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Kidney disease is worldwide the 12th leading cause of death affecting 8–16% of the entire

population. Kidney disease encompasses acute (short-lasting episode) and chronic

(developing over years) pathologies both leading to renal failure. Since specific treatments

for acute or chronic kidney disease are limited, more than 2 million people a year

require dialysis or kidney transplantation. Several recent evidences identified lysosomal

proteases cathepsins as key players in kidney pathophysiology. Cathepsins, originally

found in the lysosomes, exert important functions also in the cytosol and nucleus of cells

as well as in the extracellular space, thus participating in a wide range of physiological

and pathological processes. Based on their catalytic active site residue, the 15 human

cathepsins identified up to now are classified in three different families: serine (cathepsins

A and G), aspartate (cathepsins D and E), or cysteine (cathepsins B, C, F, H, K, L,

O, S, V, X, and W) proteases. Specifically in the kidney, cathepsins B, D, L and S

have been shown to regulate extracellular matrix homeostasis, autophagy, apoptosis,

glomerular permeability, endothelial function, and inflammation. Dysregulation of their

expression/activity has been associated to the onset and progression of kidney disease.

This review summarizes most of the recent findings that highlight the critical role of

cathepsins in kidney disease development and progression. A better understanding of

the signaling pathways governed by cathepsins in kidney physiopathology may yield

novel selective biomarkers or therapeutic targets for developing specific treatments

against kidney disease.

Keywords: cathepsins, acute kidney injury, chronic kidney disease, lysosomal proteases, signaling pathways

INTRODUCTION

Kidneys are complex organs whose excretory, biosynthetic and metabolic activities are essential for
healthy living. They regulate body fluid balance, blood pressure, waste removal, and red blood cells
production (Preuss, 1993; Adamson, 1996). Kidney functions take place through mechanisms of
filtration, reabsorption and secretion occurring in the nephrons, the basic structural and functional
units of the kidney (Figure 1). Nephron components filter the blood free of cells and large proteins,
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FIGURE 1 | Nephron segments and their main physiological function. The nephron is the functional unit of the kidney and is composed by the renal corpuscle and the

renal tubule. In the renal corpuscle, the glomerular filtrate is generated by filtration of water, ions, and small molecules from the bloodstream. The glomerular filtrate is

transformed into urine by reabsorption and secretion of different molecules through the different sections of the renal tubule (proximal convoluted tubule, loop of

Henle, and distal convoluted tubule) and the collecting duct system. Kidney and nephron image adapted from Smart Servier Medical Art under Creative Commons

Attribution 3.0 Unported License.

producing an ultrafiltrate composed of the other smaller
circulating elements. The ultrafiltrate enters tubule segments to
produce the final urine by removing (reabsorption) or adding
(secretion) substances from or to the tubular fluid (Gueutin et al.,
2012; Mount, 2014). Indeed, by adapting the quality composition
of urine to the needs of the body, kidneys keep the organism
in balance of water, hydrogen ion concentration, electrolytes,
and minerals, and eliminate the toxic substances produced in
the body. Deregulation of kidney functions may lead to severe
pathological conditions affecting different tissues and organs.

Kidney diseases are worldwide the 12th leading cause of
death and the 17th cause for loss of healthy life years (Glassock
et al., 2017). They are classified into two major groups of
pathologies depending on the length of the disease encompassing
acute kidney injury (AKI), which is an abrupt reduction of
kidney functions within 48 hours (Mehta et al., 2007; Rewa
and Bagshaw, 2014), and chronic kidney disease (CKD) that
is a gradual loss of renal function over years (Jha et al.,
2013; Hill et al., 2016). AKI is associated with an high
mortality rate (30–70%) and can have long-term consequences
predisposing to CKD development (Coca et al., 2009). Due
to the lack of adequate specific treatments, many patients
(>2 millions worldwide) progress from CKD to end-stage

renal disease and organ failure, requiring dialysis, or kidney
transplantation (Hu and Coresh, 2017). Management of AKI
and CKD represents a massive burden for the health care
systems (Kerr et al., 2014), and CKD is on the rise due to
the aging of the population and the clinical complications
associated with diabetes and hypertension (Jobs et al., 2011;
Tonelli and Riella, 2014). Therefore, there is an urgent need to
increase our understanding on kidney disease pathogenesis to
find new selective biomarkers or therapeutic candidates for drug
development.

