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Abstract

We exhibit, for each positive even degree, a ternary form of rank
strictly greater than the maximum rank of monomials. Together with
an earlier result in the odd case, this gives a lower bound of

⌊
d2 + 2d + 5

4
⌋ ,

for d ≥ 2, on the maximum rank of degree d ternary forms with coefficients

in an algebraically closed field of characteristic zero.

Mathematics Subject Classification (2010).15A21; 14N15; 13P99

Keywords. Waring rank, tensor rank, symmetric tensor

1 Introduction

The Waring problem for the space of all forms of given degree and number
of variables, say over the complex numbers, asks for the minimum number of
summands that are required to write every such form as a sum of powers of
linear forms. Since the minimum number for a given form is called its Waring
rank, that problem can also be described as the determination of the maximum
(Waring) rank in the mentioned space.

A similar problem for a generic form (of given degree and number of vari-
ables) deserved a particular attention in [5]. As reported in [3, Introduction], a
non-obvious connection with a certain kind of interpolation problems has been
recognized since the beginning of the twentieth century. According to Iarrobino
[7], at the end Lazarsfeld noticed that the answer is provided, more specifically,
by the recent Alexander-Hirschowitz interpolation theorem (established in [1]),
a result which is now widely recognized as being outstanding.

Because of the similarity with the classical number-theoretic situation, the
determination of the maximum rank in the space of all forms of given degree
and number of variables has been named little Waring’s (polynomial) problem
in [6, p. 56]; while the big Waring’s problem is the version about generic forms.
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But, contrary to the classical situation, the big problem has been solved while
the little one is still open (see [2] for details). Since polynomials over C can
be regarded as symmetric tensors, so that the Waring rank becomes the sym-
metric rank, these problems are also part of tensor theory. There are many
similar basic questions in tensor theory that are still open, e.g., the symmetric
Strassen conjecture, and some of them, e.g., determining the rank of matrix
multiplication, are of utmost interest for applications.

A conjectural answer to the little Waring problem for ternary forms has
been outlined at the end of [4, Introduction]. If that conjecture is true, then
the lower bound given for odd degrees by [2, Th. 1] cannot be improved. For
even degrees, one should similarly show that the greatest known rank (which
to date is reached by monomials) can be raised by one. It is not unfrequent to
encounter nontrivial differences between the even and the odd case in classical
invariant theory and its developments. Indeed, traces of this phenomenon can
be found since the classical works by Sylvester; for a recent example, see [9] in
comparison with [8]. Here we work out the even case of the lower bound under
consideration (Proposition 2.4).

2 A Promising Lower Bound

We pursue the ideas of [2] and borrow its basic framework, but restricted to the
case of our interest. We consider an algebraically closed field K of characteristic
zero, the graded ring S = K[x, y, z] and its dual T = K[α,β, γ] in the following
sense: a perfect pairing S1×T1 → K is understood, such that the (ordered) bases
(x, y, z) and (α,β, γ) are dual to each other. The perfect pairing extends to
apolarity, which may be described as the action of T on S such that∑aijkαiβjγk
acts as ∑aijk∂i+j+k/∂xi∂yj∂zk. Here we prefer the notation ∂ΘF instead of
Θ⨼F for the action of Θ ∈ T on F ∈ S (for instance, ∂αF = ∂F /∂x). The apolar
algebra AF of a homogeneous F ∈ S is the quotient of T over the (homogeneous)
ideal {Θ ∈ T ∶ ∂ΘF = 0}. The (necessarily finite) dimension of AF as a K-vector
space is called the apolar length of F and denoted by al(F ). Since AF is a
graded ring in a natural way, the apolar length is the sum of all values of its
Hilbert function, which we denote by HF . Let us also recall that if F ∈ Sd, then

HF (d − n) =HF (n) = dim{∂ΘF ∶ Θ ∈ Tn} .

Finally, let us recall from [2] the notation H(n, d, s), which stands for the func-
tion on integers whose value at i is min{dimRi,dimRd−i, s}, where R is the
(graded) ring of polynomials in n variables over K.

As in the approach of Buczyński and Teitler [2], two useful ingredients in
the proof will be the following propositions.

Proposition 2.1. In the above notation, if a form F has a power sum decom-
position with all linear forms not annihilated by ∂α, then it must contain at least
al(F ) − al (∂αF ) summands.

