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Unfortunately, the replacement of L-Cys (position 7) with a
residue of L-Pen produced linear final products in substantial
lower yield, when the first amino acid was loaded by classical
reported protocol (15% L-Pen vs 60% L-Cys). In our opinion,
the observed lack of synthetic efficiency was probably due to
the more hindered side chain of penicillamine compared with
cysteine. Thus, to increase the yield of the coupling of the first
amino acid, we used an excess of resin (2 equiv) with respect to
the latter. This strategy indeed provides a larger number of the
chlorine reactive groups involved in the loading of the first
amino acid. By using this alternative approach, we were able to
increase the yield of the final linear compounds from 15% to
about 55%. Once assembled on the solid support, all the linear
heptapeptides were removed from the resin and the resulting
free thiol groups were eventually oxidized using N-chlorosucci-
nimide to form the desired disulfide bridge.26

CXCR4 Binding Assays. All the peptides were preliminarily
assessed against CXCR4 measuring their ability to inhibit
receptor binding of anti-CXCR4 PE-conjugated antibody
(clone 12G5) in CEM-CCRF human T leukemia cells that
overexpress CXCR4.27 First, we evaluated the effects of the
replacement of D-Cys3 and L-Cys7 in the lead peptide 3 with D-
and L-Pen, respectively.28 As reported in Table 1, the latter

modifications led to an enhancement of affinity toward
CXCR4, with peptide 4 able to reduce the receptor/antibody
interaction with an IC50 of 40 ± 10 nM. Conversely, the
introduction of a D-Pen in place of D-Cys3 (5) completely
abolished the binding. Also, a dramatic lack of affinity was
observed when both D- and L-Pen were simultaneously inserted
at the 3 and 7 positions, respectively, with compound 6
showing an IC50 of about 1530 ± 40 nM. These results would
thus indicate that the two methyl groups on the α-carbon of
Pen modify the orientation of the pharmacophoric amino acid
side chains, which is however favorable for the binding only in
the case of L-Cys7 substitution. Next, further structure−activity
relationship studies were performed by replacing the two L-Phe
residues of peptide 4. Indeed, compound 7, featuring L-His in
place of Phe5, turned out as totally inactive; conversely, 13,
obtained through the Phe6/His substitution, showed a
remarkably higher affinity for the receptor (IC50 = 6 ± 2
nM). Also, when either position 5 or position 6 was substituted
with a L-Tyr residue (8 and 14), we observed a marked drop in
affinity for the receptor if compared to peptide 4. On the other
hand, the introduction of a chlorine in para position of the Phe5

and Phe6 aromatic ring (9−15) produced diametrically
opposite results. In particular, the presence of a (4-Cl)-L-Phe

Table 1. IC50 Values (Mean ± SD) for CXCR4 Antagonist Peptides Obtained Measuring the Inhibition of Receptor Binding of
Anti-CXCR4 PE-Antibodies (Clone 12G5)

compd sequence IC50 (nM)

2 H-Arg-Ala-[Cys-Arg-Phe-Phe-Cys]-COOH 6200 ± 1300
3 Ac-Arg-Ala-[D-Cys-Arg-Phe-Phe-Cys]-COOH 53 ± 4
4 Ac-Arg-Ala-[D-Cys-Arg-Phe-Phe-Pen]-COOH 40 ± 10
5 Ac-Arg-Ala-[D-Pen-Arg-Phe-Phe-Cys]-COOH >10000
6 Ac-Arg-Ala-[D-Pen-Arg-Phe-Phe-Pen]-COOH 1530 ± 40
7 Ac-Arg-Ala-[D-Cys-Arg-His-Phe-Pen]-COOH >10000
8 Ac-Arg-Ala-[D-Cys-Arg-Tyr-Phe-Pen]-COOH 2140 ± 300
9 Ac-Arg-Ala-[D-Cys-Arg-(4-Cl)Phe-Phe-Pen]-COOH 70 ± 20
10 Ac-Arg-Ala-[D-Cys-Arg-(4-NO2)Phe-Phe-Pen]-COOH 210 ± 70
11 Ac-Arg-Ala-[D-Cys-Arg-1-Nal-Phe-Pen]-COOH 3690 ± 1810
12 Ac-Arg-Ala-[D-Cys-Arg-2-Nal-Phe-Pen]-COOH 22 ± 2
13 Ac-Arg-Ala-[D-Cys-Arg-Phe-His-Pen]-COOH 6 ± 2
14 Ac-Arg-Ala-[D-Cys-Arg-Phe-Tyr-Pen]-COOH 360 ± 60
15 Ac-Arg-Ala-[D-Cys-Arg-Phe-(4-Cl)Phe-Pen]-COOH 1250 ± 630
16 Ac-Arg-Ala-[D-Cys-Arg-Phe-(4-NO2)Phe-Pen]-COOH >10000
17 Ac-Arg-Ala-[D-Cys-Arg-Phe-1-Nal-Pen]-COOH 180 ± 40
18 Ac-Arg-Ala-[D-Cys-Arg-Phe-2-Nal-Pen]-COOH 1800 ± 560
19 Ac-Arg-Ala-[D-Cys-Arg-2-Nal-His-Pen]-COOH 1.5 ± 0.5
1 AMD 3100 6 ± 4