In this scenario, emerging evidence demonstrate the
important role for lysosomal proteases cathepsins (Cts) in the
onset and progression of kidney disease (Svara et al., 2010;
Moallem et al., 2011; Ozkayar et al., 2015; Cocchiaro et al., 2016;
Fox et al., 2016; Yamamoto-Nonaka et al., 2016; Conley et al.,
2017). Lysosomes are ubiquitous organelles responsible for the
catabolism and recycling of different types of macromolecules
and constitute the major degradative compartment of the cell
(Cuervo and Dice, 1998). They are involved in the renal epithelial
molecular machinery underlying kidney physiology (Surendran
et al., 2014). Two classes of proteins mediate lysosomal activity:
integral lysosomal membrane proteins and soluble lysosomal
hydrolases.
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Among hydrolases, Cts are implicated in multiple cellular
processes ranging from the processing of proteins and hormones
to the regulation of cell cycle, autophagy, cell death, and immune
response (Ciechanover, 2012). Altered expression and/or activity
of Cts have been associated with a variety of human diseases
(Reiser et al., 2010; Pišlar and Kos, 2014; Stoka et al., 2016).
Since a growing number of studies deals with the involvement
of Cts in kidney physiopathology, this review aims to highlight
the most recent advances in our understanding of the molecular
mechanisms by which lysosomal Cts promote kidney disease.

PROTEASES CATHEPSINS

To datemore than 20 types of Cts have been identified in animals,
plants, and microorganisms. In humans, 15 types of Cts have
been reported, which can be classified into 3 distinct groups based
on the amino acid that comprises the active site residue: serine
(Cts A and G), cysteine (Cts B, C, H, F, L, K, O, S, V, X, W), and
aspartate proteases (Cts D and E) (Table 1).

Mainly localized in the lysosomes where their activity is
facilitated by the lysosomal acidic environment, under certain
circumstances, Cts can also be found in the intracellular and
extracellular spaces (Stoka et al., 2001, 2005, 2016; Jordans
et al., 2009). Indeed, leakage of CtD from the lysosome into
the cytosol induces apoptosis (Liaudet-Coopman et al., 2006).
In addition, Cts B, D, G, K, L, S, and X participate in the
degradation of the major extracellular matrix components in
various pathophysiological processes (Brix et al., 2008).

Almost all types of Cts share a common synthetic pathway
(Ishidoh and Kominami, 2002). They are synthesized as inactive
preproenzyme, and following translocation into the endoplasmic
reticulum (ER), the N-terminal signal peptide of the precursor
protein is cleaved with simultaneous N-linked glycosylation of
the proenzyme (zymogen) (Erickson, 1989; Wiederanders et al.,
2003). The propeptide is transported to the Golgi apparatus
where it is further glycosylated and phosphorylated to form
a mannose-6-phosphate protein that is recognized by the
mannose-6-phosphate receptor and carried toward the lysosome
where it is hydrolyzed to the active form. This general mechanism
of Ct biosynthesis and transport may vary in some cases. The
proteolytic cleavage of the zymogen may occur either through
an autocatalytic process which is facilitated by the binding of the
zymogen to glycosaminoglycans (GAGs) or through the action
of other proteases (Dahl et al., 2001; Vasiljeva et al., 2005; Caglic
et al., 2007).