Proof. It follows from [2, Prop. 3].
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Proposition 2.2. In the above notation, for every power sum decomposition of
F , at least al (∂αF ) − al (∂α2F ) of the linear forms are not annihilated by ∂α.

Proof. It follows from [2, Prop. 4].

We shall also use the following elementary fact.

Proposition 2.3. Let R = K[y, z], d a nonnegative integer, r ∈ {0, . . . , d} and
F ∈ Rd a linear combination of r d-th powers of linear forms. Then

1. F belongs to zrRd−r if and only if it is a scalar multiple of zd;

2. if the equivalent conditions in n.1 are true and the linear forms in the
linear combination are pairwise independent, then there is at most one
nonzero coefficient.

Proof. When r = d, n.1 is trivial and to get n.2 it suffices to recall the following
well known fact: given d+1 pairwise independent linear forms, their d-th powers
are linearly independent.

Let us now assume r < d. Since the ‘if’ part in n.1 is trivial, let us assume
that F ∈ zrRd−r. Let us suppose, in addition, that the linear forms are pairwise
independent, and let us consider F ′ ∶= ∂d−rF /∂yd−r. All powers not proportional
to zd survive under derivation, but by the previous case they must occur with
a zero coefficient in the derived combination, since degF ′ = r (when r = 0 there
is no summand). Therefore, even in the original combination there is at most
one nonzero summand, proportional to zd. Henceforth, F itself is proportional
to zd. To get n.1 even when the linear forms are not pairwise proportional, it
suffices to reduce in the obvious way the linear combination to one with pairwise
independent linear forms.

We are ready to prove our result: the existence, for each even degree d > 0, of
a ternary forms whose rank exceeds the maximum rank of a ternary monomial
(that is, k2 + 3k + 2 when d = 2k + 2).

Proposition 2.4. Let k be a nonnegative integer. There exists a form F ∈
K[x, y, z] of degree 2k + 2 with rkF > k2 + 3k + 2.

Proof. For k = 0 it suffices to take a nondegenerate quadratic form. Hence we
can assume k ≥ 1. Let S ∶= K[x, y, z], T ∶= K[α,β, γ] be the dual ring and
Sα ∶= ker∂α = K[y, z]. We show that

F ∶= xyk−1zk+2 + y2kz2

has rank strictly greater than k2 + 3k + 2. Let G ∶= ∂αF = yk−1zk+2 and let
us calculate the Hilbert function HG of the apolar algebra AG. To this end,
we recall that its value at n and at 2k + 1 − n is the dimension of the space
Vn ∶= {∂ΘG ∶ Θ ∈ Tn}, which is spanned by the n-th partial derivatives of G.
Therefore, for 0 ≤ n ≤ k − 1 the space Vn is spanned by monomials

yk−1zk+2−n , . . . , yk−1−nzk+2
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(in other terms, Vn = yk−1−nzk+2−nSαn ); for k − 1 ≤ n ≤ k + 2 it is spanned by

yk−1zk+2−n , . . . , yz2k−n , z2k+1−n

(in other terms, Vn = zk+2−nSαk−1). Thus HG =H(2,2k + 1, k), hence

al(G) =∑
n

HG(n) = 2(
k−1

∑
n=0

(n + 1) + k) = k2 + 3k .

We want to show that rkF > k2 + 3k + 2. By contrary, let us assume
rkF ≤ k2 + 3k + 2. Since ∂αF = G and ∂α2F = 0, by Proposition 2.2 we have
that for every power sum decomposition of F , at least k2 + 3k of the involved
linear forms are not annihilated by ∂α. Let us take a decomposition as a sum
of at most k2 + 3k + 2 powers of pairwise independent linear forms. We can
decompose F as Fα+B, with Fα encompassing all summands with linear forms
not annihilated by ∂α, and B encompassing at most two summands, with lin-
ear forms in Sα = K[y, z]. Since G = ∂αF = ∂αFα + ∂αB = ∂αFα, according
to Proposition 2.1, al (Fα) − al(G) cannot exceed the number of summands of
whatever decomposition of Fα with all its linear forms not annihilated by ∂α.
Since Fα has such a decomposition with at most k2+3k+2 summands, it follows
that al (Fα) ≤ al(G) + k2 + 3k + 2 = 2k2 + 6k + 2. We shall find a contradiction
by showing that it must also be al (Fα) > 2k2 + 6k + 2. To this end, we make a
direct computation of the Hilbert function HFα of AF

α

.
Since ∂α2Fα = ∂αG = 0, the space spanned by the n-th partial derivatives of

Fα is the sum of the space Vn−1 spanned by the (n − 1)-th partial derivatives
of G (with V−1 ∶= {0} by convention) and the space Wn spanned by the n-th
partial derivatives of Fα with respect to y, z. The space Vn−1 has already been
computed before for 0 ≤ n − 1 ≤ k + 2.

