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ted a direct correlation among hyperglycaemia, vascular dysfunction and eNOS post-
translational regulation in non non-obese diabetic mice (NOD). Here, we evaluate the impact of two ACE-inhibitors
therapy, zofenopril and enalapril in NOD mice. Insulin-dependent diabetes mellitus (IDDM) development was
monitored weekly through glycosuria measurement. Zofenopril and enalapril were dosed at 0.5 mg/kg/die orally.
Animalswere sacrificedat differentpoints andaortasused forwesternblottingor for tissuebathexperiments. Bovine
aortic endothelial cells in high glucose medium are treated with zofenoprilat or enalaprilat. Cells and supernatant
were utilised for western blot analysis and for nitrite/nitrate determination, respectively. In ex-vivo experiments
chronic administration of both drugs restored PE-induced contraction but not Isop-induced vasodilatation, however
only zofenopril reduced caveolin-1 expression. In vitro, both drugs inhibited caveolin-1 expression and increased
NOx production. However, zofenopril caused inhibition of both parameters at a concentration 200 fold lower than
enalalpril. In vivo, zofenopril delays the onset of diabetic conditions of about 50%, and ameliorates polyuria. In
conclusion our data suggest that ACE-inhibitor therapymay be useful in IDDM, inparticular sulphydrylated inhibitor
would display a better efficacy especially if administered early on the development of diabetes.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction
Type 1 diabetes, or insulin-dependent diabetes mellitus (IDDM) is an
autoimmune disease characterised by a islet inflammation or insulitis,
followed by progressive destruction of pancreatic β cells and by insulin
secretion deficiency, resulting in hyperglycaemia (Atkinson and MacLa-
ren, 1994; Expert Comm. on diagnosis on diabetes mellitus, 1997). IDDM
is considered one of the major risk factors for the development of
cardiovascular pathologies, indeed the main cause of morbidity and
premature mortality associated with IDDM (The diabetes control res.
group, 1993) includes vascular dysfunctions such as atherosclerosis,
macro- andmicroangiopathy, diabetic cardiomyopathy and nephropathy
that converge in arterial hypertension (Keen et al., 1999; Oomen et al.,
1999; Jensen-Urstad et al., 1996; Kennon et al., 1999). Consequently,
prevention and management of endothelial dysfunction in diabetic
patients is currently considered an important target for pharmacological
intervention in IDDM-associated complicances (Buikema et al., 2000). In
this context Angiotensin Converting Enzyme (ACE) inhibitors are widely
usedas therapeutics, and their ability in controllinghypertensionand risk
of cardiovascular death is well established both in experimental
investigations and in clinical trials. However, it has been shown that
ACE inhibitors, beyond their classical actionon renin–angiotensin system,
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exert a protective action on cardiovascular system. In fact they improve
endothelial function, cardiac and vascular remodelling and they have
been shown to reduce atherogenesis in experimental models with dif-
ferent mechanisms (Hayek et al., 1998; Hayek et al., 1999; Keidar et al.,
2000; de Nigris et al., 2001; Chobanian et al., 1990; Rolland et al., 1991;
Kowala et al., 1994) such as antiproliferative effects on vascular smooth
muscle cells (Daemen et al.,1991; Li et al.,1999), reduction of low-density
lipoprotein (LDL) oxidation (de Nigris et al., 2001; Napoli et al., 1999;
Keidar et al., 2000), modulation of proinflammatory signals in the vascu-
lature (Gonzales et al., 2000) and improvement of endothelial disorders
(Buikema et al., 2000, Rolland et al., 1991).

Recently, our group has demonstrated a direct correlation between
hyperglycaemia and vascular dysfunction in non non-obese diabetic
mice (NOD). In this strain progressive development of diabetic con-
dition matches with an increasing vascular hypo-functionality (Bucci
et al., 2004). The purpose of this paper was to evaluate the impact of
ACE-inhibitor therapy in NOD mice by using two ACE-inhibitors
namely enalapril and zofenopril.