Although Cts show similarities in their cellular localization
and biosynthesis, they are expressed at different levels in tissues
and organs (Table 1). While some Cts such as B, H, L, C, and
O are ubiquitously expressed, other Cts such as F, K, S, V, X,
and W show a more limited cell and tissue distribution and
expression. The differences in tissue localization and expression
levels suggest specific cellular functions for different Cts (Brix
et al., 2008; Reiser et al., 2010; Stoka et al., 2016). The
relevance of the Cts physiological roles in different organs and
tissues is supported by multiple evidence demonstrating that
abnormal levels or activity of Cts correlate with numerous human

diseases, including inflammatory and cardiovascular diseases,
neurodegenerative disorders, diabetes, obesity, cancer, kidney
dysfunction, and others (Table 1). In particular, depending on the
cell type localization, Cts B, D, L, and S regulate in the kidney
different physiopathological processes, by activating signaling
pathways that ultimately may result in kidney disease (Figure 2).

CATHEPSINS IN ACUTE KIDNEY INJURY
(AKI)

AKI is characterized by a relatively sudden reduction, within
48 hours, in kidney function or production, processing, and
excretion of ultrafiltrate by the kidney (decreased glomerular
filtration rate, GFR) (Mehta et al., 2007). Permanent damage to
the microvasculature with subsequent abnormalities in kidney
structure and function are caused by AKI. Incomplete recovery
from AKI leads to the development of CKD (Venkatachalam
et al., 2015; Sud et al., 2016). To date, no effective treatments for
AKI are available.

A variety of insults may promote the onset of AKI, leading
all of them to epithelial tubular cell death. Increasing evidence
demonstrates that ER dysfunction and mitochondrial stress
causing tubular damage are important factors in the pathogenesis
of AKI (Tábara et al., 2014; Ishimoto and Inagi, 2016; Duann
and Lin, 2017; Galvan et al., 2017). Cts play important roles
in the signaling pathways driving apoptotic and necrotic cell
death, by degrading different substrates and/or contributing to
mitochondrial destabilization (Turk et al., 2002; Stoka et al.,
2005; Turk and Stoka, 2007). Increased expression levels and
activation of CtB have been observed in the human proximal
tubular epithelial cell line HK-2 undergoing to apoptosis (Wang
et al., 2008). Autophagy induction in proximal tubular cells
occurs during AKI (Livingston and Dong, 2014). The activity
of CtB and CtL decreases when autophagy-lysosome pathway
in HK-2 is disrupted by advanced glycation end products
in diabetic nephropathy (Liu et al., 2015). Decreased activity
of CtB correlates with an impairment of the autophagic flux
and worsening of the renal function in a tubular epithelial
cell model (Herzog et al., 2012). In a rat model of AKI,
a significant decrease of CtB was detected in the affected
proximal tubules, which correlated with increased severity of
the histopathological lesions of the tubules (Svara et al., 2010).
However, although autophagy causes cell death under certain
conditions, a renoprotective role for autophagy in AKI has
been established (Jiang et al., 2012). Urinary CtB levels have
shown a strong inverse correlation with surrogate markers
of nephron number in intrauterine growth-restricted neonates
and pre-term infants, suggesting that urinary CtB activity may
represent an useful tool for early predicting renal susceptibility
to damage in low birth weight neonates (Aisa et al., 2016).
Serum CtB concentration directly correlates with the loss of renal
function in healthy individuals and the aging-related decrease
of kidney function in the normal population (Wang et al.,
2016).

The protease CtD is highly expressed in damaged tubular
cells suggesting a possible contribution of CtD to cell death
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TABLE 1 | Classification, tissue localization and disease involvement of human cathepsins.

Cat. Protease

family

Aminoacids Localization Disease involvement

A Ser 480 Brain, skin, placenta, liver, kidney,

platelets

• Mucopolysaccharidosis (Pereira et al., 2016)

• Sialidosis (d’Azzo et al., 2015)

• Cardiomyopathies (Hua and Nair, 2015)

B Cys 339 Liver, kidney, spleen, thyroid • Alzheimer’s disease. (Schechter and Ziv, 2011)

• Atheriosclerosis (Hua and Nair, 2015)

• Cancer and metastasis (Gocheva and Joyce, 2007)

• Inflammatory lung disease (Zhang et al., 2015)