Figure 1. Binding of 19 to (A) COLO205 colon cancer cells, overexpressing CXCR3, and (B) MCF-7 breast cancer cell line, overexpressing
CXCR7. The binding was evaluated through flow cytometry using anti-CXCR3 FITC-antibody and anti-CXCR7 APC-antibody. Data are presented
as bar graph showing mean ± SD.
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residue at the 5 position (9) was well tolerated, while the same
group at the 6 position (15) dramatically reduced the affinity
for the receptor. Negative results were also observed when we
introduced alternative withdrawing groups such as a nitro group
at the 5 (10, IC50 = 210 ± 70 nM) and 6 positions (16, IC50 >
10 000 nM). Next, the influence on peptide binding of bulkier
side chain was investigated by inserting L-1- and L-2-Nal
residues in place of Phe5 and Phe6. Among the resulting
analogues, 11 and 17, bearing L-1-Nal at 5 and 6 positions,
respectively, and 18, bearing L-2-Nal at the 6 position, showed
reduced receptor binding potency if compared to peptide 4.
Conversely, peptide 12, obtained through the replacement of
Phe5 with 2-Nal, was about 2 times more potent than 4 (IC50 =
22 ± 2 nM). Considering the good results achieved by
introducing 2-Nal in place of Phe5 and His in place of Phe6, we
decided to combine these two modifications in a unique
compound, namely, 19. Noteworthy, this peptide showed the
ability to inhibit the receptor binding of PE-conjugated 12G5
anti-CXCR4 antibody in the low nanomolar range (IC50 = 1.5
± 0.5 nM).
Binding Specificity. To demonstrate the specificity of 19

toward CXCR4 over other chemokine receptors, flow
cytometry binding experiments were also conducted on the
CXCR3-overexpressing COLO205 human colorectal cancer
cell line and on MCF-7 human breast cancer cells which
overexpress the CXCR7 receptor. Cells were incubated with 19,
and then the peptide ability to impair the binding of specific
anti-CXCR3 (anti-CXCR3 FITC-antibody, R&D FAB160F
clone 49801) and anti-CXCR7 (anti-CXCR7 APC-antibody,
R&D FAB4227A clone 11G8) antibodies was evaluated. As
shown in Figure 1, 19 was not able to affect the binding of the
latter antibodies to their receptor counterpart, indicating that
our peptide can bind neither CXCR3 nor CXCR7. These assays
therefore demonstrate that similar to its parent peptide 3,24 19
is a selective CXCR4 ligand.

125I-CXCL12 Competition Binding Assay. The enhance-
ment of affinity toward CXCR4 obtained with 19 was further
quantified by investigating the capability of this peptide, in
comparison with the lead 3, to compete with the radiolabeled
tracer 125I-CXCL12.29 Fixed amounts of the 125I-labeled
CXCL12 were incubated with CCRF-CEM cells in the
presence of increasing concentrations of 3 or 19. As shown
in Figure 2, 19 can displace 125I-labeled CXCL12 more
efficiently than 3 (19, IC50 = 20 ± 2 nM vs 3, IC50 = 338 ± 12
nM), showing a potency similar to other CXCR4 antagonists
which are at different stages of development. In particular, the
binding affinity of 19 is comparable to that of 1, which is the
only CXCR4 antagonist approved for stem cell mobilization.30

Cell Migration Assay. To functionally characterize the
newly developed peptide 19, we evaluated its effect on the
CXCL12-mediated migration of CCRF-CEM cells in Trans-
well-based assays, including 1 as reference compound. These
assays revealed that 19 can inhibit CCRF-CEM migration more
efficiently than 1, even at low nanomolar concentration (Figure
3A). Further experiments demonstrated that 19 can also impair
the CXCL12-induced migration of other cancer cell lines such
as the PES43 metastatic melanoma cells (Figure 3B), the HT29
and HCT116 human colon cancer cells (Figure 3C,D), and the
A498 and SN12C human renal cancer cells (Figure 3E,F), in a
concentration dependent manner, thus showing a comparable
range of efficacy with the unique clinically approved CXCR4
antagonist 1.

CXCR4 Internalization. Like other GPCR receptors,
CXCR4 is rapidly internalized upon ligand binding and
accumulates into endosomal vesicles.31 Using CHO cells
transfected with green fluorescent protein (GFP) tagged
CXCR4, we analyzed the effect of the newly developed 19 in
the receptor internalization process in comparison with 1.
Briefly, CHO-CXCR4-GFP cells were treated with 1 or 19, and
the CXCR4 receptor internalization process was studied from
30 min up to 24 h in the presence of the specific ligand
CXCL12 (12.5 nM) by confocal microscopy. Upon ligand
binding the GFP-CXCR4 receptor (in green, Figure 4) clearly
accumulates into endosomal vesicles, identifiable as bright
green spots in the cytoplasm (Figure 4B) as compared to
untreated cells (Figure 4A); this effect was impaired by 19
(Figure 4C) but not by 1 (Figure 4D). Thus, 19, different from
1, is able to efficiently inhibit the CXCR4 internalization
process. This effect is detectable from 30 min to 6 h after
treatment, while it cannot be determined at 24 h.

Serum Stability. The early metabolic stability of 19 was
assessed by incubating it and its unstable parent peptide 2 in
90% human serum at 37 °C according to a previously described
protocol.32 At several time intervals, aliquots of the mixture
reaction were collected, treated with acetonitrile to precipitate
the serum proteins, and analyzed by ESI-RP-HPLC. As shown
in Figure 5, the reference peptide starts to be significantly
degraded already after 15 min, when we could detect around
67% of intact compound and the formation of about 23% and
10% of the corresponding hexapeptide and pentapeptide
metabolities, respectively. After 30 min, the reference sequence
was fully converted into the corresponding cyclic pentapeptide
metabolite H-[Cys-Arg-Phe-Phe-Cys]-COOH. In line with the
results of our previous study, 19 was stable up to 120 min,
confirming our observation that the introduction of the acetyl
group at the N-terminal region was sufficient to preserve the
peptide against human serum proteolytic degradation.