2. Methods

2.1. Experimental design

Female Non Obese Diabetic mice (NOD/Ltj) and CD-1 mice, were
purchased from Charles River (Italy). NODmice exhibit a susceptibility
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Table 1
Glycaemia and glycosuria values in the three different groups of NODmice (NOD groups
I, II and III respectively) related to the age

NOD I NOD II NOD III

Glycaemia (mg/dl) 100±12 220±15 490±25
Glycosuria (mg/dl) 5±1 65±18 1000±100
Age (weeks) 5±2 13±3 22±3

Glycaemia normal value: 110±20 mg/dl.
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to spontaneous development of autoimmune (type I) insulin insulin-
dependent diabetes mellitus (IDDM) (Makino et al., 1980). The study
was performed with female mice because they have much higher
incidence of developing diabetes (Gross et al., 2008; Sreenan et al.,
1999; Han et al., 2008; Choi et al., 2008). Diabetes development in
NOD mice is characterised by insulitis and leukocytic infiltrate of the
pancreatic islets. Progressive reduction in pancreatic insulin content
starts at about 12–16 weeks of age (Table 1). In order to evaluate IDDM
development in these animals a measurement of glycosuria was
performed weekly starting from 5 weeks of age. Mice are divided in
the following three groups:

• NOD group I 0bglb20 mg/dl = low or null glycosuria
• NOD group II 20bglb500 mg/dl = high glycosuria
• NOD group III 500bgl to 1000 mg/dl = severe glycosuria.

This classification allows to differentiate the treatments in pre-
ventive or therapeutic regimens. To perform the preventive regimen
mice belonging to group I were randomised to receive either zofenopril
(Zf) or enalapril (En) starting at 5 weeks of age. Conversely in order to
evaluate the effect of Zf and En in a therapeutic approach (e.g. when
glycaemia is alreadyat pathological concentration)we randomisedmice
that had reached glycosuria levels to group II or III to be treated with
either Zf or En, respectively 20–500 mg/dl for group II (13±3 weeks of
age) and 500–1000 mg/dl for group III (22±3 week s of age) (for details
see Bucci et al., 2004). Both drugswere dosed at 0.5mg/kg/die since this
dose is strictly related to doses used in therapy (Borghi and Cicero, 2006;
Pasini et al., 2007; Borghi et al., 2007). During all treatments the
glycosuria was monitored weekly and mice were sacrificed when the
value of glycosuria of a specific group reached the NOD III stage. Drugs
are dissolved in carboxy methyl cellulose 0.2% w/v in saline. Drugs or
vehicle were was administrated per oral gavage in a volume of 200 µl.

2.2. Measurement of glycosuria

To assess the diabetic condition of NOD animals, glycosuria was
evaluated weekly to select the animals. This method was used since it
Fig. 1. (A) Effect of PE on aortic rings harvested fromNODgroups I, II, III and CD-1mice. PE-indu
(⁎⁎⁎pb0.001) compared to NOD group I and CD-1mice. In NOD group III PE-induced vasoconst
NODgroup II). Data are presented asmean±S.E.M. of tension increase,n=8 for each group. (B) Ev
CD-1mice. Isop-induced cumulative concentration response curve (10nM–30µM)wasprogress
Isop-inducedvasodilatation inNODgroup IIwas significantly diminishedwhencompared toNO
in NOD group III mice (⁎⁎⁎pb0.001 vs. NOD group I and CD-1 mice; ## pb0.01 vs. NOD group
is non non-invasive and it well correlates with an increase in blood
glucose (Bucci et al., 2004). Briefly, groups of 3 mice were placed in
metabolic cages able to selectively collect urine, for at least 4 h. The
content of glucose in the urine was measured by using Trinder
reaction (Glucose Trinder 100, Sigma Chemical Co. Milano, Italy). This
method is based on the glucose oxidation to gluconic acid and
hydrogen peroxide in the reaction catalysed by glucose oxidase
(Trinder, 1969). The value of absorbance (λ=505 nm) is directly
proportional to the glucose concentration in the sample. At these
different points, blood sugar levels were determined before the
animals were sacrificed. Aortas were dissected and used for western
blotting analysis or for tissue bath experiments. Experiments were
performed also on CD-1 mice in order to have an internal non non-
diabetic control to compare with NOD I. In addition, the volume of
urine collected was measured in order to evaluate if zofenopril and
enalapril treatments could influence the polyuria (increase of urine
volume) typical of diabetic conditions.