• Neurodegenerative disorders (Stoka et al., 2016)

• Rheumatoid arthritis and osteoarthritis (Pozgan et al., 2010)

• Kidney disease (Senatorski et al., 1998; Tao et al., 2005; Svara

et al., 2010; Peres et al., 2013; Liu et al., 2015; Musante et al.,

2015; Fox et al., 2016; Lim et al., 2016; Scarpioni et al., 2016;

Wang et al., 2016; Conley et al., 2017)

C Cys 463 Liver, lung, kidney, spleen, gut,

placenta, T lymphocytes

• Papillon-Lefèvre and Haim-Munk syndromes (Rai et al., 2010)

• Diabetes (Korpos et al., 2013)

• Inflammatory lung disease (Hamon et al., 2016)

• Neurodegenerative disorders (Stoka et al., 2016)

• Squamous tumors (Ruffell et al., 2013)

D Asp 412 Spleen, kidney, liver, platelets • Atheriosclerosis (Hua and Nair, 2015)

• Cancer (Benes et al., 2008)

• Neurodegenerative disorders (Stoka et al., 2016)

• Neuronal ceroid lipofuscinosis (Benes et al., 2008)

• Obesity (Hua and Nair, 2015)

• Kidney disease (Moallem et al., 2011; Ozkayar et al., 2015;

Cocchiaro et al., 2016; Fox et al., 2016; Yamamoto-Nonaka

et al., 2016)

E Asp 401 Brain, gut, skin, spleen, lung, kidney,

lymph nodes, erythrocytes,

adipocytes

• Alzheimer’s disease (Mackay et al., 1997)

• Cancer (Abd-Elgaliel et al., 2013; Kawakubo et al., 2014)

• Rosai-Dorfman disease (Paulli et al., 1994)

F Cys 484 Brain, heart, skeletal muscle, testis,

ovary, kidney, macrophages

• Cancer (Vazquez-Ortiz et al., 2005; Ji et al., 2017)

• Kufs-disease (Peters et al., 2015)

• Neurodegenerative disorders (Stoka et al., 2016)

G Ser 225 Skin, kidney, monocytes, neutrophils • Atheriosclerosis (Rafatian et al., 2013)

• Cardiovascular and cerebrovascular diseases (Herrmann et al.,

2001)

• Chronic obstructive pulmonary disease (COPD), Crohn’s disease,

rheumatoid arthritis, cystic fibrosis (Kosikowska and Lesner,

2013)

• Papillon-Lefevre syndrome (Korkmaz et al., 2010)

• Glomerulonephritis and renal failure (Johnson et al., 1988;

Sanders et al., 2004; Shimoda et al., 2007; Cohen-Mazor et al.,

2014)

H Cys 335 Liver, kidney, spleen • Cancer and metastasis (Gocheva and Joyce, 2007)

• Inflammatory lung disease (Bunatova et al., 2009)

• Rheumatoid arthritis (Jørgensen et al., 2011)

K Cys 329 Lung, osteoclasts, macrophages,

embryonic epithelial gastrointestinal

cells, respiratory and urinary tracts

• Atherosclerosis and obesity (Lafarge et al., 2010)

• Cardiac hypertrophy (Hua and Nair, 2015)

• Cancer (Husmann et al., 2008)

• Inflammatory lung disease (van den Brûle et al., 2005)

• Osteoarthritis (Saftig et al., 1998)

• Rheumatoid arthritis (Hao et al., 2015)

(Continued)
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TABLE 1 | Continued

Cat. Protease

family

Aminoacids Localization Disease involvement

L Cys 333 Liver, thyroid, kidney, macrophages • Alzheimer’s disease (Schechter and Ziv, 2011)

• Neurodegenerative disorders (Stoka et al., 2016)

• Atherosclerosis and obesity (Lafarge et al., 2010; reviewed in Hua

and Nair, 2015)

• Diabetes (Huang et al., 2003)

• Cancer and metastasis (Sudhan and Siemann, 2015)