NMR Spectroscopy. NMR experiments were performed on
the most active compound 19. Complete 1H NMR chemical
shift assignments (Table S1 in Supporting Information) were
performed according to the Wüthrich procedure.33 DQF-
COSY,34 TOCSY,35 and NOESY36 experiments, with the
support of the XEASY software package,37 were carried out in

Figure 2. Competition binding assays of 19 with 125I-CXCL12.
Experiments were performed on CCRF-CEM cells. Cells were
incubated with 60 pM 125I-CXCL12 as tracer and increasing
concentrations (from 10 pM to 10 μM) of either 3 or 19 as
competitor. The binding curve was fitted to a one-site binding model.
Results shown (mean ± SD) are the average of three experiments.
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200 mM SDS micellar solution. The employment of SDS
micelles to investigate the conformational properties is justified
on the basis of their interaction with a membrane receptor. For
peptides that bind membrane receptors, such as GPCR, the use
of membrane mimetic solution is suggested, hypothesizing a
membrane-assisted mechanism of interactions between the
peptides and their receptors;38 in fact, micelle solutions have
been extensively used for peptide hormones conformational
studies.39 Many NMR parameters of 19 indicate a folded
structure. In particular, NOE contacts between Hα-NHi+2 of
Arg1 and D-Cys3 and NH-NHi+2 of D-Cys3 and Nal5 and
between Arg4 and His6 indicated that folded structures span
along the entire peptide sequence. The presence of those
structures is confirmed by low values of the temperature
coefficients of amide protons (|Δδ/ΔT| < 4 ppb/K) of D-Cys3,
His6, and Pen7 (Table S1). Upfield shifts of side chain protons
of the Arg4 and NOE contacts between Arg4 and 2-Nal5 and
between 2-Nal5 and His6 point to a spatial proximity of these
couples of side chains. Also Arg1 and Ala2 side chains show
NOE interactions with 2-Nal5 naphthyl moiety indicating that
the exocyclic side chains are close to the endocyclic
pharmacophoric triad formerly consisting of the Arg4-Phe5-
Phe6 sequence. NMR constraints from SDS micelle solution
were used as the input data for a simulated annealing structure
calculation (Table S2). An ensemble of well-defined structures
was obtained (Figure 6A). Calculated structures satisfied the
NMR-derived constraints (violations smaller than 0.20 Å). The
10 lowest energy structures for 19 showed a rmsd of 0.12 Å and

a well-defined β-turn (type IV) along residues 4−7. Also the
side chain positions are well-defined, in fact the all atom rmsd is
only 0.64 Å. This structural stability is likely to contribute to the
activity enhancement observed for 19 compared to 3 that was
more flexible in the same experimental conditions.24 A three-
dimensional superposition of NMR-derived structures of 3 and
19 (Figure 6B) shows that both the cycle and the side chains
are close in the space (rmsd between the two lowest energy
conformers of 3 and 19 is only 0.79 Å when all the Cγ atoms
are considered).

Molecular Modeling. To elucidate the binding mode of
our newly synthesized peptides to CXCR4, molecular modeling
studies were performed on the most potent compound of the
series 19. In analogy with our previous investigations on the
lead peptide 3,24 standard docking algorithms were not able to
predict reliable ligand binding poses; therefore, a more
advanced computational approach was again employed.
Specifically, we carried out extensive molecular dynamics
(MD) simulations in explicit solvent and membrane on the
19/CXCR4 complex that was obtained through a manual
docking procedure (see the Experimental Section and the
Supporting Information for details). According to MD results,
the Arg4, 2-Nal5, and His6 side chains of 19 deepen into the
transmembrane (TM) bundle of CXCR4 (Figure 7A),
occupying both the minor (TMS1; between TM1, TM2,
TM3, and TM7) and the major pocket (TMS2; between TM3,
TM4, TM5, TM6, and TM7)40 of the ligand binding site. In
detail, the Arg4 guanidinium group establishes a tight salt bridge

Figure 3. Comparative CXCL12-dependent cells migration experiments on 1 and 19. Experiments were conducted on the CCRF-CEM (A), PES43
(B), HT29 (C), HCT116 (D), SN12C (E), and A498 (F) cell lines. Migrated cells on the lower surface were fixed, stained with H&E, and counted
microscopically. The results are expressed as the migration index relative to migration in the presence of BSA alone. Data are presented as bar graph
showing mean ± SD.

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.7b01062
J. Med. Chem. 2017, 60, 9641−9652

9645

http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.7b01062/suppl_file/jm7b01062_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.7b01062/suppl_file/jm7b01062_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.7b01062/suppl_file/jm7b01062_si_001.pdf
http://dx.doi.org/10.1021/acs.jmedchem.7b01062


with the D972.63 carboxylate group and a cation−π interaction
with W942.60, while the 2-Nal5 side chain extends into the
aromatic cage defined by H1133.29, Y1163.32, Y1213.37, F1995.38,
H2035.42, and Y2556.51, forming favorable contacts with the side
chains of these residues together with a cation−π with the
R18845.52 guanidinium group. In the neighboring cleft the
protonated His6 imidazole ring establishes a T-shaped stacking
interaction with the Y2556.51 phenol ring and, more
interestingly, a salt bridge with the conserved E2887.39

