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Biosynthesis of H2S is impaired in non-obese
diabetic (NOD) mice

V Brancaleone, F Roviezzo, V Vellecco, L De Gruttola, M Bucci and G Cirino

Department of Experimental Pharmacology, University of Naples, Naples, Italy

Background and purpose: Hydrogen sulphide (H2S) has been involved in cardiovascular homoeostasis but data about its role
in animal models of diabetic pathology are still lacking. Here, we have analysed H2S signalling in a genetic model of diabetes,
the non-obese diabetic (NOD) mice.
Experimental approach: NOD mice exhibit a progressive endothelial dysfunction characterized by a reduced reactivity of
blood vessels as diabetes develops. NOD mice were divided into three groups according to different glycosuria values: NOD I,
NOD II and NOD III. Age-matched non-obese resistant (NOR) mice were used as controls. H2S levels in plasma and aortic tissue
were measured. Functional studies in aorta were carried out in isolated organ baths using both an exogenous source of H2S
(NaHS) and the metabolic precursor (L-cysteine). Real time PCR and western blot analysis were also carried out on aortic
tissues.
Key results: NOD mice exhibited a progressive reduction of H2S plasma levels, which paralleled disease severity. L-cysteine-
induced H2S production by aortic tissues was also progressively reduced. L-cysteine-induced vasorelaxation was significantly
reduced in NOD mice while NaHS-induced relaxation was unaffected. ODQ (guanylate cyclase inhibitor), L-NAME (NO
synthase inhibitor) or PAG, an inhibitor of cystathionine-g-lyase (CSE) inhibited H2S production induced by L-cysteine.
Conclusions and implications: In NOD mice, endogenous H2S production is significantly impaired. Also, the ability of isolated
aorta to respond to exogenous H2S is enhanced and endothelium-derived NO appears to be involved in the enzymatic
conversion of L-cysteine into H2S.
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Introduction

Hydrogen sulphide (H2S) is a gas endogenously generated

from L-cysteine, a sulphur-containing amino acid derived

from alimentary sources or liberated from endogenous

proteins. L-cysteine can also be synthesized from L-methio-

nine through the transsulphuration pathway, with homo-

cysteine as an intermediate (Zhao et al., 2001; Chen et al.,

2004; Stipanuk, 2004). Production of H2S from L-cysteine is

catalysed by two enzymes: cystathionine-b-synthase (CBS)

and cystathionine-g-lyase (CSE). Both enzymes are pyridoxal-

50-phosphate (vitamin B6)-dependent but differ in the

specific mechanism of H2S formation (Braunstein and

Azarkh, 1950). CBS and CSE are widely distributed in

mammalian tissues and present data suggest that CBS is

predominantly expressed in the CNS, whereas CSE is mostly

present in the cardiovascular environment (Hosoki et al.,

1997; van der Molen et al., 1997; Levonen et al., 2000; Yap

et al., 2000; Meier et al., 2001; Wang, 2002; Moore et al.,

2003). However, presence of CBS has also been assessed in

endothelial cells (Wang et al., 1992).

Recent literature has supported the involvement of H2S in

cardiovascular homoeostasis (Zhong et al., 2003; Yan et al.,

2004; Bhatia, 2005; O’Sullivan, 2006; Pearson et al., 2006; Qu

et al., 2006). In particular, it has been demonstrated that H2S

(i) exhibits vasodilator activity in vitro and in vivo (Ali et al.,

2006), (ii) is pro-apoptotic on vascular smooth muscle cells

(Zhao et al., 2001; Cheng et al., 2004; Yang et al., 2004) and

(iii) is involved in leukocyte–endotheliium interactions

(Zanardo et al., 2006). All these findings, taken together with

the fact that H2S levels, as well as aortic CSE mRNA, are

reduced in spontaneously hypertensive rats, further support a

role for H2S in cardiovascular inflammation (Du et al., 2003).
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Here we have evaluated the effect of H2S on vascular tone

in a genetic model of diabetes in mice, the non-obese

diabetic (NOD) strain. NOD mice spontaneously develop

diabetes, where the autoimmune disease is directly asso-

ciated with a progressive endothelial dysfunction (Makino

et al., 1980; Bucci et al., 2004).