2.3. Tissue preparation

NOD or CD-1 mice were sacrificed and thoracic aorta was rapidly
dissected and cleaned from fat and connective tissue. Rings of 1.5–2mm
length were cut and mounted on wire myographs (Kent Instruments,
Japan) filled with gassed Krebs solution (95% O2+5% CO2) at 37 °C.
Changes in isometric tension were recorded with PowerLab data
acquisition system (Ugo Basile, Italy).The composition of the Krebs
solution was as follows (mol/l): NaCl 0.118, KCl 0.0047, MgCl2 0.0012,
KH2PO4 0.0012, CaCl2 0.0025, NaHCO3 0.025 and glucose 0.010. Rings
were initially stretched until a resting tension of 1.5 g was reached and
allowed to equilibrate for at least 40 min during which tension was
adjusted, when necessary, to 1.5 g and bathing solution was periodi-
cally changed. In a preliminary study a resting tension of 1.5 g was
found to develop the optimal tension to stimulation with contracting
agents.

2.4. Tissue experimental protocols

In each experiment rings were firstly challenged with L-phenylephr-
ine (PE) 1 μmol/l until the responseswere reproducible.When the tissue
wasunresponsive to PE (i.e. inNOD III) thefirst challengewasperformed
with serotonin (5-HT) 1 μmol/l. To evaluate tissue contractility, cumu-
lative concentration response curve to PE (10 nmol/l–30 μmol/l) was
performed. Conversely, to evaluate tissue vasorelaxation, cumulative
concentration response curve to isoproterenol (Isop) (10 nmol/l–
30 μmol/l) were was performed on PE-precontracted rings.
ced cumulative concentration response curve (10 nM–30 µM)was reduced inNOD group II
riction is strongly inhibited (⁎⁎⁎pb0.001 vs. NOD group I and CD-1mice; ### pb0.001 vs.
aluation of vasorelaxant effect of Isop on aortic rings harvested fromNODgroups I, II, III and
ively reduced inNODgroups II and III compared toNODgroup I andCD-1mice. Inparticular,
D group I andCD-1mice (⁎⁎⁎pb0.001). Reducedvasodilatationwas evenmore pronounced
II). Data are presented as mean±SE of % of vasodilatation, n=8 for each group.



Fig. 2. Effect of chronic administration of zofenopril and enalapril on adrenergic receptors-induced vascular reactivity. After standardization procedure a PE-induced cumulative
concentration response curve (A, B, C) or Isop-induced cumulative concentration response curve (D) were was performed (10−8–3×10−5 M). PE-induced cumulative concentration
response curve was performed in mice from group NOD I (A), group NOD II (B), and group NOD III (C); Isop-induced cumulative concentration response curve was performed in mice
from group NOD III (D). Data are presented as mean±S.E.M. ⁎⁎⁎pb0.001 vs. CD-1; ### pb0.001 vs. NOD III; §§§ pb0.001 vs. Zf; n=6 for each group of mice.
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2.5. BAEC with normal and high glucose

Bovine aortic endothelial cells (BAEC) cells were obtained by Isti-
tuto Nazionale per lo Studio e la Cura dei Tumori (Milano, Italy). The
cells were cultured in 60 mm Petri plastic dishes (FALCON, Microtech
Italy) and grown in medium (GIBCO, Invitrogen Corporation) supple-
mented with 2 mmol/l glutamine (GIBCO), 10% heat inactivated fetal
calf serum (GIBCO), 50 U/ml penicillin, and 50 U/ml streptomycin. The
Petri dishes were incubated at 37 °C in a 5%CO2–95% air gas mixture.
BAEC were subcultured on reaching confluence by the use of 0.01%
Fig. 3. Effect of chronic administration of zofenopril and Enalapril on eNOS, phospho-eNOS
Aortic tissues were harvested fromNOD III, NOD groups I and II of zofenopril (IZf and IIZf resp
representative western blotting from three independent experiments. (B) Densitometric an
blotting from three independent experiments. (D) Densitometric analysis of phospho-eNOS
trypsin–EDTA. The cells were used between passages 5 and 6. BAEC
were grown until they reached 90% confluence and then were serum
starved overnight. Then cells were incubated for 3 h with medium
containing 11.5 mM D-glucose (normal glucose) or 25 mM D-glucose
(high glucose) (Kimura et al., 2001). After 3 h pre-treatment with
glucose, BAEC were incubated with zofenoprilat or enalaprilat (water
soluble salts of zofenopril and enalapril respectively) at concentration
of 0.3, 1, 10 and 60 µM or vehicle for other 3 h. Immediately thereafter
cells were stimulated for 30 min with calcium ionophore A23187
(10 µmol/l) (Bucci et al., 2004). Cells were then separated from the
and Cav-1 expression in NOD mice subjected to different regimens of administration.
ectively), and NOD groups I and II of Enalapril (IEn and IIEn respectively). (A) The figure is
alysis of caveolin-1 blots. ⁎pb0.05 vs. NOD III. (C) The figure is representative western
/eNOS ratio.