carboxylate group and a water mediated interaction with
D2626.58. Aside from the Arg4, 2-Nal5, and His6 triad, also the
other peptide amino acids are involved in the binding of 19 to
CXCR4. For instance, the Arg1 side chain, analogous to Arg4,
makes a salt bridge with the D972.63 side chain, but it also
contacts D18745.51 through a water bridge. Moreover, the C-
terminal Pen7 carboxylate group establishes H-bonds with the
Y19045.54 phenolic group and the Q2005.39 amidic function.
Additional contacts are eventually formed by the acetyl cap and
the Arg1 backbone NH with the N371.31 and E2887.39 side
chains, respectively. Overall, the binding mode predicted for 19
is in agreement with its subnanomolar potency and with
crystallographic and mutagenesis data indicating residues such
W942.60, D972.63, H1133.29, and Y1163.32 in TMS1, H2035.42,
Y2556.51, D2626.58, and E2887.39 in TMS2, and D18745.51 and
R18845.52 in ECL2 as important for ligand binding to CXCR4.40

Likewise, previous computational studies revealed that some of
the latter residues are crucial for the binding of potent
cyclopeptide CXCR4 antagonists. For instance, the potent
cyclic pentapeptides developed by Fujii and co-workers, which
feature two positively charged (arginine) and two aromatic
residues (Tyr and 2-Nal), were predicted to use D972.63 and
D18745.51 as first anchor points for receptor binding and to

Figure 4. CXCR4 internalization was assessed in CHO-CXCR4-GFP cells in the presence of CXCL12 (12.5 nM), 19 (10 nM), and 1 (10 nM): (A)
untreated cells; (B) cells treated with CXCL12 (12.5 nM); (C) cells treated with 19 (10 nM) and then stimulated with CXCL12 (12.5 nM); (D)
cells treated with 1 (10 nM) and then stimulated with CXCL12 (12.5 nM).

Figure 5. (A) Stability of 2 and 19 at different intervals of incubation
with 90% human serum. Relative concentrations of peptides were
determined by integration of the A230 peaks from analytical HPLC.
(B) ESI-MS characterizations of 2 and 19 at different intervals of
incubation.
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insert their 2-Nal side chain in the cleft defined by R18845.52

and H2035.42,27 similar to 19. Docking studies would however
suggest that the latter ligands use D1714.60 as second anchor
point,27 different from our peptide that in fact binds D2626.58

and E2887.39. On the other hand, a subnanomolar N-alkylated
cyclopeptide analogue developed by Demmer et al. was
predicted to interact with the side chains of D972.63,
D18745.51, and D2626.58 through its two arginine residues and
to form a cation−π with R18845.52 through the Nal4 side
chain,15 in line with the binding mode predicted for 19. It is
also interesting to note that the 19 MD pose is superimposable
to that previously described for the lead peptide 3 (Figure
7B),24 although few differences can be found. Particularly, both
the Arg1 side chain and the C-terminal carboxylate group of 19
directly interact with the target, while in the case of 3 the same
moieties are involved in a tight intramolecular interaction. This
could be due to the slight different peptide ring arrangement
resulting from the L-Cys7/L-Pen7 substitution, which in turn
might not allow the Arg1 side chain of 19 to fold toward the C-
terminus. Furthermore, the introduction of His (19) in place of
Phe (3) allows the ligand to form additional tight polar
contacts, explaining the remarkable increase in the affinity
toward CXCR4 (3, IC50 = 53 nM; 19, IC50 = 1.5 nM). The MD
binding pose of 19 also allows us to rationalize the structure−
activity relationships of all the other compounds presented in
this study. Specifically, (i) as already outlined in our previous

study,24 the nature and the chirality of the amino acids forming
the disulfide bond (cysteine and/or penicillamine) are crucial
to properly orient the peptide pharmacophoric groups at the
CXCR4 receptor; within this framework, the best results have
been achieved with peptides featuring D-Cys and L-Pen at the 3
and 7 positions, respectively (compare 4 vs 3, 5, and 6). (ii) At
the 5 position, residues featuring side chains bulkier than Phe
can establish additional lipophilic or in the aromatic subpocket
of the CXCR4 ligand binding site, although they should satisfy
specific steric requisites. Actually, the introduction of residues
such as (4-Cl)Phe (9), 1-Nal (11), or 2-Nal (12) produces
alternative effects on the peptide target affinity; indeed, the
latter amino acids are, respectively, well tolerated, unfavorable,
or advantageous for the binding to CXCR4. For the same
reasons, the presence, at the 5 position, of amino acids bearing
more polar side chains (peptides 7, 8, and 10) is always
detrimental for the peptide potency. Finally, (iii) at the 6
position, the replacement of Phe with any aromatic residue
(peptides 14−18) other than histidine (13) always causes a
drop in affinity, mainly for steric reasons.