In particular, we have evaluated the effect of H2S on aortic

rings by using an exogenous source such as sodium

hydrosulphide hydrate (NaHS) or its physiological precursor

such as L-cysteine; this approach led us to evaluate both the

direct effect of H2S on vessels and the contribution of

endogenous pathways in regulating vascular tone.

Our results suggest that diabetes-related endothelial

dysfunction in NOD mice is associated with an impairment

of endogenous H2S production, without affecting the ability

of vascular tissue to react to exogenous sources of H2S.

Materials and methods

Animals

All animal procedures were in compliance with the European

Community guidelines for the use of experimental animals

and approved by the Committee Centro Servizi Veterinari of

the University Federico II; this work was carried out with

NOD/Ltj mice purchased from Charles River Laboratories

(Milan, Italy). All experiments were performed by using 7- to

27-week-old female mice. NOR/Ltj female mice were used as

age-matched controls. Animals were bred and housed in our

animal facility having free access to water and food.

NOD/Ltj mice

NOD mice represent a strain with an elevated susceptibility

in developing type 1 diabetes (IDDM) (Makino et al., 1980).

These mice show changes with evolution of pathology, in

particular there is an early phase characterized by a

localization of inflammatory cells, such as T cells and

activated macrophages, around pancreatic islet, inducing

peri-insulitis (4–10 weeks of age); consequently, these cells

infiltrate islets and initiate a progressive destruction of

pancreatic b cells, resulting in a drastic reduction in insulin

plasma levels (12–30 weeks of age). The progression of

diabetic pathology and its clinical outcomes in these animals

are similar to those in humans and associated with vascular

disorders. Indeed a gradual reduction of ACh-induced

relaxation was found in aortic tissues harvested from NOD

mice (Figure 1a) and this hyporeactivity correlated with a

reduced availability of circulating nitric oxide (NO) (Bucci

et al., 2004).

NOD mice were divided into three groups, as follows, by

measurement of glycosuria, and each group can be con-

sidered representative of different diabetic states (10 animals

per group). Indeed, NOD I is a mouse group in which

diabetic state is not yet present; NOD II group has glycosuria

and elevated glycaemia; NOD III group displays a severe

pathology with even higher levels of glycosuria and

glycaemia (Doi et al., 1990) (Figures 1b and c).

Glycosuria measurement

In these animals, diabetic state was assessed by using a non-

invasive approach such as measurement of glycosuria, the

increase of which is positively correlated to glycaemia.

Animals were deprived of food for 2 h to normalize glucose

plasma levels and then put in metabolic cages for 4 h, where

urine samples were collected. Glycosuria levels were mea-

sured by glucose-6-oxidase colorimetric assay (Trinder reac-

tion kit; Biogamma, Roma, Italy). According to the glucose

assays, mice were divided into three groups: NOD I,

glycosuria, 0–0.20 mg mL�1; NOD II glycosuria, 0.2–

5 mg mL�1; NOD III, glycosuria, 45 mg mL�1 (Figure 1b), to

provide different stages of pathology.

Measurement of H2S: plasma and tissues

Tissue H2S production rate was measured according to

Stipanuk and Beck (1982), with modifications. Briefly, aortas

were homogenized in a lysis buffer (potassium phosphate

buffer 100 mM pH¼7.4, sodium orthovanadate 10 mM and

proteases inhibitors). Protein concentration was determined

by using Bradford assay (Bio-Rad Laboratories, Milano, Italy).

