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The emergence of carbapenemase producing Enterobacteriaceae has raised major
public health concern. The aim of this study was to investigate the molecular
epidemiology and the mechanism of carbapenem resistance acquisition of multidrug-
resistant Klebsiella pneumoniae isolates from 20 neonates in the neonatal intensive
care unit (NICU) of the V. Monaldi Hospital in Naples, Italy, from April 2015 to
March 2016. Genotype analysis by pulsed-field gel electrophoresis (PFGE) and
multi-locus sequence typing (MLST) identified PFGE type A and subtypes A1 and
A2 in 17, 2, and 1 isolates, respectively, and assigned all isolates to sequence
type (ST) 104. K. pneumoniae isolates were resistant to all classes of β-lactams
including carbapenems, fosfomycin, gentamicin, and trimethoprim–sulfamethoxazole,
but susceptible to quinolones, amikacin, and colistin. Conjugation experiments
demonstrated that resistance to third-generation cephems and imipenem could
be transferred along with an IncA/C plasmid containing the extended spectrum
β-lactamase blaSHV-12 and carbapenem-hydrolyzing metallo-β-lactamase blaVIM-1

genes. The plasmid that we called pIncAC_KP4898 was 156,252 bp in size and
included a typical IncA/C backbone, which was assigned to ST12 and core genome (cg)
ST12.1 using the IncA/C plasmid MLST (PMLST) scheme. pIncAC_KP4898 showed
a mosaic structure with blaVIM-1 into a class I integron, blaSHV-12 flanked by IS6
elements, a mercury resistance and a macrolide 2′-phosphotransferase clusters, ant(3′′),
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aph(3′′), aacA4, qnrA1, sul1, and dfrA14 conferring resistance to aminoglycosides,
quinolones, sulfonamides, and trimethoprim, respectively, several genes predicted to
encode transfer functions and proteins involved in DNA transposition. The acquisition
of pIncAC_KP4898 carrying blaVIM-1 and blaSHV-12 contributed to the spread of ST104
K. pneumoniae in the NICU of V. Monaldi Hospital in Naples.

Keywords: carbapenemase producing Klebsiella pneumoniae, VIM-1 carbapenemase, IncA/C plasmid, horizontal
gene transfer, neonatal intensive care unit

INTRODUCTION

The spread of carbapenem-resistant Enterobacteriaceae
(CRE) has increased globally and these strains have become
endemic in several countries including Italy. CRE may
colonize or infect patients both in the hospital and in
the community setting (Nordmann and Poirel, 2014; Del
Franco et al., 2015; Onori et al., 2015; Pitout et al., 2015;
Conte et al., 2016; Logan and Weinstein, 2017). The
prevalence of CRE infections is increasing among children
and neonates also (Logan, 2012; Logan et al., 2015; Zhu et al.,
2015).

The international spread of CRE is primarily due to clonal
expansion of isolates belonging to Klebsiella pneumoniae and
Escherichia coli epidemic clonal lineages (Bialek-Davenet et al.,
2014; Nordmann and Poirel, 2014; Del Franco et al., 2015; Gaiarsa
et al., 2015; Pitout et al., 2015; Conte et al., 2016; Logan and
Weinstein, 2017).

Additionally, CRE dissemination is contributed by horizontal
gene transfer of carbapenemase genes carried by transposons
and plasmids (Pitout et al., 2015; Logan and Weinstein, 2017).
Class B metallo-β-lactamases (MBLs) (IMP, VIM, NDM), class
A (KPC) or class D (OXA-48) serine carbapenemases have
been isolated worldwide (Nordmann and Poirel, 2014; Del
Franco et al., 2015; Pitout et al., 2015; Conte et al., 2016;
Giani et al., 2017; Grundmann et al., 2017; Khan et al., 2017;
Logan and Weinstein, 2017; Matsumura et al., 2017). Of these,
MBLs show increasing clinical relevance because they cannot
be neutralized by the available β-lactamase inhibitors and are
able to horizontally disseminate via mobile genetic elements.
Among acquired MBLs, VIM- and NDM-type enzymes are
those having the widest geographical distribution and range
of bacterial hosts (Di Pilato et al., 2014; Peirano et al., 2014;
Zurfluh et al., 2015; Khan et al., 2017; Matsumura et al.,
2017).

Because intestinal carriage of CRE is an important
source of transmission, guidelines have been established
worldwide to monitor and isolate CRE carriers in health
care facilities (Nordmann and Poirel, 2014; Viau et al.,
2016).