■ CONCLUSIONS
The overexpression of CXCR4 on the cancer cell membrane,
along with the CXCL12 release from secondary organs,
cooperates in arranging the environment for metastases
nestling.1−3 Hence, during the past decade various CXCR4
antagonists have been in development as potential antimeta-
static agents.10,12,16,30 In this respect, we have recently reported
the plasma stable and selective CXCR4 peptide antagonist Ac-
Arg-Ala-[D-Cys-Arg-Phe-Phe-Cys]-COOH (3), which however
did not yet exhibit the suitable potency (IC50 of 53 nM) for in
vivo studies. Thus, we here embarked in an extensive lead-
optimization campaign of 3, which led to the identification of a
novel potent CXCR4 antagonist (Ac-Arg-Ala-[D-Cys-Arg-2-
Nal-His-Pen]-COOH, 19) endowed with an IC50 of 1.5 nM.
Remarkably, the binding potency of 19 is comparable to that of
plerixafor (1), which is the only clinically approved CXCR4
antagonist.4,30 We also highlight that the chemical modifica-
tions applied did affect neither the selectivity nor the stability in
biological fluids of 19 which indeed cannot interact with the
related CXCR7 and unrelated CXCR3 chemokine receptors
and remains unaltered up to 2 h in human serum. Moreover,
NMR and advanced molecular modeling studies allowed us to
define the structural reasons beyond the improved activity
observed for 19 versus the lead peptide 3. Finally, functional
cell-based assays demonstrated that 19 was able to prevent both
cell migration and receptor internalization, which are validated
hallmarks for CXCR4 antagonism, at low nanomolar
concentration and more efficiently than 1. In light of these
data, 19 possesses all the prerequisites, including high affinity,
selectivity, and serum stability, that allow this peptide to move
toward preclinical investigations aimed to confirm its efficacy in
vivo. Likewise, 19 might represent the starting point for the
development of novel chemical probes for PET or MRI studies
in CXCR4 overexpressing cancers with the final aim to improve
and fine-tune CXCR4-targeted therapies, in the modern
context of personalized medicine.

■ EXPERIMENTAL SECTION
Chemistry. Materials. Nα-Fmoc-protected amino acids, 2-

chlorotrityl chloride (2-Cl-TrtCl) resin, Fmoc-Rink amide-Am resin,
O-benzotriazole-N,N,N′,N′-tetramethyluronium hexafluorophosphate
(HBTU), N,N-diisopropylethylamine (DIPEA), triisopropylsilane

Figure 6. (A) Stereoimage of the lowest energy conformer of 19.
Heavy atoms are represented with different colors (carbon, green;
nitrogen, blue; oxygen, red; sulfur, yellow). Nonpolar hydrogen atoms
are hidden for clarity reasons. (B) Superposition of the NMR lowest
energy conformations of 19 (green) and 3 (orange)24 on the Cα
carbon atoms of residues 3−7.
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(TIS), trifluoroacetic acid (TFA), piperidine, and N-hydroxybenzo-
triazole (HOBt) were from Iris-Biotech Gmbh (Marktredwitz,
Germany). N,N-Dimethylformamide (DMF), dichloromethane
(DCM), diethyl ether, N-chlorosuccinimide (NCS), H2O, CH3CN
for HPLC and human serum were reagent grade and were acquired
from commercial sources (Sigma-Aldrich, Milano, Italy) and used as
received unless otherwise noted. Peptides were purified by preparative
HPLC (Shimadzu HPLC system) equipped with a C18-bounded
preparative RP-HPLC column (Phenomenex Kinetex 21.2 mm × 150
mm, 5 μm). The purity of all the peptides was ≥95% as confirmed by
analytical HPLC (Shimadzu Prominance HPLC system) equipped
with a C18-bounded analytical RP-HPLC column (Phenomenex
Kinetex, 4.6 mm × 250 mm, 5 μm) using a gradient elution (10−90%
acetonitrile in water (0.1% TFA) over 15 min; flow rate = 1.0 mL/
min; diode array UV detector). Accurate molecular weights of
compounds were confirmed by ESI mass spectrometry using a Q
Exactive Orbitrap LC−MS/MS (Thermo Fisher Scientific, Waltham,
MA, USA) (Supporting Information Table S1).
General Procedure for the Synthesis of Peptides. 2-Cl-TrtCl

resin (93.0 mg, 1.60 mmol/g) was swollen in dry DMF (2 mL) over
0.5 h, and a solution of Fmoc-L-Cys(Trt)-OH (59.0 mg, 0.10 mmol,
0.67 equiv) or Fmoc-L-Pen(Trt)-OH (62.0 mg, 0.10 mmol, 0.67
equiv) and DIPEA (79 μL, 3 equiv) in DMF (2 mL) was added. The
mixture was stirred for 24 h. The residual chloride groups contained in
the resin were capped by adding MeOH (200 μL) in DCM (2 mL) in
the presence of DIPEA (52 μL, 2 equiv) and stirring for 30 min to
avoid eventually parallel synthesis of side products. Fmoc group
removal was performed using 20% piperidine in DMF (1 × 5 min and
1 × 25 min). The peptide resin was then washed with DCM (3 × 0.5
min) and DMF (3 × 0.5 min), and positive Kaiser ninhydrin41 and
2,4,6-trinitrobenzenesulfonic acid (TNBS)42 tests were observed.
Fmoc-L-Phe-OH (155.0 mg, 0.4 mmol, 4 equiv) or Fmoc-L-
His(Trt)-OH (248.0 mg, 0.4 mmol, 4 equiv) or Fmoc-L-Phg-OH
(149.4 mg, 0.4 mmol, 4 equiv) or Fmoc- L-Phe(4-NO2)-OH (173.0
mg, 0.4 mmol, 4 equiv) or Fmoc-L-Phe(4-Cl)-OH (168.8 mg, 0.4

