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A B S T R A C T

In this paper we present the design, implementation and experimental evaluation of Kerberos, an architecture
for the detection of frauds in current generation Voice over IP (VoIP) networks. Kerberos is fed by an On-line
Charging System (OCS) generating events associated with the setup, evolution and tear-down of end-user calls
in a VoIP network compliant with the IP Multimedia Subsystem (IMS) specification. Such events are properly
correlated in order to identify, in real-time, patterns associated with a fraudulent utilization of the Operator's
resources. The detection phase can in turn trigger the subsequent remediation actions. Communication between
the OCS and Kerberos is based on an asynchronous paradigm, whereas event correlation and analysis are
effectively realized through a Complex Event Processing approach. The paper will shed light on both the design
and the implementation of the system, whose performance is then evaluated by relying on a real-world dataset
of Call Detail Record (CDR) events provided by Tiscali, a well known Italian Operator.

1. Introduction

Nowadays, most telephone operators rely on Online Charging
Systems (OCS) to monitor the phone calls made by their users through
the generation of events carrying updated information about network
resource utilization. Such information is typically used for billing
purposes, but it can also be leveraged in order to detect frauds, i.e.,
identify those users who make a fraudulent (or at least unauthorized)
use of the offered service. Fraud detection can indeed rely on two
alternative approaches:

• Offline fraud detection: this is the classical approach based on the
off-line analysis of the so-called Call Detail Records (CDRs). A CDR
is a piece of information associated with a call; it is created at the
end of the call and contains aggregated data about it (caller, callee,
call duration, etc.). With the offline approach, frauds can only be
detected after the call has terminated;

• Online fraud detection: this is a more recent approach, based on the
dynamic, real-time analysis of call information. With this approach,
frauds are detected through the direct analysis of OCS events rather
than through off-line CDR elaboration. While more demanding in
terms of computational resources, on-line detection allows the
operator to spot frauds ‘while’ a call is still in place and thus take
proper actions (e.g., force the call to hang-up, divert the call towards

a dedicated fraud management component, etc.) as soon as the
potential issue is identified.

In this paper we present Kerberos, a dynamically configurable
system which is capable to perform online fraud detection while at the
same time producing standard CDRs by properly aggregating events
generated by the OCS and associated with a single call. To achieve this
goal, Kerberos makes use of Complex Event Processing (CEP) techni-
ques to identify, within the real-time flow of events produced by the
OCS, subsets (or sequences) of events indicating the presence of a
potential fraud. Kerberos has been developed as a high performance
processing engine which also exposes a friendly web-based manage-
ment interface. It has been designed and implemented based on
specifications provided by Tiscali, a well-known Italian OTT (Over
The Top) service provider that is currently offering, through the
Indoona platform, unified access (web, mobile, PSTN, etc.) to its
cloud-based IMS (IP Multimedia Subsystem) infrastructure. Tiscali
has indeed provided us with the overall guidelines for the system, as
well as detailed information about the basic fraud templates to be taken
into account and a rich dataset containing real-world OCS events
collected on-the-field.

The paper is organized as follows. In Section 2 we will present the
current state of the art in the field of fraud detection in VoIP networks,
with an eye on the most interesting proposals related to real-time
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analysis. Section 3 presents an overview of the Kerberos architecture,
in terms of building blocks and protocol interactions. System require-
ments are discussed in Section 4. The main details associated with the
implementation of Kerberos are provided in Section 5, whereas Section
6 deals with performance, with a special focus on scalability. Finally,
Section 7 summarizes the main results of our current efforts and
indicates the most interesting directions of our future work.

2. Fraud detection in VoIP networks: state of the art

A recent survey on the general topic of Fraud Detection can be
found in Abdallah et al. (2016).

In this paper we somehow narrow the scope of interest to those
researches that have recently focused on detection of frauds associated
with the malicious utilization of a VoIP network. Some authors have
indeed provided contributions associated with the definition of proper
architectural frameworks. Others have instead focused on finding the
most effective way to describe (and classify) the numerous types of
frauds that a detection system has to deal with during its operation.