Let us first consider the range 0 ≤ n ≤ k − 1. Since

Fα − xyk−1zk+2 = y2kz2 −B ∈ Sα (2.1)

and
xyk−1zk+2−n , . . . , xyk−1−nzk+2

are linearly independent modulo Sα, we have Vn−1∩Wn = {0} and dimWn = n+1.
Hence HFα(n) =HFα(2k + 2 − n) = dim (Vn−1 +Wn) = 2n + 1.

When n = k, the partial derivatives

∂γnF
α , ∂βγn−1F

α , . . . , ∂βn−1γF
α

are still linearly independent modulo Sα, because so are the monomials

xyk−1z2 , . . . , xyzk , xzk+1 .

But now ∂βnF
α ∈ Sα, because of (2.1). However, we can check that it still

lies outside Vn−1 = z3Sαk−1. Suppose, on the contrary, that ∂βnF
α ∈ z3Sαk−1.

Since ∂βnF
α + ∂βnB = ∂βnF = ∂βkF is a scalar multiple of ykz2, we would have
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∂βnB ∈ z2Sαk . But B, and hence ∂βkB, can be written as a linear combination
of two powers of independent linear forms (using zero coefficients if B has less
than two summands). Therefore, by Proposition 2.3 we would have that ∂βkB

is a scalar multiple of zk+2 ∈ z3Sαk−1 (taking into account the initial assumption
k ≥ 1). Hence ∂βkF would lie in z3Sαk−1 but, on the contrary, it is a nonzero

scalar multiple of ykz2. We conclude that dim (Vn−1 +Wn) = 2n + 1 even when
n = k.

Up till now we have shown that HFα(n) = HFα(2k + 2 − n) = 2n + 1 for
0 ≤ n ≤ k, and we are checking that al (Fα) > 2k2 + 6k + 2. Hence we can
conclude the proof by showing that the value of HFα at n = k + 1 is strictly
greater than

2k2 + 6k + 2 − 2
k

∑
n=0

(2n + 1) = 2k2 + 6k + 2 − 2(k + 1)2 = 2k .

As before, let us first note that since

xyk−1z , . . . , xyzk−1 , xzk

are linearly independent modulo Sα, so are the partial derivatives ∂γnF
α, . . .,

∂βn−3γ3Fα, ∂βn−2γ2Fα (n = k+1). Since dimVn−1 = k, this shows that HFα(n) ≥
2k, and that we need only one more independent partial derivative. It will be
enough to check that at least one of ∂βnF

α and ∂βn−1γF
α, which are both in Sα,

is not in Vn−1 = z2Sαk−1. If ∂βnF
α ∈ Vn−1, since ∂βnF

α+∂βnB = ∂βnF = ∂βk+1F ∈
z2Sαk−1 = Vn−1, by Proposition 2.3 we have that ∂βnB is a scalar multiple of
zk+1. But in this case we have ∂βn−1B = 0 (n − 1 = k ≥ 1), hence ∂βn−1γF

α /∈
z2Sαk−1 = Vn−1 because ∂βn−1γF

α = ∂βn−1γFα + ∂βn−1γB = ∂βn−1γF = ∂βkγF is a

nonzero scalar multiple of ykz.

Let rmax(n, d) be the maximum rank of degree d forms in n variables. For
n = 3 and d ≥ 2, Proposition 2.4 and [2, Th. 1] (which holds for K as well as for
C with no modifications in the proof) give the following lower bound.

Theorem 2.5. For d ≥ 2 we have

rmax(3, d) ≥ ⌊d
2 + 2d + 5

4
⌋ .

At the time of writing, we are inclined to believe that the opposite inequality
has some chance of being true as well.
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