The aim of this study was to analyze the molecular
epidemiology of VIM-1 producing K. pneumoniae
isolates from intestinal carriers in neonatal intensive
care unit (NICU) of an Italian hospital in Naples and
to characterize the structure of the conjugative plasmid,
which mediates the horizontal transfer of carbapenem
resistance.

MATERIALS AND METHODS

Setting
The NICU of V. Monaldi Hospital in Naples is a tertiary
care level NICU and consists of three rooms and 16 cot
spaces with a 1:2–1:3 nurses/neonates ratio. The NICU serves
approximately 260 admissions per year and admits exclusively
babies from the regional Newborn Emergency Transport Service
or Territorial Emergency Service and through the transfer from
the internal departments of Pediatric Cardiology and Pediatric
Heart Surgery. In case of necessity, the department performs
repeated hospitalizations for some particular types of newborns
(lower birth weight, heart disease, etc.). Active patient-based
surveillance of healthcare-associated infections on neonates with
>2 days NICU stay is performed as previously described (Horan
et al., 2008; Crivaro et al., 2015). Surveillance of CRE in
V. Monaldi Hospital, based on rectal swabs at hospital admission,
is performed according to the guidelines of European Centre
for Disease Prevention and Control [ECDC] (2012) and the
Ministero della Salute (2013), Italy.

Bacterial Strains and Microbiological
Methods
Klebsiella pneumoniae isolates were identified using the Vitek
2 automatic system and the ID-GNB card according to the
manufacturer’s instructions (bioMérieux, Marcy l’Etoile, France)
as previously described (Del Franco et al., 2015).

Antimicrobial Susceptibility Testing
Carbapenem resistance of Enterobacteriaceae was screened using
the meropenem disk alone as previously described (Pournaras
et al., 2013). Identification of MBL activity was performed using
imipenem+ EDTA 15+ 750 µg combined disk method (ROSCO
Diagnostica A/S, Taastrup, Denmark). Susceptibility tests were
performed using the Vitek 2 system and the AST-GN card
(bioMérieux, Marcy l’Etoile, France); carbapenem and colistin
susceptibility were evaluated by broth microdilution in Mueller–
Hinton broth II (MHBII) according to Clinical and Laboratory
Standards Institute guidelines (CLSI, 2015). Breakpoints values
were those recommended by the EUCAST (2016).

Molecular Analysis of Antimicrobial
Resistance Genes
Characterization of β-lactamase genes was performed as
previously described (Poirel et al., 2011). Two multiplex PCRs
were set up, the reaction no. 1 including detection of blaKPC

Frontiers in Microbiology | www.frontiersin.org 2 November 2017 | Volume 8 | Article 2135

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02135 November 1, 2017 Time: 17:52 # 3

Esposito et al. IncA/C1 Plasmid Carrying blaVIM-1 in Neonates

and blaOXA-48-like and the reaction no. 2 including detection
of blaIMP, blaVIM, and blaNDM. The following thermal cycling
conditions were used: 3 min at 94◦C and 35 cycles of
amplification consisting of 1 min at 94◦C, 1 min at 57◦C, and
1 min at 72◦c with 5 min at 72◦C for the final extension. PCR
products were analyzed by electrophoresis in a 1.8% agarose gel
stained with ethidium bromide. The following strains were used
as positive quality controls: Acinetobacter baumannii AC 54/97
(Riccio et al., 2000), A. baumannii 161/07 (Bonnin et al., 2012),
K. pneumoniae D001 (Pournaras et al., 2013), K. pneumoniae
1, K. pneumoniae 2, and E. coli 6 (Del Franco et al., 2015) for
blaIMP-2, blaNDM-1, blaOXA-48, blaKPC-2, blaKPC-3, and blaVIM-1
carbapenemase genes, respectively. The full-length alleles of
blaVIM were amplified using primers 5′VIM1 and 3′VIM1
shown in Supplementary Table S1. Sanger DNA sequencing and
identification of deduced amino acid sequences were performed
as previously described (Del Franco et al., 2015).

PFGE Typing and Dendrogram Analysis
Klebsiella pneumoniae isolates were genotyped by XbaI DNA
macrorestriction, pulsed-field gel electrophoresis (PFGE) and
dendrogram analysis as described previously (Del Franco et al.,
2015).

MLST Analysis
Klebsiella pneumoniae isolates were typed using the Institut
Pasteur’s MLST (multi-locus sequence typing) scheme
(Diancourt et al., 2005) and primes and PCR conditions
available at http://bigsdb.pasteur.fr/klebsiella/primers_used.html
eBURST analysis of profiles available at http://bigsdb.pasteur.
fr/perl/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef_public&
page=profiles was performed as described previously (Feil et al.,
2004). Minimum spanning trees of sequence types (STs) were
built by Phyloviz using the goeBURST algorithm (Francisco
et al., 2012).