mmol, 4 equiv) or Fmoc-L-1-Nal-OH (175.0 mg, 0.4 mmol, 4 equiv)
or Fmoc-L-2-Nal-OH (175.0 mg, 0.4 mmol, 4 equiv), Fmoc-L-
Arg(Pbf)-OH (259. 5 mg, 0.4 mmol, 4 equiv), Fmoc-L-Cys(Trt)-OH
(234.3 mg, 0.4 mmol, 4 equiv) or Fmoc-D-Pen(Trt)-OH (245.5 mg,
0.4 mmol, 4 equiv), Fmoc-L-Ala-OH (124.5 mg, 0.4 mmoli, 4 equiv)
were sequentially added to the resin bound H-L-Cys(Trt)/L-Pen(Trt).
Each coupling reaction was achieved using a 4-fold excess of amino
acid with HBTU (151. 7 mg, 0.4 mmol, 4 equiv) and HOBt (61.2 mg,
0.4 mmol, 4 equiv) in the presence of DIPEA (140 μL, 0.8 mmol, 8
equiv) in DMF. Fmoc deprotections were accomplished with 20%
piperidine in DMF solution (1 × 5 min, 1 × 25 min). Washings with
DMF (3 × 0.5 min) and DCM (3 × 0.5 min) were performed through
every coupling/deprotection step. Kaiser ninhydrin and TNBS tests
were employed for monitoring the progress of peptide synthesis. After
removal of the last Fmoc group, the resin bound peptide was treated
with Ac2O (19 μL, 0.2 mmol, 2 equiv) and DIPEA (70 μL, 0.4 mmol,
2 equiv) in DCM (2 mL) and the mixture was shaken for 1 h. Negative
Kaiser ninhydrin and TNBS tests were observed.

General Procedure for Peptide Oxidation and Purification.
The peptide was released from the solid support and all the protecting
groups were cleaved, treating the resin with TFA/DCM/TIS (80/15/
5, v/v/v) (3 mL solvent/0.1 mmol) for 2 h. The resin was then filtered
off and the crude linear peptide was recovered by precipitation with
chilled ether to give a powder. The crude peptide (0.1 mmol) was
dissolved in 45 mL of H2O, and a solution of NCS (20 mg, 0.15 mmol,
1.5 equiv) in H2O (5 mL) was added. The mixture was mechanically
stirred for 30 min at room temperature.26 The solution mixture was
finally purified by preparative RP-HPLC in 0.1% TFA with an
acetonitrile (ACN) gradient (10−70% ACN in H2O over 20 min, flow
rate of 15 mL/min) on a Phenomenex Kinetex C18 column (21.2 mm
× 150 mm, 5 μm). Analytical RP-HPLC was performed in 0.1% TFA
with an ACN gradient (10−90% ACN in H2O over 20 min, flow rate
of 1.0 mL/min) on a Phenomenex Kinetex C18 column (0.46 mm ×
150 mm, 5 μm).

Figure 7. (A) Binding mode of 19 (cyan sticks) at the CXCR4 receptor (gray cartoons) obtained through over 300 ns long MD simulations.
Receptor amino acids and waters important for peptide binding are shown as sticks. Hydrogen bonds are displayed as dashed yellow lines. Nonpolar
hydrogens are omitted for clarity. (B) Superposition between the MD-predicted binding poses of 324 (orange sticks) and 19 at the CXCR4 receptor
(gray cartoons). Both images are shown in stereoview.
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CXC Receptors Binding Assays. 5 × 105 CCRF-CEM cells were
preincubated with increasing peptide concentrations (ranging from 10
pM to 10 μM) in the binding buffer (PBS 1× plus 0.2% BSA and 0.1%
NaN3) for 30 min at 37 °C, 5% CO2 and then labeled for 30 min using
an anti-CXCR4 PE-antibody (FAB170P, clone 12G5, R&D Systems,
Minneapolis, MN, USA). To evaluate the selectivity toward CXCR4
against CXCR3 and CXCR7, the experiments were also performed on
the CXCR3-overexpressing COLO205 cell line using a specific anti-
CXCR3 antibody (BD Pharmingen 560831 clone 1C6/CXCR3) as
well as on the CXCR7-overexpressing MCF-7 cell line using a specific
anti-CXCR7 antibody (R&D FAB4227A clone 11G8). A FACSCanto
II flow cytometer (B.D. Biosciences, CA, USA) and the Diva version
6.1.1 software were used to collect and analyze the data, respectively.

125I-CXCL12 Competitive Binding. CCRF-CEM cells were
harvested and suspended in the binding buffer (PBS containing 5
mM MgCl2, 1 mM CaCl2, 0.25% BSA, pH 7.4) with different ligand (3
or 19) concentrations, ranging from 10 pM to 10 μM and in the
presence of fixed tracer amounts of the 125I-CXCL12 (PerkinElmer,
2200 Ci/mmol). The amount of bound radioactivity was determined
after 1 h at 4 °C using a γ counter and expressed as percent of total
counts. IC50 values were calculated through the GraphPad Prism
software (GraphPad Software Inc., CA).
Migration Assay. Migration was assayed in 24-well Transwell

chambers (Corning Inc., Corning, NY) using inserts with 5 and 8 μm
(optimal for lymphocytes and epithelial cells, respectively) pore
membranes. Membranes were precoated with collagen (human
collagen type I/III) and fibronectin (20 μg/mL each). Cells were
placed in the upper chamber (2 × 105 cells/well) in culture medium
containing 1% BSA (migration media) in the presence of increasing
ligand (1 or 19) concentrations (from 10 nM to 10 μM); 100 ng/mL
CXCL12 was added to the lower chamber. After 18 h incubation, cells
atop the filter were removed using a cotton wool swab; migration of
cells in the alone medium (control) was compared with that observed
in media containing CXCL12. The cells were counted in 10 different
fields (original 400× magnification). The migration index was defined
as the ratio between migrating cells in the experimental group and
migrated cells in the control group.
CXCR4 Internalization Assay. To create the CHO-CXCR4-GFP