Homogenates were added to a reaction mixture (total

volume 500 mL) containing pyridoxal-50-phosphate (2 mM,

20 mL), L-cysteine (10 mM, 20 mL) and saline (30 mL). The

reaction was performed in sealed Eppendorf tubes and

initiated by transferring tubes from ice to a water bath at

37 1C. After 40 min incubation, zinc acetate (1%, 250 mL) was

added followed by trichloroacetic acid (10%, 250 mL). Subse-

quently, N,N-dimethylphenylendiamine sulphate (20 mM,

133 mL) in 7.2 M HCl and FeCl3 (30 mM, 133 mL) in 1.2 M

HCl were added and optical absorbance of the solutions was

measured after 20 min at a wavelength of 650 nm. All

samples were assayed in duplicate and H2S concentration

was calculated against a calibration curve of NaHS (3.12–

250 mM). To determine basal release of H2S, L-cysteine was not

added to the reaction mixture. Results were expressed as

nmol per milligram of protein per minute (nmol per mg

protein per min).

Plasma determination of H2S was performed without

addition of L-cysteine. Plasma samples (100 mL) were added

to Eppendorf tubes containing zinc acetate (1 % 150 mL).

Trichloroacetic acid (10 % 300 mL) was then added. Subse-

quently, N,N-dimethylphenylendiamine sulphate (20 mM,

100 mL) in 7.2 M HCl and FeCl3 (30 mM, 133 mL) in 1.2 M

HCl were added to the reaction mixture and absorbance of

the solution was measured after 20 min at a wavelength of

650 nm. All samples were assayed in duplicate and H2S

concentration was calculated against a calibration curve of

NaHS (3.12–250 mM).

Tissue preparation

Animals were killed at different stages of pathology with

age-matched NOR mice control and aortas were excised and

plasma collected from each animal. Then tissues and plasma

were used to quantify H2S amount by using the method

described above. Furthermore, aortic tissues were also used

for functional studies in isolated organ baths filled with

oxygenated Krebs solution at 37 1C, linked to isometric force
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transducers (Fort 10, Ugo Basile, Comerio, Varese, Italy). The

composition of Krebs solution was as follows (in mM): NaCl

118, KCl 4.7, MgSO4 1.2, KH2PO4 1.2, CaCl2 2.5, NaHCO3 25

and glucose 11. Rings were stretched until a resting tension of

1.5 g was reached and allowed to equilibrate for at least 45 min

during which time tension was adjusted, as necessary, to 1.5 g

and bathing solution was periodically changed. In a pre-

liminary study, a resting tension of 1.5 g was found to develop

optimal tension to stimulation with contracting agents.

In another set of experiments, aortic tissues harvested from

NOR mice were incubated with 1H-[1,2,4]oxadiazolo[4,3-

a]quinoxalin-1-one (ODQ) (5mM), No-nitro-L-arginine methyl

ester (L-NAME) (100mM) and DL-propargylglycine (PAG)

(10 mM) for 15 min at 37 1C in six-well plates in an oxygenated

environment and then challenged with L-cysteine (3 mM) for

5 min. After incubation, tissues were snap-frozen in liquid

nitrogen and H2S content was determined.

Experimental protocol and drug treatments

In our experiments, we used 5-HT as vasoconstrictor agent, as

its action is unaffected in NOD mice (Bucci et al., 2004). In

each set of experiments, rings were first challenged with 5-HT

(1mM) until the responses were reproducible. To verify

endothelium integrity, an ACh cumulative concentration–

response curve (10nM–30mM) was performed on 5-HT-precon-

tracted rings. In this study, we used both NaHS and L-cysteine

as source of H2S, a direct H2S donor and the physiological

metabolic precursor, respectively. In particular, H2S release

from L-cysteine is correlated to enzymatic activity of both CBS

and CSE. NaHS and L-cysteine cumulative concentration–

response curves were performed on 5-HT-precontracted rings

harvested from NOR and NOD I, II and III mice.

A preliminary study on the optimal incubation time of the

drug treatments and concentration was carried out (data not

shown). L-NAME (100 mM) and ODQ (5mM) were added to the

organ baths containing 5-HT-precontracted rings. After

15 min of incubation, cumulative concentration–response

curves to NaHS and L-cysteine were performed.