Conjugative Transfer of Carbapenem
Resistance and Plasmid Typing
Filter mating experiments were performed using sodium azide
resistant E. coli J53 (Jacoby and Han, 1996) as recipient strain
in the presence of either 5 µg/ml imipenem and 100 mg/l
sodium azide or 50 µg/ml ampicillin and 100 µg/ml sodium
azide. The frequency of transfer was calculated as the number of
transconjugants divided by the number of surviving recipients
as previously described (Zarrilli et al., 2005). Plasmids typing
was performed by PCR-based replicon typing (PBRT) kit
(Diatheva s.r.l., Fano, Italy) using previously described primers
and conditions (Carattoli et al., 2005, 2006).

Whole-Genome Sequencing and Plasmid
Reconstruction
DNA was extracted from the K. pneumoniae parental strain, and
from the E. coli strain before and after transconjugation using
a DNeasy Blood & Tissue Kit according to the manufacturer’s
instructions (Qiagen, Milan, Italy). Whole genome sequencing
was performed using an Illumina Miseq platform with a 2 by 250

paired-end run after Nextera XT paired-end library preparation.
Sequencing reads from the K. pneumoniae parental strain and
from the E. coli strain before the transconjugation obtained in
this study were assembled using the software SPAdes (Bankevich
et al., 2012) with accurate settings.

The BIGSdb genome database software (Jolley and Maiden,
2010) was used in the BIGSdb-Kp database1 to identify genes
associated with virulence, heavy metal and drug resistance
in K. pneumoniae 4898 genome sequence. In Silico detection
of plasmids was performed using PlasmidFinder Web tool
at https://cge.cbs.dtu.dk/services/PlasmidFinder/ as previously
described (Carattoli et al., 2014). Sequencing reads of the E. coli
transconjugant strain containing the plasmid were mapped
to the assembled genome of the same E. coli sequenced
prior to transconjugation, using the mapping software Bowtie2
(Langmead and Salzberg, 2012). All non-mapping reads were
extracted and assembled using SPAdes (Bankevich et al., 2012)
with accurate settings. Presence of the obtained contigs in the
original K. pneumoniae genome was verified by blast-searching
followed by manual analysis, i.e., all the newly obtained contigs
that aligned with the K. pneumoniae assembly with an identity
over 95% were kept. The co-linearity of the contigs was assessed
using Bandage tool for visualizing assembly graphs (Wick et al.,
2015). The connections indicated by Bandage were used as
starting point for finishing experiments by PCR and Sanger
sequencing to bridge the ends of contigs (see Supplementary
Table S1 for a complete list of PCR primers used).

Plasmid in Silico Typing and Annotation
Plasmid MLST (PMLST) and core genome PMLST
(cgPMLST) analysis of Inc A/C plasmid profiles available at
https://pubmlst.org/bigsdb?db=pubmlst_plasmid_seqdef was
performed as previously described (Hancock et al., 2017). The
28 IncA/C conserved genes from each PMLST profile were
aligned using Muscle (Edgar, 2004). Unreliable positions were
removed from each alignment using Gblocks (Castresana,
2000). All alignments were concatenated and used as input
for a maximum likelihood phylogenetic analysis, which was
performed with the software PhyML 3.0 (Guindon et al., 2010)
using the GTR substitution model. PMLST minimum spanning
trees were built by Phyloviz (Francisco et al., 2012). The gene
annotation of the plasmid was performed using the software
Prokka (Seemann, 2014) followed by accurate manual control,
based on blast-searches against the nr-protein database. Inverted
repeats were identified manually, based on the sequence and
patterns found in Hancock (AAC 2017).

Nucleotide Sequence Accession
Numbers
The genome sequences of K. pneumoniae 4898 and plasmid
pIncAC-KP4898 have been deposited in the GenBank nucleotide
database under accession numbers FWYI00000000.1 and
KY882285, respectively.

1http://bigsdb.pasteur.fr/perl/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef_
public&page=sequenceQuery
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FIGURE 1 | Incidence of isolation of VIM-1 carbapenemase producing ST104
Klebsiella pneumoniae from neonates in the NICU of V. Monaldi Hospital in
Naples, Italy, during 2015 and 2016.

Ethics Statement
The study has been evaluated by the local Ethics committee
(Comitato Etico Università degli Studi della Campania “Luigi
Vanvitelli” AOU “Luigi Vanvitelli” – AORN “Ospedali dei Colli”)
(protocol number 421/2017). Because the patients included in
the study were anonymized, no written informed consent was
required.