The authors of Kapourniotis et al. (2011) present a fraud detection
framework for VoIP networks focusing on user profiling. They basically
rely on an ontology-driven unsupervised algorithm which allows to
derive information about user's behavior starting from an analysis of
CDR data. By leveraging a Bayesian Belief Network they detect
suspicious behaviors in the stored CDR data and trigger alarms when
needed. The authors remark that their proposed approach can be used
to generate particular user signatures after parsing an already available
CDR data set. Such signatures might then feed an on-line algorithm in
order to detect frauds in real-time. In our previous work Chiappetta
et al. (2013), we also focused on the extrapolation of user profiles from
stored CDR data, with special reference to the identification of a
specific category of malicious users, the so-called telemarketers. One
further CDR-based security architecture, called SAD (SIP Anomaly
Detection), can be found in De Lutiis and Lombardo (2009). SAD has
been designed as an anomaly detection tool able to analyze Call Detail
Records from the security perspective, with a minimal impact on the
operator's IMS infrastructure.

Authors of the work in Aziz et al. (2014) propose a distributed
monitoring architecture for the detection of attacks to SIP networks. In
their paper, they use ‘toll fraud’ as an outstanding example of these
kind of threats. In the authors’ interpretation, a toll fraud attack takes
place whenever a malicious user generates costs by misusing the
extension of another user. This requires that the attacker preliminary
succeeds in hijacking a valid extension and then uses it to make calls.
In our work, we use the term in a somewhat different context, since we
mainly focus on frauds associated with a malicious use of a non-
hijacked account, as it will come out from the considerations we make
in the following sections.

Along the same lines, an integrated approach to fraud detection and
prevention in VoIP networks has been proposed in Hoffstadt et al.
(2014). The SUNSHINE architecture is built as a modular composition
of prevention and detection components, both at the network and at
the application level. It actually leverages firewalling and intrusion
detection on top of a distributed sensing system. Furthermore, it relies
on CDR processing by properly mixing statistical analysis and artificial
intelligence. Finally, SUNSHINE is capable of correlating and aggre-
gating alarms and exploits real-time black-listing based on DNS as a
remediation strategy.

An interesting taxonomy of existing VoIP security threats, with
special reference to toll frauds, can be found in Gruber et al. (2013).
Such a taxonomy is indeed derived from a detailed analysis of data
captured on-the-field thanks to the deployment of an ad hoc configured
‘honeynet’ architecture. The results of the experiments conducted by
the authors clearly show how a common pattern that can be found in
most modern toll fraud attacks concerns the adoption of techniques
allowing the attackers to take advantage from the malicious use of the

provider's infrastructure without incurring in any additional costs.
We conclude this section by mentioning the work contained in

Rozsnyai et al. (2007), whose ideas, though not directly related to the
VoIP ecosystem, show a lot of similarities with the approach we
propose for Kerberos. Indeed, the authors of the cited work propose
an event-based architecture for the prevention and detection of frauds,
by focusing on a demonstration scenario associated with on-line
gambling. The proposed architecture, called SARI (Sense And
Respond Infrastructure), leverages the same Complex Event
Processing (CEP) approach we propose for Kerberos. It is capable to
process large amounts of events and provides functions to monitor,
configure and optimize business processes in real-time.

3. The kerberos architecture

A high-level view of the Kerberos architecture is sketched in Fig. 1.
On the top left part of the picture we have the OCS, which is a producer
of charging events associated with ongoing calls. Such events are
published onto a dedicated event channel, which the Kerberos engine
(on the right side of the picture) is subscribed to as a consumer entity.
All of the events eventually pass through the Kerberos rule-based
processing engine (right part of the picture), which accomplishes two
main tasks: (i) generating (and storing into a dedicated database) an
alert whenever a sequence of events matches a specific rule template;
(ii) producing and storing in a dedicated database, at the end of each
monitored call, a Call Detail Record (CDR) suitable for off-line analysis.
The lower left part of the picture shows how Kerberos interacts with a
properly authenticated administrative entity by notifying it about alert
situations through different channels, namely a push-based web inter-
face, an e-mail message or a phone text message (SMS). As it will be
better explained in the following sections of the paper, the adminis-
trative entity can indeed interact with the Kerberos back-end engine
through a web-based GUI allowing her to perform the following tasks:

• insert new rules into the Kerberos event correlation engine by
properly setting the values of a well defined set of parameterized
rule templates;

• build new rules which do not match any of the pre-defined rule
templates;

• configure the desired notification means associated with the alerts
generated by a specific rule.

As it comes out from the high-level sketch described above,
interaction between Tiscali's OCS and Kerberos has been devised at
the outset as a standard Event Driven Architecture (EDA (McGovern
et al., 2006), see Fig. 2), i.e., a framework specifically oriented towards
the production, detection, consumption and reaction to ‘events’, that is
to say records of a generic activity of interest within the system under

Fig. 1. Kerberos system architecture.
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study.
An EDA is typically realized as a loosely coupled distributed system

whose components interoperate through the exchanging of messages.
In order to cope with the principle of separation of concerns, a critical
role in such systems is played by the event channel, which has to
guarantee that communication among components happens on the
basis of an asynchronous paradigm. This is the reason why event
channels are usually implemented through a dedicated message
oriented middleware allowing for the creation of message queues that
operate on the basis of a publish/subscribe mechanism.