Western blots

Aortic tissue or BAEC was homogenized in modified RIPA

buffer (Tris-HCl 50 mM, pH 7.4, Triton 1%, Na-deoxycholate

0.25%, NaCl 150 mM, EDTA 1 mM, phenylmethanesulpho-

nylfluoride 1 mM, aprotinin 10 mg mL�1, leupeptin 20 mM,

NaF 50 mM) using a Polytron homogenizer (two cycles of 10 s

at maximum speed). After centrifugation of homogenates at

6500 g for 10 min, 10, 30 mg of the denatured proteins were

separated on 10% sodium dodecyl sulphate polyacrylamide

gels and transferred to a polyvinylidene fluoride membrane.

Membranes were blocked by incubation in phosphate-

buffered saline containing 0.1% v/v Tween 20 and 5% non-

fat dry milk for 2 h, followed by overnight incubation at 4 1C

with mouse polyclonal CBS (Abnova Novus Biologicals,

Littleton, CO, USA) antibody (1:500) or mouse monoclonal

CSE (Abnova Novus Biologicals) antibody (1:500). The filters

were washed extensively in phosphate-buffered saline con-

taining 0.1% v/v Tween 20, before incubation for 2 h with

anti-horseradish-peroxidase-conjugated secondary antibody.

Membranes were then washed and developed using En-

hanced Chemiluminescence Substrate (ECL; Amersham

Pharmacia Biotech, San Diego, CA, USA).

Quantitative real-time PCR

Quantization of the expression level of selected genes was

performed by quantitative real-time PCR. Total RNA was

isolated with TRIzol reagent (Invitrogen, Carlsbad, CA, USA)

from mouse aortic rings. One microgram RNA was incubated

with DNaseI (Invitrogen) for 15 min at room temperature

followed by 95 1C for 5 min in the presence of 2.5 mM EDTA.

The RNA was reverse-transcribed with Superscript III (Invi-

trogen) with random primers in a volume of 20 mL. For real-

time PCR, 10 ng template was used in a 25 mL reaction

containing 0.3 mM each primer and 12.5 mL of 2� DyNAmo

SYBR Green qPCR Kits (Finnzymes, Espoo, Finland).

All reactions were performed in triplicate using the

following cycling conditions: 10 min at 95 1C, followed by

50 cycles of 95 1C for 10 s, 60 1C for 20 s and 72 1C for 20 s,

using an iCycler iQ instrument (Biorad, Hercules, CA, USA).

The mean value of the replicates for each sample was

calculated and expressed as cycle threshold (CT: cycle

number at which each PCR reaches a predetermined

fluorescence threshold, set within the linear range of all

reactions). The amount of gene expression was then

calculated as the difference (DCT) between the CT value of

the sample for the target gene and the mean CT value of that
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Figure 1 (a) ACh-induced vasorelaxation was progressively reduced in NOD mice (**Po0.01 vs NOD I; ***Po0.001 vs NOD I;
two-way ANOVA). (b) Glycosuria was progressively increased in NOD mice. (c) Increase in blood glucose levels was related to glycosuria
(glycosuria: NOD I: 0 mg mL�1; NOD II: B0.8 mg mL�1; NOD III: B8 mg mL�1; blood glucose: NOD I: B0.9 mg mL�1; NOD II:
B2.5 mg mL�1; NOD III: B5 mg mL�1) (**Po0.01 vs NOD I; ***Po0.001 vs NOD I; ##Po0.01 vs NOD II; one-way ANOVA). Discontinuous
line indicates physiological value of blood glucose. NOD, non-obese diabetic.

Biosynthesis of H2S is impaired in NOD mice
V Brancaleone et al 675

British Journal of Pharmacology (2008) 155 673–680



sample for the endogenous control (GAPDH). Relative

expression was calculated as the difference (DDCT) between

the DCT values of the test and control samples for each target

gene. The relative level of expression was measured as

2�DDCT . All PCR primers were designed using the software

PRIMER3-OUTPUT using published sequence data obtained

from the NCBI database.

Mouse primers were as follows: CBS, (FWD)

agaagtgccctggctgtaaa and (REV) caggactgtcgggatgaagt; CSE,

(FWD) tgctgccaccattacgatta and (REV) gatgccaccctcctgaagta;

GAPDH, (FWD) ctgagtatgtcgtggagtctac and (REV)

gttggtggtgcaggatgcattg.