RESULTS

Epidemiology of CR K. pneumoniae in
the NICU and Infection Control Measures
The emergence of carbapenem-resistant (CR) K. pneumoniae was
observed in the NICU of V. Monaldi Hospital from October 2015
to March 2016, when CR K. pneumoniae were isolated from rectal
swabs of 19 neonates into two consecutive clusters. Only one
sporadic CR K. pneumoniae isolate was obtained from a rectal
swab of a neonate in the NICU of the hospital during the previous
22 months, while CRE were occasionally isolated from rectal
swabs and other clinical specimens of adult patients in other
wards of the hospital (Figure 1 and data not shown). Immediately
following the first isolation of CR K. pneumoniae, a multimodal
infection control program was implemented in the NICU, which
included: weekly or biweekly screening for CRE at rectal swab
of hospitalized neonates, increased frequency of environmental
cleaning using chloride derivatives at 1100 ppm, reinforce
handwashing compliance before and after patient contact, and
daily visits to the ward by the hospital Infection Control Nurse.
Colonized neonates were isolated either structurally or following
strict adherence to contact precautions and staff cohorting was
performed. During the two clusters, the ward was temporarily
closed to external admissions. Environmental microbiological
investigation of room surfaces, equipment, and staff hands failed
to identify sources or reservoirs of CR K. pneumoniae. Neonates’
mothers were not screened for the presence of CRK. pneumoniae.
Because all neonates with CR K. pneumoniae isolation did
not show signs of infection, they did not receive antimicrobial

therapy against CR K. pneumoniae and were not eradicated
before discharge. The cluster ended on March 2016 when the last
CR K. pneumoniae intestinal carrier neonate was discharged from
the ward (Figure 1).

Antimicrobial Susceptibility Testing and
Characterization of Carbapenemase
Genes in CR K. pneumoniae Isolates
All CR K. pneumoniae isolates from neonates in the NICU
showed a MDR phenotype. In fact, they exhibited resistance
or intermediate resistance to carbapenem (imipenem,
meropenem, ertapenem), resistance to aminopenicillins,
ureidopenicillins, third and fourth generation of cephalosporins
(ceftazidime, cefotaxime, cefepime), gentamicin, fosfomycin,
and trimethoprim–sulfamethoxazole, but were susceptible to
amikacin, ciprofloxacin, and colistin (Table 1). AllK. pneumoniae
isolates gave a positive result in the MBL-assay performed using
the imipenem–EDTA combined disk method. PCR and sequence
analysis identified the presence of blaVIM-1 but not any of the
other carbapenemase genes tested in all CR K. pneumoniae
isolates from NICU (Figure 2).

Molecular Epidemiology of CR
K. pneumoniae
To assess whether the increase of CR K. pneumoniae isolation
in the NICU was caused by the spread of epidemic strains, all
20 CR K. pneumoniae isolates from 20 neonates were genotyped
by XbaI digestion, PFGE, and dendrogram analysis. Molecular
analysis identified an identical macrorestriction pattern in 17
isolates, which we named PFGE type A, whereas two isolates
showing difference in the migration of one band and one isolate

TABLE 1 | Antibiotic susceptibility profiles of MDR K. pneumoniae in the NICU.

MIC∗ (mg/l)

Antibiotic K. pneumoniae (20 total stains)

MIC50 MIC90 Range

Amoxicillin >32 >32 >32

Piperacillin–tazobactam >128 >128 >128

Ceftazidime >64 >64 >64

Cefotaxime >64 >64 >64

Cefepime >64 >64 32 to >64

Imipenem 8 >16 8 to >16

Meropenem >16 >16 >16

Ertapenem 4 4 4

Fosfomycin >128 >128 >128

Amikacin ≤2 ≤2 ≤2

Gentamicin 4 4 4

Ciprofloxacin 0.5 1 0.5–1

Trimethoprim–sulfamethoxazole >320 >320 >320

Tigecycline ≤0.5 ≤0.5 ≤0.5

Colistin ≤0.5 ≤0.5 ≤0.5

∗Minimal inhibitory concentration.
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FIGURE 2 | Genotypic analysis of VIM-1 carbapenemase producing K. pneumoniae isolates in the NICU. Dendrogram analysis of XbaI PFGE profiles of VIM-1
carbapenemase producing K. pneumoniae isolates from the NICU. Percentage of similarity and sizes in kilobase (kb) of lambda DNA molecular mass markers are
indicated. Isolate number, taxonomic identification, isolation date, PFGE type, MLST, and carbapenemase are shown also.