Fig. 4. (A) Effect of chronic treatment with zofenopril and enalapril of NOD groups I (IEn
and IZf), compared to NOD mice, on the onset of diabetic conditions. Numbers above the
bars represent time inweeks, necessary to get NODgroup III glycosuria levels. To assess the
diabetic condition of NOD animals, glycosuria was evaluated weekly to select the animals.
Briefly, groups of 3micewere placed inmetabolic cages able to selectively collect urine, for
at least 4 h.Data are express asmean±S.E.Meachgroupn=5, ⁎pb0.05 vs. unNOD. (B) Effect
of chronic treatment with zofenopril and enalapril of NOD groups I and II (IZf, IIZf and IEn)
on polyuria. The treatments with Zf inhibited the amount of urine produced over 30%. To
evaluate the amount of urine produced groups of 3 mice were placed in metabolic cages
able to selectively collect urine for 4 h. Theurine volumewasmeasuredby using graduated
tubes. The control value of urine production is 278±16.7 µl/mouse.
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supernatant and utilised for western blot analysis while the medium
was used for nitrite/nitrate (NOx) determination.

2.6. NOx determination

Cellular supernatant and a standard curve of sodium nitrate were
incubated in a microplate with cadmium (50 mg/well) for 1 h to convert
Fig. 5. Effect of enalapril (A) and zofenopril (B) on eNOS and caveolin expression in BAEC ex
zofenoprilat or enalaprilat (water soluble salts of zofenopril and enalapril respectively) at co
were stimulated for 30 min with calcium ionophore A23187 (10 µmol/l). Cells were then se
representative of three separated experiments each. Relative densitometric analysis values
NO3
− to NO2

− (Thomsen et al., 1990). After centrifugation at 14,000 rpm for
15 min, total nitrite (NOx) content was determined fluorometrically in
microtiter plates using a standard curve of sodium nitrite (Misko et al.,
1993). NOx content was calculated by using the internal standard curve.

2.7. Western blotting

Aortic tissue samples or BAEC were homogenised in lysis buffer
(β-glycerophosphate 0.5 M, sodium orthovanadate 10 mM, MgCl2
20mM,EGTA10mM,DTT100mMandprotease inhibitors) using aTalon
homogenizer, andwere processed identically. Protein concentrationwas
determined using Bradford assay (Bio-Rad Laboratories, Segrate, MI).
Proteins (30 μg) were subjected to electrophoresis on an SDS 10% poly-
acrylamide gel and electrophoretically transferred onto a nitrocellulose
transfer membrane (Protran, Schleicher & Schuell, Germany). The im-
munoblotswere developedwith 1:1000 dilutions for eNOS, p-eNOS and
caveolin-1, and the signalwasdetectedwith the ECL Systemaccording to
the manufacturer's instructions (Amersham Pharmacia Biotech).

2.8. Statistical analysis

All data were expressed as mean±SEM. Statistical analysis was
performed by using 2-way or 1-way ANOVA followed by a multiple
comparison test where appropriate. Differences were considered
statistically significant when P value was less than 0.05.