Statistical analysis

All data were expressed as mean±s.e.mean. Statistical

analysis was performed by using one-way ANOVA and

Dunnet as post-test, or two-way ANOVA and Bonferroni as

post-test. Differences were considered statistically significant

when P-value was less than 0.05.

Drugs

ACh, 5-HT, L-NAME, ODQ, pyridoxal-50-phosphate hydrate,

iron chloride (III) (FeCl3), N,N-dimethylphenylendiamine

sulphate, zinc acetate and PAG were purchased from Sigma

Chemical Co. (Milano, Italy). Trichloroacetic acid was

purchased from Carlo Erba Reagents (Milano, Italy). NaHS

and L-cysteine hydrochloride were purchased from Aldrich

(Milano, Italy). Kit for enzymatic measurement of glucose

levels (Trinder reaction kit) was purchased from BioGamma.

Results

Impairment of H2S production in NOD mice

Plasma concentrations of H2S were between 50 and 65 mM in

NOR mice. NOD mice exhibited a progressive reduction in

H2S plasma levels, which paralleled the pathology develop-

ment; in particular in NOD III mice, where the pathology is

well established, there was a 50% reduction in H2S levels

(Figure 2a; **Po0.01 vs NOR; n¼6).

To assess if impaired H2S production was reflected by an

analogous dysfunction at vascular level, we evaluated the

production of H2S in aortic tissues harvested from NOR or

NOD mice. Our results showed that H2S basal production

was not affected in NOD mice (data not shown), whereas the

ability to convert L-cysteine into H2S was significantly

impaired in aortic tissues harvested from NOD II mice and

even more so in NOD III mice (Figure 2b; *Po0.05; **Po0.01

vs NOR; n¼6).

Disease progression significantly affects L-cysteine-induced

relaxation in NOD mice

NaHS (1mM–3 mM) induced a concentration-dependent

vasorelaxation on 5-HT precontracted aortic rings harvested

from NOR mice that was not affected by L-NAME (100 mM)

pretreatment (Figure 3a). The relaxant response induced by

NaHS in aortic rings from NOD I and NOD II mice was not

significantly different from NOR mice (Figure 3c). Conver-

sely, in NOD III mice, in which the pathology is well

established and the endothelium is severely damaged, NaHS-

induced vasorelaxation was significantly increased

(Figure 3c; Po0.01 vs NOR; n¼6).

Administration of L-cysteine (1 mM–3 mM) induced a

relaxant effect on NOR mice aortic tissues, which was

significantly inhibited by L-NAME (Figure 3b; ***Po0.001

vs vehicle; n¼6). Disease progression leads to a significant

decrease in L-cysteine-induced vasodilatation of aortic rings

harvested from NOD II or NOD III mice (Figure 3d; **Po0.01

and ***Po0.001 vs NOR respectively; n¼6). Endothelial

removal did not affect vasorelaxation induced by either

NaHS or L-cysteine (data not shown).

NO/cGMP signalling is involved in L-cysteine-induced

vasorelaxation

As we found that L-cysteine elicited an L-NAME-sensitive

vasorelaxation and that its vasorelaxant effect was signi-

ficantly reduced in NOD mice, we investigated the

involvement of NO/cGMP pathway in the relaxant effects

of L-cysteine by using ODQ, an NO-sensitive GC inhibitor.

Incubation of NOR aortic rings with ODQ (5 mM, 10 min,

n¼6) inhibited L-cysteine-induced relaxation (Figure 4a;

***Po0.001 vs vehicle; n¼6).

A similar pattern of inhibition was obtained in NOD mice

aortas. In particular, in NOD III mice, the already impaired
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Figure 2 (a) Plasma levels of H2S gradually decrease in NOD mice
(**Po0.01 vs NOR; one-way ANOVA). (b) L-cysteine-stimulated H2S
production in aortic tissues was significantly reduced in NOD II or NOD
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values were unchanged (data not shown). NOD, non-obese diabetic.
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L-cysteine-induced vasorelaxation was abolished by pretreat-

ment with ODQ (Figure 4d; ***Po0.001 vs vehicle; n¼6).