in the migration of four bands and a similarity of >85% at
dendrogram analysis were classified into subtypes A1 and A2,
respectively (Figure 2). The above data indicated that the increase
of CR K. pneumoniae isolation in the NICU was caused by the
spread of a single VIM-1-producing K. pneumoniae epidemic
genotype. MLST analysis assigned CR K. pneumoniae isolates
with PFGE type A and subtypes A1 and A2 to ST104 (Figure 2).
K. pneumoniae ST104 isolate from milk during bovine mastitis
and K. pneumoniae ST1923 and ST1942 isolates from human
blood and human feces, respectively, which were single-locus
variants of ST104, and 21 other STs, which were double-locus
variants of ST104, were reported worldwide and found in
Klebsiella PubMLST isolates database2 (Figure 3).

Genomic Features of VIM-1-Producing
K. pneumoniae ST104 KP4898
Additional epidemiological information was provided by
genome sequence of representative K. pneumoniae KP4898
isolate. Genome sequence confirmed MLST assignment of
K. pneumoniae KP4898 isolate to ST104. Capsular typing
through sequencing of CD1–VR2–CD2 region of wzc and
outer membrane protein wzi genes of locus identified wzc-32
and wzi-102 alleles, respectively, which are associated with

2http://bigsdb.pasteur.fr/perl/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_isolates_
public&page=profiles

K31 capsular type. In the KP4898, an array of virulence-
associated genes was found, which includes the type-3 fimbriae
cluster mrkABCDF and transcription regulators mrkHIJ,
the yersiniabactin siderophore cluster ybtAPQSTUX, the
yersiniabactin receptor fyuA, yersiniabactin biosynthetic protein
genes irp1 and irp2 and allB and allD genes of allantoinase
cluster. The analysis of drug-associated resistance genes in
KP4898 genome identified blaSHV-5 and blaSHV-12 extended-
spectrum β-lactamases, blaVIM-1 carbapenemase, aadA1,
aphA15, and aacA4 aminoglycoside resistance genes, a macrolide
2′-phosphotransferase cluster, other antimicrobial resistance
genes, heavy metal resistance genes, efflux system, and regulators
genes (Supplementary Table S2). The PlasmidFinder web tool
identified A/C, FII(K) and FIB(K) replicons, thus suggesting the
presence of at least three plasmids in KP4898 genome.

Conjugal Transfer of Carbapenem
Resistance
The transfer of carbapenem resistance from VIM-1-producing
ST104 K. pneumoniae isolates with PFGE type A and subtypes
A1 and A2 was evaluated by filter mating experiments. Resistance
or intermediate resistance to aminopenicillins, ureidopenicillins,
third and fourth generation cephems, imipenem, but not
meropenem and ertapenem, was transferred from ST104
K. pneumoniae isolates with PFGE type A and subtypes A1 and
A2 to E. coli J53 aziR at frequency ranging from 6.5 × 10−3
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FIGURE 3 | Minimum spanning tree of ST104 and single-locus and double-locus variant isolates at Klebsiella PubMLST (http://bigsdb.pasteur.fr/perl/bigsdb/bigsdb.
pl?db=pubmlst_klebsiella_isolates_public&page=profiles). ST1942 and ST1923 are single-locus variant of ST104. The other STs are ST104 double-locus variant.
Numbers inside each circle indicate the ST types. The number on the branch indicates the different alleles between STs. Circle size is proportional to the number of
isolates belonging to the same ST type. The pie charts for each ST indicate the country of isolation.

to 1.5 × 10−3 cfu/recipient cells. The frequency of transfer
of imipenem resistance from K. pneumoniae ST104/PFGE A,
A1, and A2 isolates to E. coli J53 aziR did not change if
transconjugants were selected in the presence of imipenem
and sodium azide or ampicillin and sodium azide. All
transconjugants showed identical antimicrobial susceptibility
profile and resistance to sodium azide (Table 2). Moreover, all
transconjugants showed a PFGE profile identical with that of
the recipient strain. The presence of blaVIM-1 and blaSHV-12
genes was demonstrated in all transconjugants. Furthermore,
PBRT identified A/C replicon and IncA/C incompatibility group
plasmid/s in ESBL positive and CR K. pneumoniae ST104 donor
isolates and E. coli transconjugants expressing blaVIM-1 and
blaSHV-12 genes. The above data suggested that conjugative
plasmid/s mediated the horizontal transfer of carbapenem
resistance.