• Rheumatoid arthritis and osteoarthritis (Solau-Gervais et al.,

2007)

• Kidney disease (Cohen and Kretzler, 2003; Goulet et al., 2004;

Reiser et al., 2004; Sever et al., 2007; Bauer et al., 2011; Haase

et al., 2014; Sołtysiak et al., 2014; Carlsson et al., 2015; Liu

et al., 2015; Garsen et al., 2016; Cao et al., 2017)

O Cys 321 Liver, kidney, ovary, placenta • Breast cancer (Cairns et al., 2017)

S Cys 331 Spleen, lymph nodes, heart • Alzheimer’s disease (Schechter and Ziv, 2011)

• Atherosclerosis and obesity (Jormsjö et al., 2002; Lafarge et al.,

2010; Hua and Nair, 2015)

• Diabetes (Jobs et al., 2013; Korpos et al., 2013)

• Cancer and metastasis (Gocheva and Joyce, 2007)

• Inflammatory lung disease (Bunatova et al., 2009)

• Rheumatoid arthritis and osteoarthritis (Pozgan et al., 2010)

• Kidney disease (Luhe et al., 2003; Aikawa et al., 2009; Carlsson

et al., 2015; Figueiredo et al., 2015; Steubl et al., 2017)

V Cys 334 Cornea, thymus, testis, liver, heart,

kidney, colon, T lymphocytes

• Atheriosclerosis (Yasuda et al., 2004)

• Cardiovascular disorders (Keegan et al., 2012; Leng et al., 2017)

• Neurological diseases (Funkelstein et al., 2012)

• Pulmonary sarcoidosis (Naumnik et al., 2015)

• Systemic sclerosis (Noda et al., 2013)

W Cys 376 Spleen, lymph nodes, liver, heart,

kidney

• Leukemia (Kothapalli et al., 2003)

• Diabetes (Korpos et al., 2013)

• Gastroesophageal reflux disease (Raab et al., 2011)

• Inflammatory bowel disease or autoimmune gastritis (Buhling

et al., 2002)

X Cys 303 Liver, kidney, placenta, lung, heart,

colon

• Neuroinflammation and multiple sclerosis (Stoka et al., 2016;

Allan et al., 2017)

• Cancer and metastasis (Nägler et al., 2004; Krueger et al.,

2005; Wang et al., 2011)

in AKI (Cocchiaro et al., 2016). During apoptosis, lysosomal
membrane permeabilization allows translocation of CtD from the
lysosome into the cytosol where it can exert its pro-apoptotic
function. Cytosolic CtD cleaves Bid protein into tBid triggering
the insertion of Bax protein into the mitochondrial membrane.
This leads to cytochrome c release from the mitochondria into
the cytosol, and the activation of pro-caspases 9 and 3 (Stoka
et al., 2001). Enhanced CtD expression has been found in murine
models of AKI (Kimura et al., 2012; Cocchiaro et al., 2016). CtD
has been recently identified as a possible novel prognostic marker
for AKI, as it is differentially regulated in urine from late/non
recovered vs. early/recovered AKI patients (Aregger et al., 2014).

Translocation of CtL from the lysosome into the cytoplasm
is a key event in the induction of glomerular kidney disease
(Sever et al., 2007). The onset of proteinuria in kidney
dysfunctions reflects a migratory event in the foot processes

of the podocytes that correlates with the activation of CtL
(Reiser et al., 2004; Cao et al., 2017). Three substrates have
been described for cytosolic CtL in podocytes: CD2-associated
protein, synaptopodin and dynamin (Sever et al., 2007; Mundel
and Reiser, 2010; Yaddanapudi et al., 2011). These proteins are
crucial for maintaining the normal cytoskeleton architecture
of podocytes, and their degradation by CtL results in the
reorganization of the actin cytoskeleton, proteinuria and renal
failure (Reiser et al., 2010; Garsen et al., 2016). An emerging role
of nuclear CtL in polycystic kidney disease comes out from the
evidence that a CtL isoform lacking of a signal peptide localizes to
the nucleus in S phase and processes the CDP/Cux transcription
factor, thus regulating cell cycle progression (Goulet et al., 2004).
The quantification of CtL has been demonstrated to provide
a better predictive value for AKI than creatinine, urea and
urine output (Haase et al., 2014). Genome expression studies
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FIGURE 2 | Cellular processes and kidney diseases involving cathepsins in different renal cell types. In podocytes, CtB participates in inflammation during ESRD, CtD