Coming to the event processing engine, Kerberos embraces an
approach falling into the so-called Complex Event Processing (CEP)
category (Luckham, 2008). With this approach it is possible to create
complex events starting from a set of simple events belonging to one or
more event streams. This process can be iterated in order to create
“event hierarchies” allowing to observe and describe system activities at
different levels of detail. At the lowest layer we find simple events
corresponding to activities that are actually performed by the system;
at the higher layers, on the other hand, we deal with events that have
been derived from a set of simple events by leveraging the following
categories of event relationships: (i) temporal: event A happens before
event B; (ii) causal: event A causes event B; (iii) aggregation-based:
event A is an aggregation of events B B B, , …, n1 2 . The above mentioned
relationships can be defined through ad hoc schemes known as event
patterns, which are specified in a suitable language made available by
the event processing engine. When the engine detects the occurrence of
a specified pattern among the event streams it is receiving in input, it
can undertake a well defined action. In the literature, the information
set represented by an event pattern together with its related actions is
typically known as a rule. Kerberos allows the administrator to define
rules associated with the detection of specific patterns within the
stream of events represented by Tiscali's OCS updates.

4. Tiscali's fraud detection functions and rule templates

Before delving into the details of how Kerberos has been imple-
mented, in this section we focus on the process that brought us to the
definition of a well-defined set of fraud detection rule templates
associated with Tiscali's Indoona1 service. In a nutshell, Indoona is
an integrated application allowing users to socially interact (even in
groups) through the exchanging of instant messages, as well as by
calling and video-calling from either a smartphone or a personal
computer. The interesting thing about this application is that it
represents a real-world example of how a WebRTC-enabled peer can
seamlessly get connected (through an ad hoc gateway entity) to a
standard IMS (IP Multimedia Subsystem) architecture. This allows,
among other things, a mobile phone or a browser to place a call to
either a landline or a different mobile device by leveraging the Internet
infrastructure, hence significantly capping costs. Indeed, Tiscali also
offers a promotional service allowing 100 min of free calls, each month,
when calling landlines in Europe and landlines and mobiles in USA,
Canada and China. This promotional service, while appealing for
Indoona subscribers, has been a substantial hassle for Tiscali, due to
the fact that a number of fraudulent ways of exploiting it have been
found by malicious users.

The most challenging swindle impacting Tiscali's infrastructure was

indeed an age-old fraud that has found new life now that most
corporate phone lines run over the Internet. The scheme behind such
frauds is unexpectedly simple. Hackers sign up to lease premium-rate
phone numbers (often used for either sexual-chat, or online psychic
services, or similar activities skirting laws up to the edge of illegality),
from one out of a number of web-based services2 that charge dialers
with high per-minute rates, while giving the lessee a cut of the
revenues. In the United States, such premium-rate numbers are easily
identified by “1-900” prefixes, and the law imposes that callers are
informed they will be charged higher rates. But in other countries, like,
e.g., in Croatia, Poland and Estonia, they can be much trickier to spot
(and can thus easily blend with standard, non-premium numbers). The
payout to the lessees can be as high as 0,25€per minute spent on the
phone. What typically happens, with this kind of frauds, is that hackers
break into a company's (or even a private user's) phone system and
make calls through it to their premium number, typically during night
or over weekends, when it is harder (for the unfortunate victim) to
figure out that something strange is going on. With high-speed
computers, they can place a number of calls simultaneously, hence
forwarding a huge quantity of phone calls to the pay line. The final goal
is for the hacker to get a share of the charges.

With Indoona promotional offer of 100 min of free calls, the above
mentioned fraud becomes even easier, since it does not require at all
that the hacker succeeds in hijacking someone else's phone number
before being able to place the calls. The only thing that is needed is for
the hacker to properly register as an Indoona user. The registration
process actually requires that a phone number is provided and that
such a number is used by the system to send back to the registrant a
verification code via SMS. Unfortunately, this kind of check over the
registrant, which is based on the assumption that all registered
Indoona profiles are associated with SIM cards, can be easily circum-
vented by relying, once again, on on-line services3 which basically allow
users to receive SMS text messages in the absence of a real SIM card.
By leveraging the above mentioned means, a malicious user can easily
collect a relevant number of ‘fake’ Indoona profiles by running a script
which automates the registration procedure.