Genetic Structure of pIncAC-KP4898
In the genome sequence of E. coli transconjugants, one single
plasmid was identified, which was present in K. pneumoniae
KP4898 donor strain, but not in E. coli J53 recipient strain,
and was designated pIncAC-KP4898, for plasmid of IncA/C
incompatibility group from K. pneumoniae 4898 isolate. The
pIncAC-KP4898 plasmid was 156,252 bp in size, with an average
G + C content of 52.6%. Genome annotation identified 190

open reading frames (ORFs), of which 145 were transcribed in
a clockwise orientation, while the remaining 45 were transcribed
counterclockwise. Of these ORFs, 14 were associated with
plasmid DNA replication and partition, 16 with DNA transfer, 13
with DNA-restriction and site-specific DNA methylation, 25 with
DNA transposition, 19 with antimicrobial resistance, and 103
with unknown functions (Figure 4 and Supplementary Table S3).
The pIncAC-KP4898 scaffold included the repA, parA, parB, and
053 genes, parM, kfrA, and a putative toxin–antitoxin system,
which were demonstrated to be important for maintenance
and replication of IncA/C plasmid (Hancock et al., 2017).
Based on RepA similarity (Carattoli et al., 2006), the pIncAC-
KP4898 plasmid belongs to IncA/C1 group. The IncA/C PMLST
scheme based on the repA, parA, parB, and 053 genes and the
cgPMLST scheme that extend the 4-gene PMLST to 28 conserved
genes (Hancock et al., 2017) assigned pIncAC-KP4898 to novel
profiles, which corresponded to ST12 and ST12.1, respectively.
The phylogeny of IncA/C 28-gene profiles showed that ST12.1
was more closely related to ST11.1, to which IncA/C1 group
pRA1 plasmid (GenBank accession number FJ705807.1) has been
assigned, than to the remaining 10 profiles (ST1 to ST10), which
corresponded to IncA/C2 group plasmids (Figure 5).

Plasmid pIncAC-KP4898 contained a composite transposon
of 25,716 bp (residues 139,120–156,252 and 1–8,583, G + C
content: 57.7%) with four IS6 family transposase and 14 bp
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TABLE 2 | Conjugative transfer of carbapenem resistance.

MIC (mg/l)

Antibiotic Strain

K. pneumoniae
ST104/A-A2

E. coli J53 aziR
(p1KPST104)

E. coli J53
aziR

Amoxicillin >32 >32 4

Piperacillin–
tazobactam

>128 >128 2

Ceftazidime >64 8 0.25

Cefotaxime >64 >64 ≤0.25

Cefepime >64 2 ≤0.25

Imipenem 8 8 0.25

Meropenem >16 ≤0.25 ≤0.25

Ertapenem 4 ≤0.5 ≤0.5

Fosfomycin >128 ≤16 ≤16

Amikacin ≤2 ≤2 ≤2

Gentamicin 4 ≤1 ≤1

Ciprofloxacin 0.5 ≤0.25 ≤0.25

Trimethoprim–
sulfamethoxazole

>320 ≤20 ≤20

Tigecycline ≤0.5 ≤0.5 ≤0.5

Colistin ≤0.5 ≤0.5 ≤0.5

inverted repeats (TTTGCAACAGTGCC) at residues 152,072–
152,086 and 8,569–8,583 (3′-flanking region) (Figure 4). Within
this transposon lied a class 1 integron containing a 5′-conserved
structure (CS) with int1 site-specific integrase, and five head-
to-tail arranged gene cassettes consisting of the genes blaVIM-1,
aacA4 family aminoglycoside N(6′)-acetyltransferase gene,
aminoglycoside O-phosphotransferase APH(3′)-XV encoding
gene, ANT(3′′) family aminoglycoside nucleotidyl transferase
gene, type B-2 chloramphenicol O-acetyltransferase catB2
gene. The 3′-CS showed the qacED1-encoding gene, which
confers resistance to quaternary ammonium compounds. The
Tn3-like composite transposon included also the blaSHV-12
gene flanked by IS6 family transposases in inverted orientation,
a macrolide 2′-phosphotransferase gene cluster consisting of
macrolide 2′-phosphotransferase mph(A), transporter mfs and
macrolide 2′-phosphotransferase I repressor A mphR genes,
quinolone resistance pentapeptide repeat protein qnrA1 gene,
and sulfonamide-resistant dihydropteroate synthase sul1 genes.
A mercury resistance gene clusters and trimethoprim-resistant
dihydrofolate reductase dfrA14 gene were carried by pIncAC-
KP4898 apart from the identified transposon region. In addition,
16 genes encoding transfer functions and a conjugative apparatus
were found in pIncAC-KP4898, which indicated that the
plasmid was self-conjugative (Figure 4 and Supplementary
Table S3).