Conversely, the GC inhibitor did not affect NaHS-induced

vasorelaxation in either NOR or NOD III mice (Figures 4a

and c).

ODQ and L-NAME affect L-cysteine-derived H2S production

The inhibitory effect of ODQ on L-cysteine-induced vaso-

relaxation suggested an involvement of the NO/cGMP

pathway in H2S signalling; to assess if this inhibitory effect

was ascribed to the ability of ODQ to interfere with H2S

release, aortic tissues harvested from NOR mice were

incubated with L-cysteine in the presence of ODQ (5 mM,

15 min, n¼3), and H2S production was measured; in another

set of experiments, aortic tissues were pretreated with

L-NAME or the CSE inhibitor, PAG (10 mM, 15 min).

Data obtained showed that incubation with ODQ or

L-NAME reduced L-cysteine-induced H2S release in aortic

tissues, as well as that with PAG (Figure 5; *Po0.05 vs

L-cysteine), whereas they did not affect H2S basal release

(data not shown).

CBS and CSE expression is increased in NOD mice

Western blot and real-time PCR analysis was performed to

evaluate if low levels of H2S in NOD mice correlated with a

reduced expression of CBS or CSE. Despite the reduced

circulating and tissue H2S levels measured in NOD mice,

both western blot (Figure 6a) and quantitative real-time PCR

(Figure 6b) showed a significant upregulation of either CBS

and CSE in vessels harvested from NOD II and NOD III mice.

This finding could be ascribed to a compensatory response to

restore physiological H2S production.

Discussion

NOD mice gradually develop a type 1 diabetes (Makino et al.,

1980) that is characterized by a progressive endothelial

dysfunction leading to an impaired response of vascular

tissues in vitro (Bucci et al., 2004). Here we have addressed the

involvement of the H2S pathway in vascular dysfunction in

NOD mice. When we measured H2S plasma levels, we found

values around 50 mM in NOR mice, whereas NOD mice

exhibited a progressive reduction of H2S plasma levels that

paralleled the disease severity, reaching 50% reduction in

NOD III mice. To determine if the reduced plasma levels

reflected a similar impairment in the vessels, we determined

the amount of H2S produced by homogenates of aortic

tissues harvested from NOR, NOD I, NOD II or NOD III mice;

the assay was performed both in the absence (basal) and in

the presence (stimulated) of the substrate L-cysteine.

Although the basal release of H2S was unchanged, the

stimulated production was progressively reduced, paralleling

the disease progression.

Taken together, the biochemical data suggest that in this

experimental model, there is a gradual impairment of

H2S production. The functional studies showed that in

NOD mice, the response to exogenous H2S (as NaHS) was

not altered whereas the response to L-cysteine was impaired.

Indeed, responses of NOD mice to NaHS were not signifi-

cantly different from those of NOR (background) mice, with

the only exception of NOD III mice where they were

potentiated. Conversely, L-cysteine-induced vasodilatation

was significantly impaired in all three NOD groups, parallel-

ing the disease progression. As NOD mice exhibited a specific

impairment in NO-mediated vasorelaxation (Bucci et al.,

2004), we assessed the involvement of the endothelium-

derived NO in L-cysteine-induced vasorelaxation. Functional

studies showed that in physiological conditions (NOR mice),

L-NAME pretreatment significantly reduced L-cysteine-

induced vasorelaxation, whereas NaHS-induced vasodilata-

tion was unaffected. A similar pattern was observed in NOD I

mice that have normal glycosuria/glycaemia. Thus, the

endothelial-derived NO pathway seems to be involved in
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Figure 5 (a) Addition of exogenous L-cysteine (3mM) to aortic
tissues increased production of H2S by 40% (139±10 nmol per mg
tissue), an effect that is lost when aortic tissues were pretreated with
ODQ (5mM) or L-NAME (100mM). PAG (10 mM), an inhibitor of CSE,
was used as positive control (*Po0.05 vs L-cysteine; one-way ANOVA,
n¼3). In (b), the data from (a) are expressed as % inhibition of
L-cysteine-derived H2S production. The inhibitors used were without
effect on basal H2S release (data not shown). CSE, cystathionine-
g-lyase; L-NAME, No-nitro-L-arginine methyl ester; ODQ, 1H-[1,2,4]
oxadiazolo[4,3-a]quinoxalin-1-one; PAG, DL-propargylglycine.
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L-cysteine-induced vasorelaxation, as also confirmed by

experiments performed with ODQ.