cell line, the pEGFP-CXCR4 plasmid was transfected by TurboFectin
8.0 (OriGene) in accordance with the manufacturer’s instructions.
CHO-CXCR4-GFP cells were grown on 10 mm coverslips in DMEM
containing 10% FBS for 1 day, washed with PBS−0.5% BSA, and
equilibrated in DMEM−0.5% BSA. Cells were preincubated with 1 or
19 at 10 nM for 45 min at 37 °C. Then, they were then treated with
CXCL12 (12.5 nM) and incubated at 37 °C for different time intervals
(30 min, 2 h, 6 h, and 24 h), fixed with 4% formaldehyde for 10 min,
washed three times in PBS, and inspected with a Zeiss LSM 510
confocal microscope.
Serum Biostability Assay. Serum stability was evaluated applying

a previously described protocol.32 Briefly, the reaction solution was
prepared by mixing 10 μL of water solution of peptide (1 mM) and 90
μL of human serum (at concentration 0.1 mM, 90% serum) and
incubated at 37 °C. Aliquots were collected at different times (0, 15
min, 30 min, 60 min, 90 min, and 120 min), subjected to precipitation
by addition of ACN (0.1% TFA) solution, and then centrifuged
(12 000 rpm, 15 min, 4 °C). The supernatant obtained was analyzed
by HPLC using a linear elution gradient from 10% to 90% ACN (0.1%
TFA) in water (0.1% TFA) in 30 min.
NMR Spectroscopy. The samples for NMR spectroscopy were

prepared by dissolving the appropriate amount of 19 in 540 μL of
1H2O (pH 5.5), 60 μL of 2H2O to obtain a concentration 2 mM of
peptide and 200 mM of SDS-d25. NMR spectra were recorded on a
Varian INOVA 700 MHz spectrometer equipped with a z-gradient 5
mm triple-resonance probe head in a 5 mm tube. The spectra were
calibrated relative to TSP (0.00 ppm) as internal standard. 1D and 2D
NMR spectra were recorded and processed as previously described.24
3JHN‑Hα coupling constants were obtained from 1D 1H NMR and 2D
DQF-COSY spectra. The temperature coefficients of the amide proton
chemical shifts were calculated from 1D 1H NMR and 2D TOCSY
experiments performed at different temperatures in the range 25−35

°C by means of linear regression. The NOE-based distance restraints
were obtained from NOESY spectra collected with a 100 ms mixing
time. The NOE cross peaks were integrated with the XEASY
program37 and were converted into upper distance bounds using the
CALIBA program incorporated into the DYANA program package.43

An error-tolerant target function (tf-type = 3) was used to account for
the peptide intrinsic flexibility. From the produced 100 conformations,
10 structures were chosen, whose interproton distances best fitted
NOE derived distances, and then refined through successive steps of
restrained and unrestrained energy minimization using the Discover
algorithm (Accelrys, San Diego, CA) and the consistent valence force
field (CVFF).44 Molecular graphics images of the ensemble and the
overlapped structures of 3 and 19 were produced using the UCSF
Chimera package.45

Molecular Modeling. A manual docking of the 19 lowest energy
conformation in the crystal structure of CXCR4 (PDB code 3OE0)46

was first accomplished according to the procedure described in our
previous publication.24 The obtained complex was then prepared for
submission to MD calculations. In detail, the receptor structure was
refined using the protocol described in the same paper.24 For the
ligand, every possible protomeric and tautomeric state of the His6

residue was taken into account; therefore, three distinct 19/CXCR4
complexes were set up. Each complex was then embedded in a 1-
palmitoyl-2-oleoylphosphatidylcholine (POPC) phospholipids bilayer
mimicking the membrane environment. Specifically, a 94 Å × 94 Å
(along the x and y axes) pre-equilibrated POPC phospholipid bilayer
was first created through the membrane-builder tool of CHARMM-
GUI.org (http://www.charmm-gui.org). Then, a hole was generated
into the bilayer to host the complex, and all lipids in close contact with
the receptor (<1 Å distant from any protein atoms) were deleted. Each
complex was then solvated according to the TIP3 water model47

through the solvation module of VMD 1.9.3. Cl− counterions were
added to each system to ensure neutrality. The ff14SB48 and lipid1449

Amber force fields were used to parametrize the protein and the
peptide, and the lipids, respectively. Missing parameters for the
peptide 2-Nal5 and Pen7 residues were generated with Antechamber.50

Specifically, charges were computed using the restrained electrostatic
potential (RESP) fitting procedure.51 The ESP was first calculated by
means of the Gaussian 09 package52 using a 6-31G* basis set at the
Hartree−Fock level of theory, and then the RESP charges were
obtained by a two-stage fitting procedure using Antechamber.50

Missing bonds, angles, torsion and improper torsion angle parameters
were then generated using the same program. Each complex was then
submitted to over 200 ns MD simulations with NAMD 2.10.53 A 10 Å
cutoff (switched at 8 Å) was used to calculate atom−pair interactions.
The long-range electrostatic interactions were computed by means of
the particle mesh Ewald (PME) method using a 1.0 Å grid spacing in
periodic boundary conditions. The RATTLE algorithm was applied to
constrain bonds involving hydrogen atoms, thus allowing the use of a 2
fs integration time step interval. Each system was minimized and
heated up to 300 K while applying harmonic constraints, which were
gradually released along the equilibration process. To prevent any
distortion in the receptor transmembrane helices, their Cα carbons
were constrained for further 10 ns. Production run was then
performed in the NPT ensemble at 1 atm and 300 K. At the end of
MD calculations, all the trajectories were carefully inspected to
evaluate their rate of agreement with the experimental data. The best
results were observed for the complex with the ligand His6 in the
protonated form, which was thus selected for further analysis.