DISCUSSION

The emergence of multidrug-resistant and carbapenem-resistant
microorganisms has become an alarming phenomenon in
children and neonates (Logan, 2012; Logan et al., 2015). Intestinal

carriage of carbapenemase producing Enterobacteriaceae is an
important reservoir and source of dissemination of resistance to
carbapenems among Gram-negative bacteria in the community
and in the hospital setting (Nordmann and Poirel, 2014; Viau
et al., 2016; Logan and Weinstein, 2017).

The current study investigates the molecular epidemiology
and the genetic mechanism of acquisition of carbapenem
resistance of multidrug-resistant K. pneumoniae isolated into two
consecutive clusters from rectal swabs of 20 neonates in the
NICU of the V. Monaldi Hospital in Naples, Italy. Our data
showed the selection of a single VIM-1-producing K. pneumoniae
epidemic genotype assigned to PFGE type A, A1, and A2 and
ST104, which was isolated only from patients in the NICU but
not in other wards of the hospital, thus suggesting that cross-
transmission among intestinal carrier neonates may have been
favored the spread of VIM-1 producing K. pneumoniae epidemic
clone. The diffusion of VIM-1 producers K. pneumoniae is
uncommon in Italy, where the vast majority of carbapenemase
producers K. pneumoniae are KPC producers (Giani et al., 2017;
Grundmann et al., 2017). After the first isolation of ST104
K. pneumoniae from milk during bovine mastitis (Paulin-Curlee
et al., 2007), sporadic isolations of ST104 (Baraniak et al., 2013;
Maatallah et al., 2014; Esteban-Cantos et al., 2017), were reported
from human infections/colonizations. Also, K. pneumoniae
ST1923 and ST1942, which were single-loci variants of ST104,
were isolated from human blood and human feces (Yan et al.,
2015), and K. pneumoniae isolates assigned to 21 other STs,
which were double-locus variants of ST104, were isolated
from difference sources including clinical specimens (Figure 3).
Since ST104 K. pneumoniae human isolates were either ESBL
producing (Baraniak et al., 2013; Maatallah et al., 2014; Esteban-
Cantos et al., 2017) or carbapenemase producing (Esteban-
Cantos et al., 2017), we can hypothesize that antimicrobial
resistance might have selected ST104 K. pneumoniae isolates
among bacterial population.

In accordance with this, data reported herein showed
that K. pneumoniae isolates from neonates in the NICU
showed a MDR phenotype, being resistant to all classes
of β-lactams including third and fourth generation cephems
and carbapenems, fosfomycin, gentamicin, and trimethoprim–
sulfamethoxazole, but susceptible to quinolones, amikacin and
colistin. This is particularly alarming in neonates, for which
limited options of antimicrobial therapy are available. Also,
genome sequence of VIM-1-producing K. pneumoniae ST104
KP4898 showed the presence of virulence-associated genes
and antimicrobial resistance genes (Supplementary Table S2).
Interestingly, ST104 K. pneumoniae isolates from neonates in
the NICU showed resistance to antimicrobials frequently used
in neonates, such as third and fourth generation cephems,
carbapenems, gentamicin, and trimethoprim–sulfamethoxazole,
while they retain susceptibility to fluoroquinolones, which
are not recommended in this clinical setting. Since it has
been demonstrated that previous combination antimicrobial
treatment with ampicillin and gentamicin is independent
risk factors for acquisition of extended-spectrum β-lactamase-
producing K. pneumoniae and Serratia marcescens in neonates
(Crivaro et al., 2007), we can speculate that resistance to third and
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FIGURE 4 | Schematic map of pIncAC_KP4898 plasmid. Circular map of pIncAC_KP4898. The outermost ring represents the pIncAC_KP4898 plasmid with arrows
indicating genes/ORFs involved in the various cellular pathways. Functions of the genes and ORFs found are color coded and shown in the left bottom corner of the
figure. The middle ring and the innermost ring represent a GC plot and a GC skew plot, respectively. For both plots, magenta and olive green indicate the measures
below and above the average, respectively.

fourth generation cephems and carbapenems might have been
selected by their frequent use in the NICU.