is involved in apoptosis in glomerulosclerosis, and CtL plays a role in cytoskeleton reorganization and cell cycle regulation during glomerular kidney disease,

proteinuria, renal failure and polycystic kidney disease. In endothelial cells, CtB and CtD are involved in inflammation. In addition, CtD participates in interstitial fibrosis

and endothelial dysfunction during CKD. CtS is important in CKD, diabetic nephropathy and ESRD. In tubular cells, CtsB is involved in apoptosis and autophagy

during AKI, and CtD in apoptosis and ECM remodeling during CKD. CtG participates in fibrosis during proteinuria, and CtL in autophagy in AKI. ESRD, end-stage

renal disease; KD, kidney disease; CKD, chronic kidney disease; ECM, extracellular matrix; AKI, acute kidney injury.

performed with RNA from kidneys of 7-week-old male and
female double transgenic rats (dTGRs), harboring human renin
and angiotensinogen genes, showed that CtL was differentially
expressed between the sexes and was strongly associated with the
degree of renal injury (Bauer et al., 2011).

Finally, CtG has been identified as a critical component
sustaining neutrophil-mediated acute tissue pathology and
subsequent fibrosis after renal ischemia/reperfusion injury
(Shimoda et al., 2007). It has been shown that CtG mediates
marked changes in glomerular permeability in vivo, contributing
to proteinuria (Johnson et al., 1988).

CATHEPSINS IN CHRONIC KIDNEY
DISEASE (CKD)

In spite of advance in the development of treatment approaches
to improve outcomes, CKD is still associated with a high
morbidity and mortality rate for patients affected by kidney
dysfunctions (Hill et al., 2016; Glassock et al., 2017). AKI
can contribute or worse the progression of CKD because of
an abnormal or incomplete repair response (Chawla et al.,
2014). The primary glomerular injury leads to a decreased post-
glomerular flow, which finally results into peri-tubular capillary
loss. Alternatively, renal injury can trigger an inflammatory
response that recruits profibrotic cytokines such as transforming
growth factor-β, and further induces the transformation of
renal epithelial and endothelial cells to myofibroblasts (De
Chiara and Crean, 2016; Cruz-Solbes and Youker, 2017).
The histopathological hallmark of CKD is tubulointerstitial
fibrosis, which is currently thought to be the best predictor
to assess progression toward end-stage renal disease (Liu,
2006).

During CKD, CtD plays critical roles in inflammation and
endothelial dysfunction (Erdmann et al., 2008; Ozkayar et al.,
2015; Fox et al., 2016). Elevated expression levels of CtD have
been found in human and murine damaged kidneys. Inhibition
of CtD by Pepstatin A in murine models of progressive CKD
resulted in a reduction of interstitial fibrosis (Fox et al., 2016).
CtD inhibition led to an increase in extracellular protease
activity of urokinase-type plasminogen activator (uPA) due
to altered lysosomal recycling; UPA processes plasminogen
into plasmin, which can degrade extracellular matrix proteins
(Eddy, 2009). A role for CtD in podocytes, responsible for
maintaining the ultrafiltration barrier thus preventing urinary
protein loss, has also been reported (Yamamoto-Nonaka et al.,
2016). In a podocyte-specific knock-out mouse model, the
absence of CtD resulted in podocyte apoptotic cell death,
and in age–dependent, late–onset glomerulosclerosis (Alghamdi
et al., 2017). Therefore, CtD activity in kidney could be
different depending on the cell type, and further studies
will be required to clarify this issue. In CKD, CtD serum
levels were significantly higher and correlated with endothelial
dysfunction in patients (Ozkayar et al., 2015). However, no
correlation was found between serum CtD levels and traditional
cardiovascular risk factors, indicating that enhanced CtD could
be a selective risk factor for endothelial dysfunction in kidney
disease.