2.9. Reagents

L-phenylephrine (PE), serotonin (5-HT), and isoproterenol (Isop)
were purchased from Sigma Chemical Co. (Milano-Italy). All salts used
posed to high glucose. After 3 h pre-treatment with glucose, BAEC were incubated with
ncentration of 0.3, 1, 10 and 60 µM or vehicle for other 3 h. Immediately thereafter cells
parated from the supernatant and utilised for western blot analysis. Western blots are
are mean±S.E.M. ⁎pb0.05 vs. normal glucose, #pb0.05 vs. high glucose.



Fig. 6. Effect of zofenopril (B) and enalapril (A) on NOx production in BAEC exposed to high glucose. Cellular supernatant and a standard curve of sodium nitrate were incubated in a
microplate with cadmium (50 mg/well) for 1 h to convert NO3

− to NO2
−. After centrifugation, total nitrite (NOx) content was determined fluorometrically in microtiter plates using a

standard curve of sodium nitrite. NOx content was calculated by using the internal standard curve. Data are presented as mean±S.E.M, n=3, ⁎⁎ pb0.01; ⁎pb0.05 vs. high glucose.
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for Krebs solution preparation were purchased from Carlo Erba
Reagenti (Milan, Italy). Anti-caveolin-1 IgG were was purchased from
Santa Cruz Biotechnology Inc (Santa Cruz, California, USA). Anti-eNOS
and anti p-eNOSwere purchased fromCalbiochem (EMDChemicals, NJ
USA). All salts used for western blot analysis were purchased from ICN
Biochemical (Eschwege, Germany). Zofenopril, enalapril and their
respective sodium salts zofenoprilat and enalaprilat were provided by
Menarini Ricerche.

3. Results

3.1. Zofenopril and enalapril treatments restore PE-induced contraction
but not Isop-induced vasodilatation in I, II and III groups

Aortic rings isolated fromNODmice, display an impaired PE-induced
contraction (an α1 adrenergic agonist) closely related to the disease
progression (Bucci et al., 2004); indeed PE-induced contraction is
abolished in NOD III mice (Fig. 1A). At the same time Isop-induced
vasorelaxation (a β2 adrenergic agonist) results strongly curtailed in
NOD III mice (Fig. 1B). Chronic administration of both enalalpril and
zofenopril in group I completely restored PE-induced vasoconstriction
(Fig. 2A). In groups II (Fig. 2B) and III (Fig. 2C) instead, the treatments
with these ACE-inhibitors only partially restored PE-induced vasocon-
striction. Conversely, chronic administration of both enalapril and
zofenopril did not influence Isop-induced vasodilatation in group III
(Fig. 2D) aswell as in groups I and II (data not shown). This experimental
evidence suggests that both enalapril and zofenopril exert their
beneficial effect on α1 contracting tone when they are administrated
during the onset of the diabetic condition. Such action become less
marked, but still significant, if the treatment starts when the diabetes is
already established.

3.2. Zofenopril treatment reduces caveolin-1 expression in group I

Our group has recently shown that the impaired production of
endothelial-derived nitric oxide is not to be ascribed solely to a reduction
of eNOS expression but to an increased expression of caveolin-1, a protein
that negatively regulates eNOS activity (Fig. 3, Bucci et al., 2004).
Zofenopril preventive treatment in group I restored the expression of
caveolin-1 to physiological levels (Fig. 3B). Conversely, when zofenopril
was administrated to group II and group III it did not affect caveolin-1
expression, suggesting that once the diabetic condition is in advanced
state there is no therapeutic effect. In particular it should be noted that
enalapril did not affect caveolin-1 expression (Fig. 3B). In order to evaluate
if ACE-inhibitors treatment could influence eNOS activation at post-
translational level, awestern blot analysis on aortic tissues harvested from
NOD group III mice treated with zofenopril, enalapril or vehicle for
phospho-eNOS was performed. As shown in Fig. 3C both zofenopril and
enalapril, in preventive regimen, increased eNOS phosphorylation
compared to vehicle, the latter data are evaluated as densitometric ratio
of phospho-eNOS/eNOS (Fig. 3D). This result is in line with the widely
accepted concept that ACE inhibitors, beyond their classical action on
renin–angiotensin system, exert a protective action on cardiovascular
system improving endothelial function.