Several studies demonstrate that the horizontal gene transfer
through conjugative plasmids and transposons contributes to
the spread of resistance to carbapenems (Bialek-Davenet et al.,
2014; Nordmann and Poirel, 2014; Viau et al., 2016). Accordingly,
we showed that resistance to aminopenicillins, ureidopenicillins,
third and fourth generation cephems, imipenem, but not
meropenem and ertapenem, was transferred from VIM-1-
producing ST104 K. pneumoniae isolates assigned to either

PFGE type A, A1, or A2 to susceptible E. coli along with a
blaVIM-1 positive plasmid of IncA/C1 incompatibility group
and 156,252 bp in size, which we named pIncAC_KP4898
(Figure 4). Based on the above data, we postulate that
imipenem resistance depends mainly on the expression of VIM-1
carbapenemase carried by pIncAC_KP4898, while meropenem
and ertapenem resistance might be contributed by additional
resistance mechanisms in K. pneumoniae isolates, such as altered
permeability due to changes in the expression of porins or
efflux systems (Goodman et al., 2016). Further experiments
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FIGURE 5 | Phylogeny of cgPMLST IncA/C plasmids. Neighbor-joining phylogenetic trees based on multiple alignments of concatenated alleles of the 28 IncA/C
conserved genes. The bar at the top of the figure shows the amount of genetic change corresponding to the length of each branch.

will be necessary to validate such hypothesis. The pIncAC-
KP4898 scaffold was assigned to novel ST12 and ST12.1
profiles. Interestingly, it resulted to be more closely related to
IncA/C1 group pRA1 plasmid from the fish pathogen Aeromonas
hydrophila (Fricke et al., 2009) assigned to ST11.1, than to the
majority of IncA/C plasmid belonging to IncA/C2 group and
ST1 to ST10 profiles (Figure 5 and Supplementary Figure S1),
which are associated with the carriage of blaNDM or blaCMY
(Hancock et al., 2017). While InCA/C2 group plasmids were
frequently found in Enterobacteriaceae isolated from human
and non-human sources (Hancock et al., 2017), only two
IncA/C1 group complete plasmid sequences are available in
GenBank, pRA1 plasmid from A. hydrophila environmental
isolate (Fricke et al., 2009) and pIncAC_KP4898 plasmid from
ST104 K. pneumoniae clinical isolate described in this study. Of
these, pIncAC_KP4898 is the first InCA/C1 plasmid carrying
blaVIM-like sequences. Similarly to IncA/C1 group pRA1 plasmid

(Fricke et al., 2009) and several IncA/C 2 group plasmids
(Hancock et al., 2017), pIncAC-KP4898 carried several tra genes
encoding transfer functions and was self-conjugative.

pIncAC_KP4898 plasmid presents a composite transposon
of approximately 26 kb, which includes blaSHV-12 extended
spectrum β-lactamase gene, flanked by IS6 elements and a class
I integron with blaVIM-1 carbapenemase gene, aacA4 family
aminoglycoside N(6′)-acetyltransferase gene, aminoglycoside
O-phosphotransferase APH(3′)-XV encoding gene, ANT(3′′)
family aminoglycoside nucleotidyl transferase gene, type B-2
chloramphenicol O-acetyltransferase catB2 gene. A class I
integron showing identical gene cassettes array is found in IncN
plasmid pOW16C2 from K. pneumoniae environmental isolate
(Zurfluh et al., 2015), and non-typeable plasmids pAX22 from
Achromobacter xylosoxidans (Di Pilato et al., 2014) and plasmid
of >300 kb from E. coli strain W1058 (GenBank accession
number KF856617; Porres-Osante et al., 2014). Based on the
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above all data, we can postulate that genetic structure of class I
integron with blaVIM-1 carried by pIncAC-KP4898 might have
an environmental source. In accordance with our data, VIM-
1 has been shown to be the most prevalent allele variants
among VIM-producing isolates, having global geographical
distribution and being isolated in multiple Enterobacteriaceae
species (Matsumura et al., 2017). Moreover, Aeromonas caviae
carrying blaVIM-1 and blaVIM-35 inside class I integrons were
isolated from clinical surveillance cultures in Israeli hospitals
(Adler et al., 2014); A. caviae carrying blaVIM-1 and blaSHV-12
into a transferable plasmid were isolated from the blood
cultures of 1-day-old newborn in Florence, Italy (Antonelli
et al., 2016). A macrolide 2′-phosphotransferase gene cluster
inside the composite transposon and a mercury resistance
gene clusters and trimethoprim-resistant dihydrofolate reductase
dfrA14 gene outside the transposon region were additional
resistance genes, which might have contributed to the selection
of pIncAC_KP4898 into ST104 K. pneumoniae.

CONCLUSION

The spread of carbapenem resistance in K. pneumoniae
from neonates in the NICU was due to the acquisition of
plasmid pIncAC-KP4898, carrying the blaVIM-1 gene and several
additional resistance genes into the scaffold of an IncA/C1 group
self-conjugative plasmid. The composite genetic structure of
pIncAC-KP4898 might have been generated by the acquisition
of different regions from different sources mediated by multiple
recombination events.
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