It has been shown that H2S-induced vasorelaxation is not

affected by endothelium removal, suggesting that endothe-

lium is not involved in the H2S effect at vascular level

(Hosoki et al., 1997; Zhao et al., 2001; Wang, 2002). This

finding is apparently in contrast with our data. However, it

has to be said that mechanical removal of endothelium only

partially mimics the pathological condition known as

endothelial dysfunction. Indeed, the alteration of endo-

thelium functionality, in the majority of the cases, is a

gradual and progressive process and cannot be simply and

directly related to a mechanical and a nonspecific disruption

of whole endothelium. Therefore, it is feasible that modula-

tion of GC, in turn, could modulate L-cysteine-induced

response (endogenous H2S response; that is, involving

conversion of the substrate) without affecting NaHS-induced

vasodilatation (exogenous H2S response). To test this

hypothesis, we compared the vasodilatory response elicited

by either NaHS or L-cysteine following pharmacological

modulation with ODQ, an inhibitor of soluble GC. This

comparison was performed by using tissues harvested from

either NOR (normal) or NOD III mice (severe diabetes). As

expected, incubation with ODQ did not affect NaHS-induced

vasorelaxation in either NOR or NOD III mice, whereas it did

cause a marked inhibition of L-cysteine-induced vasorelaxa-

tion. In particular, L-cysteine-induced vasorelaxation was

significantly inhibited in rings harvested from NOR mice

and abolished in tissues harvested from NOD III mice, where

the L-cysteine response was already impaired. These findings,

together with the previous data, imply that, in NOD mice,

endogenous L-cysteine-induced vasorelaxation (endogenous

H2S) could be modulated by the NO pathway through GC

activation.

Different levels of interaction have been shown for NO

and H2S pathways. Thus, NO may directly act on CSE protein

to increase its activity (Zhao et al., 2003). Also, NO may

increase the activity of cGMP-dependent protein kinase,

which in turn stimulates CSE, and NO can upregulate the

expression of CSE, promoting cell uptake of cysteine, the

substrate for CSE (Zhang and Hogg, 2005; Sheng and

Wharton, 2006).

To assess if both L-NAME and ODQ inhibited L-cysteine-

induced vasorelaxation by reducing L-cysteine-derived H2S

production, we measured H2S in aortic tissues harvested

from NOR mice. Our results showed that ODQ,

L-NAME or the CSE inhibitor PAG, significantly affected

the ability of vascular tissue to metabolize L-cysteine in H2S.

In conclusion, our results showed that endogenous H2S

production is significantly impaired in hyperglycaemic

conditions in NOD mice, although the ability of vascular

tissue to respond to exogenous H2S was not altered.

Furthermore, we suggest that endothelium-derived NO has

an active role in modulating activity of the L-cysteine/H2S
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Figure 6 (a) Western blots show a significant increase in both CBS and CSE expression in NOD mice (*Po0.05 vs NOR; **Po0.01 vs NOR;
##Po0.01 vs NOD I; one-way ANOVA). Similarly, in (b), qRT-PCR confirmed the progressively increased expression of mRNA for CBS and CSE
(**Po0.01 vs NOR; ***Po0.001 vs NOR; #Po0.05 vs NOD I; ###Po0.001 vs NOD I; one-way ANOVA). CBS, cystathionine-b-synthase; CSE,
cystathionine-g-lyase; NOD, non-obese diabetic; qRT-PCR, quantitative real-time PCR.
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pathway and that the reduced vasorelaxant effect of

L-cysteine may originate in a reduced ability of vascular

tissue to convert L-cysteine to H2S.
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