3.3. Zofenopril but not enalapril treatment delays the onset of diabetic
conditions in group I

As we have recently demonstrated in NOD mice, measurement of
glycosuria becomes predictive of diabetic pathology when the animals
are 13–16 weeks of age. Progressive development of diabetic condition
leads to an increase of the value of glycosuria in the range of NOD III in
about 20–23 weeks of age (Bucci et al., 2004). Thus, animals reach NOD
III conditionwithin 20–22weeks age.Micebelonging to group I received
either Zf or En in a preventive fashion, e.g. when they still have normal
glycaemia. When Zf was administrated to group I it significantly
prolonged this period of time to 30 weeks of age (Fig. 4A). On the
otherhand if zofenoprilwas administrated to group II andgroup III,mice
that already developed high or severe glycosuria respectively, there
were no changes in diabetic outcome (data not shown). Enalapril
treatment, instead did not have any effect on this parameter.

3.4. Zofenopril but not enalapril treatment ameliorates polyuria in
groups I and II

A typical symptom of hyperglycaemic condition is represented by a
significant polyuria. Daily treatment with Zf of group I and group II
significantly reduced the polyuria (Fig. 4B). Zf did not have any effect
on group III while En was inactive in the therapeutic and preventive
protocols.

3.5. Zofenopril and enalapril reduce caveolin-1 expression and increase
NOx production in BAEC with high glucose

Next, in order to investigate onmolecular target for zofenopril and/
or enalapril, we assessed if there was a modulation of eNOS post-
translational activation. To address this specific issuewe used BAEC. In
basal conditions BAEC produce an amount of NO, measurable as total
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nitrite, of about 2 nmol/l. When cells are stimulated with calcium
ionophore, NO production increases up to 13 nmol/l (Bucci et al.,
2004). In high glucose medium, BAEC produce the same amount of
nitrite in basal conditions but, when cells are stimulated with calcium
ionophore, a significant reduction of nitrite production occurs. Thus,
high glucose environment negatively modulates eNOS activity (Bucci
et al., 2004). Likewise to what happens in vivo, also in vitro the
reduction of NO production is not to be ascribed to an inhibition of
eNOS expression but to an increased expression of caveolin-1 (Bucci
et al., 2004). When BAEC were treated in vitro with a concentration
range mimicking, as much closer was possible, the plasma levels of
zofenopril or enalapril generated by the chronic in vivo administra-
tion, both drugs inhibited caveolin-1 expression (Fig. 5A–B). However,
zofenoprilat (sodium salt of zofenopril) exhibited this effect at a
concentration 200 fold lower than enalalprilat (sodium salt of
enalapril) that resulted active only at higher dose tested i.e. 60 µM.
Similarly, both zofenoprilat and enalaprilat increased significantly
NOx production (Fig. 6), also in this case zofenoprilat exerted its effect
at a concentration much lower than enalaprilat suggesting a more
potent and specific action.