CXCR4 residues were numbered according to both the wild-type
primary sequence and the Ballesteros−Weinstein scheme54 (as
superscript).

All of the pictures were rendered using PyMOL (www.pymol.org).
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Kosoy, A.; Ruíz-Ávila, L.; Teixido,́ J.; Seoane, J.; Borrell, J. I.
Noncyclam tetraamines inhibit CXC chemokine receptor type 4 and
target glioma-initiating cells. J. Med. Chem. 2012, 55, 7560−7570.
(b) Truax, V. M.; Zhao, H.; Katzman, B. M.; Prosser, A. R.; Alcaraz, A.
A.; Saindane, M. T.; Howard, R. B.; Culver, D.; Arrendale, R. F.;
Gruddanti, P. R.; Evers, T. J.; Natchus, M. G.; Snyder, J. P.; Liotta, D.
C.; Wilson, J. L. Discovery of tetrahydroisoquinoline-based CXCR4
antagonists. ACS Med. Chem. Lett. 2013, 4, 1025−1030. (c) Zachar-
iassen, Z. G.; Karlshøj, S.; Haug, B. E.; Rosenkilde, M. M.; Vab̊enø, J.
Probing the molecular interactions between CXC chemokine receptor
4 (CXCR4) and an arginine-based tripeptidomimetic antagonist
(KRH-1636). J. Med. Chem. 2015, 58, 8141−8153.
(18) (a) Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.;
Wester, H. J. PET imaging of CXCR4 receptors in cancer by a new
optimized ligand. ChemMedChem 2011, 6, 1789−1791. (b) Philipp-
Abbrederis, K.; Herrmann, K.; Knop, S.; Schottelius, M.; Eiber, M.;
Luckerath, K.; Pietschmann, E.; Habringer, S.; Gerngross, C.; Franke,
K.; Rudelius, M.; Schirbel, A.; Lapa, C.; Schwamborn, K.; Steidle, S.;
Hartmann, E.; Rosenwald, A.; Kropf, S.; Beer, A. J.; Peschel, C.;
Einsele, H.; Buck, A. K.; Schwaiger, M.; Götze, K.; Wester, H. J.;
Keller, U. In vivo molecular imaging of chemokine receptor CXCR4
expression in patients with advanced multiple myeloma. EMBO Mol.
Med. 2015, 7, 477−487. (c) Lesniak, W. G.; Sikorska, E.; Shallal, H.;
Azad, B. B.; Lisok, A.; Pullambhatla, M.; Pomper, M. G.; Nimmagadda,
S. Structural characterization and in vivo evaluation of β-hairpin
peptidomimetics as specific CXCR4 imaging agents. Mol. Pharmaceu-
tics 2015, 12, 941−953. (d) Zhao, Y.; Detering, L.; Sultan, D.; Cooper,
M. L.; You, M.; Cho, S.; Meier, S. L.; Luehmann, H.; Sun, G.; Rettig,
M.; Dehdashti, F.; Wooley, K. L.; DiPersio, J. F.; Liu, Y. Gold
nanoclusters doped with 64Cu for CXCR4 positron emission
tomography imaging of breast cancer and metastasis. ACS Nano
2016, 10, 5959−5970. (e) Vag, T.; Gerngross, C.; Herhaus, P.; Eiber,
M.; Philipp-Abbrederis, K.; Graner, F. P.; Ettl, J.; Keller, U.; Wester, H.
J.; Schwaiger, M. First experience with chemokine receptor CXCR4-
targeted PET imaging of patients with solid cancers. J. Nucl. Med.
2016, 57, 741−746.
(19) (a) Weiss, I. D.; Jacobson, O.; Kiesewetter, D. O.; Jacobus, J. P.;
Szajek, L. P.; Chen, X.; Farber, J. M. Positron emission tomography
imaging of tumors expressing the human chemokine receptor CXCR4

in mice with the use of 64Cu-AMD3100. Mol. Imaging Biol. 2012, 14,
106−114. (b) Woodard, L. E.; De Silva, R. A.; Behnam Azad, B.;
Lisok, A.; Pullambhatla, M.; Lesniak, W. G.; Mease, R. C.; Pomper, M.
G.; Nimmagadda, S. Bridged cyclams as imaging agents for chemokine
receptor 4 (CXCR4). Nucl. Med. Biol. 2014, 41, 552−561.
(20) Oltmanns, D.; Zitzmann-Kolbe, S.; Mueller, A.; Bauder-Wuest,
U.; Schaefer, M.; Eder, M.; Haberkorn, U.; Eisenhut, M. Zn(II)-
bis(cyclen) complexes and the imaging of apoptosis/necrosis.
Bioconjugate Chem. 2011, 22, 2611−2624.
(21) Hartimath, S. V.; van Waarde, A.; Dierckx, R. A. J. O.; de Vries,
E. F. J. Evaluation of N-[11C]methyl-AMD3465 as a PET tracer for
imaging of CXCR4 receptor expression in a C6 glioma tumor model.
Mol. Pharmaceutics 2014, 11, 3810−3817.
(22) (a) Wester, H. J.; Keller, U.; Schottelius, M.; Beer, A.; Philipp-
Abbrederis, K.; Hoffmann, F.; Simecek, J.; Gerngross, C.; Lassmann,
M.; Herrmann, K.; Pellegata, N.; Rudelius, M.; Kessler, H.; Schwaiger,
M. Disclosing the CXCR4 expression in lymphoproliferative diseases
by targeted molecular imaging. Theranostics 2015, 5, 618−630.
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