Altered levels of CtB activity have been detected under
pathological processes in kidney (Ling et al., 1998; Senatorski
et al., 1998; Svara et al., 2010). Toll-like receptor 3 (TLR3),
which activates both the innate and adaptive immune systems,
is cleaved and activated by CtB (Garcia-Cattaneo et al., 2012).
CtB-dependent activation of TLR3 leads to the activation
of the transcription factors NF-κB and interferon regulatory
factor 3, resulting into the production of type I interferons and
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pro-inflammatory cytokines such as IL-6 and IL-8 (Kawasaki
and Kawai, 2014). In the kidney, inflammation promotes the
progression of glomerular sclerotic pathologies resulting in
end-stage renal disease (Anders and Muruve, 2011; Lim et al.,
2016). It has been demonstrated that CtB mediates the signaling
pathway activating the inflammasome, a large multiprotein
complex containing NOD-like receptor with pyrin domain 3
(NLRP3) which triggers the production of proinflammatory
cytokines in response to infection and tissue injury (Conley et al.,
2017). NLRP3 inflammasome activation by CtB may promote
glomerular inflammation and other cell damages resulting into
glomerular injury and end-stage renal disease. Inflammasome
activation may occur not only in immune cells but also in
residential cells such as endothelial cells and podocytes in the
glomeruli (Conley et al., 2017). Thus, NLRP3 inflammasome
has been suggested as a potential target for the treatment of
progressive CKD (Scarpioni et al., 2016). A correlation between
serum CtB concentration and the age-related decline in renal
function has been described in healthy individuals (Wang et al.,
2016). CtB has also been shown to be involved in diabetic
nephropathy (Musante et al., 2015). Other reports demonstrate
a reduction of CtB activity during polycystic kidney disease
(Schaefer et al., 1996; Hartz and Wilson, 1997; Tao et al., 2005),
puromycin induced nephrosis (Huang et al., 1999), and rat and
human diabetic nephropathy (Shechter et al., 1994; Grzebyk et al.,
2013; Peres et al., 2013). Conversely, CtB expression increased
in unilateral ureteric obstruction mouse model, however, its
inhibition led to no reduction in kidney fibrosis (Fox et al.,
2016).

The expression of CtL results to be enhanced in various
glomerular diseases such as focal segmental glomerulosclerosis,
membranous glomerulonephritis, and diabetic nephropathy
(Baricos et al., 1991; Sever et al., 2007). Induction of
CtL expression in podocytes has been associated with the
development of proteinuria in puromycin aminonucleoside
induced-kidney failure (Reiser et al., 2004), and streptozotocin-
induced diabetic nephropathy (Garsen et al., 2016). CtL can
contribute to the development of kidney disease by different
mechanisms. Cytoplasmic CtL cleaves the GTPase dynamin
resulting in podocyte failure and proteinuria (Sever et al.,
2007). In addition, CtL activates proteins such as heparanase
that are involved in the pathogenesis of diabetic nephropathy
(Garsen et al., 2016). Interestingly, CtL expression levels resulted
to be lower in males than in females, but the increase in
CtL detected with disease progression was greater in males.
This evidence strongly suggests that estrogens regulate CtL
expression and activity (Bauer et al., 2011). In CKD patients,
serum CtL activity is markedly elevated and its levels positively
correlate with the severity of proteinuria (Cohen and Kretzler,
2003; Sever et al., 2007; Cao et al., 2017). The presence and
severity of proteinuria in patients with CKD is associated
with higher mortality and morbidity (Hemmelgarn et al., 2010;
Garsen et al., 2016). Elevated CtL activity correlates with higher
hospital admission rates in CKD patients (Cao et al., 2017).
Urinary excretion of CtL was higher in children with type 1
diabetes mellitus with respect to healthy patients (Sołtysiak et al.,
2014).