4. Discussion

The notion that ACE-inhibitors therapy is one of the most effective
in managing arterial hypertension is widely accepted. Indeed, it is
known that ACE-inhibitor treatment slows the progression of renal
disease (Lewis et al., 1993; Ravid et al., 1998; Kventy et al., 2001), and
reduces cardiac failure in individuals with diabetes (Yusuf et al., 2000;
Niskanen et al., 2001). However, the beneficial effect on vascular
structure and activity remains to be elucidated. In our study we have
utilised NOD mouse strain that spontaneously develops autoimmune
type I diabetes with remarkable analogy to human IDDM (Makino
et al.,1980; Kikutani andMakino,1992) in order to evaluate the impact
of two ACE-inhibitor therapy, zofenopril and enalapril, on vascular
reactivity. In addition we monitored two different clinical parameters
characteristics of diabetic conditions e.g. polyuria and glycosuria, that
are also a feature of NOD mice. Aortas harvested from NOD mice
display a progressive loss of α1 adrenergic-induced contraction,
coupled to a reduced expression of α1 adrenergic receptor, that is
closely related to the disease gravity (Bucci et al., 2004). When mice
were treated before the development of the disease (e.g. group I) with
either zofenopril or enalapril vessel contractility to phenylephrinewas
restored. This effect was not linked to a rescue of α1 adrenergic
receptor expression by zofenopril and enalapril treatments since there
was no significant difference in its expressionwhen compared to tissue
harvested from NOD III mice. In other words the recovery of the
responsiveness to PEwas not linked to a rescue effect on the deletion of
the adrenergic receptor. Since an increase in caveolin 1 expression
impairs the adrenergic response (Je et al., 2004) and Cav-1 is also
involved in eNOS regulation (Sessa, 2005) we have investigated on
Cav-1 involvement. Interestingly, evaluation of Cav-1 expression on
aorta harvested frommice treated preventively with zofenopril clearly
showed that there was a decrease in Cav-1 expression that is a key
event for PE-dependent contractions (Je et al., 2004). On the other
hand, enalapril did not display the same effect suggesting that the
mechanism underlying the effect on the adrenergic receptor was only
one of the factor involved. As stated above Cav-1 is also a key regulator
for eNOS activation. Since the endothelial dysfunction is the major
cause of vascular impairment associated to the diabetes we used BAEC
to address this specific matter. BAECwere exposed to a high or normal
glucose environment in the presence of different concentration of
either enalapril or zofenopril. Both zofenopril and enalapril reduced
Cav-1 expression in a dose dependentmanner. NOx production, that is
impaired by the high glucose treatment, was also significantly
prevented by both enalapril and zofenopril. However, zofenopril
caused a reversion of the effect at a dose 200 fold lower than enalapril.
Thus, most likely the difference in activity between zofenopril and
enalapril found on Cav-1 expression is linked to a difference in potency
rather than mechanistic. Zofenopril is one of the most efficacious drug
among the ACE-inhibitors in ameliorating cardiovascular complica-
tions correlated to several pathologies. In particular, it has been shown
that early treatment with zofenopril improves the clinical outcome of
diabetic patients with myocardial infarction (Borghi and Ambrosioni,
2003a; Ambrosioni et al., 1995; Borghi et al., 2003b; Ambrosioni et al.,
2001). This latter data fit with ours since, also in our experimental
setting, the time frame of administration is crucial in order to reach a
consistent beneficial effect. Concerning the positive action of ACE-
inhibitor therapy on clinical signs of the diabetic pathology we
observed that prophylactic regimen with zofenopril delayed the
onset of the disease by significantly increasing the time window
needed for the disease to develop naturally. Similarly, treatment of
NOD group I with zofenopril, but not with enalapril, ameliorated
polyuria, such beneficial effects on clinical signs of IDDM may be
consequent of amelioration of vascular functionality. However, these
effects are comforted by a striking literature that ascribes to ACE
inhibitors a positive modulation on different parameters involved in
the so called “cardiovascular inflammation response”. In fact, it has
been shown that, in vitro, zofenopril inhibits the expression of ad-
hesion molecules on endothelial cells by reducing reactive oxygen
species (Cominacini et al., 2002) slowing the development of
atherosclerosis. The difference in activity found could be ascribed to
a sulfhydryl group present in zofenopril active metabolite (Subissi
et al., 1999). Indeed, it is known that zofenopril is a pro-drug and its
metabolite, namely zofenoprilat, is produced in vivo by cleavage of an
esteric bond (Frascarelli et al., 2004). Zofenoprilat is highly lipophilic,
more than any other ACE-inhibitor (Subissi et al., 1999), that ensures
effective long-lasting tissue penetration (Sun and Mendelsohn, 1991;
Evangelista et al., 2002; Evangelista and Mansini, 2005), uptake and
the extent and duration of the ACE-inhibition at cardiovascular level
(Subissi et al.,1999; Cushman et al.,1989a,b). In addition the amount of
zofenoprilat bound to circulating ACE, makes its SH-groups to extra-
cellular compartment in the vascular wall available where it can
stabilizeNO through formationof R-SNOand/or prevent its breakdown
by scavenging free radicals in the extra-cellular environment (Buikema
et al., 2000).

In conclusion ACE-inhibitor therapy may turn to be useful in pa-
tients with type 1 diabetes and also suggest that sulphydrylated
inhibitor may display a better effect as long it is administrated at
earlier stage of diabetes, as already suggested in clinical studies for
other therapeutic uses (Borghi and Ambrosioni, 2003a; Ambrosioni
et al., 1995; Borghi et al., 2003b; Ambrosioni et al., 2001).
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