In contrast with other Ct members, CtS remains catalytically
active under neutral pH (optimum pH values, 6.0–7.5) and its
main physiological role is outside the lysosome. Intracellularly,
CtS has an important role in the intrinsic apoptotic pathways
inducing cleavage of both caspase-3 and poly ADP ribose
polymerase (Wang et al., 2015). CtS can translocate to the
cell surface and be secreted into the extracellular milieu,
participating in the degradation of extracellular matrix proteins
(Jordans et al., 2009; Wilkinson et al., 2015). Beside its ability
to degrade fibers, CtS may activate the protease-activated
receptor-2 (PAR2) in endothelial cells (Elmariah et al., 2014).
Indeed, in vitro studies demonstrated that CtS may damage
the integrity and barrier function of glomerular endothelial
cells (Aikawa et al., 2009; Lafarge et al., 2010). In human and
mouse type 2 diabetic nephropathy, CtS mRNA resulted to be
expressed only in CD68(+) intrarenal monocytes, while the
protein was found along endothelial cells and inside proximal
tubular epithelial cells (Kumar et al., 2016). High circulating
levels of CtS have been correlated with increased mortality
risk in the human population (Jobs et al., 2011) because of its
involvement in the complex pathways leading to cardiovascular
disease, cancer and impaired kidney function (Feldreich et al.,
2016). In vivo studies demonstrated that CtS-induced elastolysis
stimulates arterial and aortic valve calcification in CKD,
suggesting that CtS might be a therapeutic target to prevent
cardiovascular complications in CKD (Aikawa et al., 2009).
Up-regulation of CtS has been detected in ochratoxin A-induced
nephropathy (Luhe et al., 2003). Furthermore, selective CtS
inhibition attenuates atherogenesis in hypercholesterolemic
mice with CKD (Figueiredo et al., 2015). In mice, serum
levels of CtS and markers of inflammation-related endothelial
dysfunction, such as soluble tumor-necrosis-factor receptors
(sTNFR) 1 and 2, increase with the decline of estimated GFR,
while in human cohortes an increase of GFR was associated
with a decrease of CtS (Steubl et al., 2017). However, in
patients with end-stage renal disease, high levels of CtS were
associated with sTNFR1/2 activation (Carlsson et al., 2015).
These findings indicate that CtS activity increases with CKD
progression, thus representing a potential marker of disease
progression.

CONCLUSIONS AND PERSPECTIVE

Kidney disease, characterized by the progressive loss of kidney
functions, occurs through different steps of damage leading to
organ failure and end-stage renal disease. Due to the lack of
specific treatments to stop disease progression (Mehta et al.,
2007; Black et al., 2010), kidney disease remains an important
clinical problem affectingmillions of people worldwide (Jha et al.,
2013; Hu and Coresh, 2017). In addition, the traditional clinical
markers used to assess and monitor kidney function such as
serum creatinine, GFR, and the presence of proteinuria often
miss the early stages of the disease delaying essential treatment
(Mårtensson et al., 2012; Haase et al., 2014; Wasung et al.,
2015). Indeed, both of the two major groups of kidney disease,
AKI and CKD, are still associated with increasing morbidity
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and mortality (Coca et al., 2009; Kerr et al., 2014; Hill et al.,
2016; Glassock et al., 2017). Therefore, there is an urgent
need to better understand the biological events driving AKI
and CKD in order to either find more accurate and sensitive
biomarkers of cell injury that may predict disease progression
or identify critical cellular and molecular mediators that may
provide novel therapeutic targets. Lysosomal Cts have emerged
in the recent years as important players in kidney disease,
thus suggesting their detection as early diagnostic approach.
Moreover, targeting Cts or their downstream signaling seems
a promising treatment strategy to slow down kidney disease
progression. Nevertheless, further studies are required to assess
the suitability, specificity and drugability of Cts in human kidney
disease.
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