From the discussion above, it follows that a good fraud detection
system for Tiscali needs to be capable of keeping track of the most
active users of the architecture, in terms of both ‘callers’ (users who
place calls at the highest frequency) and ‘callees’ (users who receive
calls at the highest frequency). Such users are indeed clear indicators of
ongoing out-of-profile activities, among which there is the highest
probability of finding malicious behaviors. The ‘callers’ perspective is
useful to spot malicious users placing automated calls, whereas the
‘callees’ perspective helps identify the targets of such calls (hence
telling premium-rate numbers apart from standard ones).

A further detection parameter is definitely represented by the
capability of leveraging the ‘free calls’ promotional service offered by
Indoona. A good detection system will hence need to keep track of
those users who generate a significant amount of ‘free’ traffic.

As a matter of fact, smart malicious users have also found ways of
exploiting non-free calls when implementing their attack plans. The
idea behind these specific attack patterns is to make charged calls to
premium-rate numbers: the cost of the call (incurred by the hacker) is
paid back with the called premium-rate number revenues, which are
typically at least an order of magnitude higher. This consideration
entails that the fraud detection system cannot just rely on the analysis
of free calls, but rather has to also keep track of those users who
generate a significant amount of paid traffic.

In summary, the envisaged detection system must compute real-
time statistics about managed calls, generate an alert (e.g., via e-mail
and/or SMS) as soon as a suspicious behavior is detected and be

Fig. 2. Event Driven Architecture.

1 http://www.indoona.com

2 See, e.g., http://www.premiumrateinternational.com/
3 See, e.g., http://www.it.receive-sms-online.info/
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flexible enough to allow for the definition of a customizable set of rules
for the identification of users’ suspicious behaviors. It is well-known, in
fact, that attack patterns keep on changing over time, hence calling for
an extreme flexibility on the opponent detection systems.

Kerberos has hence been conceived at the outset as a customizable
architecture allowing its administrators to easily add, update and delete
fraud detection rules, while also offering a basic set of ‘blueprints’
under the form of parameterized rule templates. The templates in
question are built around a number of different facets of the system and
call for the capability of tracking both the evolution of a single call and
of a number of different calls sharing one or more property and
concurring to the definition of a potential fraud pattern.

Based on the general considerations about the typical frauds
perpetrated over Indoona, we have identified the following non-
exhaustive list of parameterized templates:

1. A PSTN (Public Switched Telephone Network) number is called for
free by at least [X] different Indoona users in the past [Y] hours;

2. A PSTN number receives at least [X] minutes of free calls in the past
[Y] hours;

3. A specific Indoona caller consumes more than [X] minutes of free
calls towards just [Y] PSTN numbers in the past [Z] hours;

4. A specific Indoona caller consumes more than [X] €of non-free calls
in the past [Y] hours.

The mentioned blueprints try and capture most of the information
that is needed in order to reliably spot fraud attempts like the ones we
discussed at the beginning of this section. Most of them are indeed
targeted at identifying all the potential situations in which someone is
making a significant number of calls (either for free or at a very low
charge) towards a PSTN number behind which there are chances that a
premium-rate service is lurking.

Clearly, these are the templates that we devised for the specific case
of the Indoona architecture managed by Tiscali. Nonetheless, the
system we architected can be easily tailored to different operational
scenarios, since it allows for the introduction (even “on-the-fly”, i.e., at
run time) of newly created rules defined by the system's administrator.
The implementation of such user-defined rule templates is briefly
discussed in Section 5.8.1.

4.1. OCS events format

Since OCS events play a major role in the Kerberos architecture, we
are going to take a closer look at them. Each such event is indeed a
tuple comprising the following pieces of information:

• session_id: a unique identifier associated with a call;

• caller: extension of the user placing the call;

• callee: extension of the user receiving the call;

• dest_domain: terminating domain for the call;

• term_cause: a standard identifier for the call termination cause, in
full compliance with ITU-T Q.850 Recommendation (Uberti and
Jennings, 1998);

• start_time: time at which the call has started;

• used_balance: credit consumed by the caller;

• used_time: call duration;

• req_type: indicates whether the tuple in question refers to the
initiation of a new call (req_type=0), to an update associated with an
ongoing call (req_type=1), or to the termination of an existing call
(req_type=2);

• timestamp: the exact time at which the tuple in question has been
created at the OCS.

In summary, the OCS generates, for each call, exactly one event
with req_type=0, zero or more events with req_type=1 and exactly one
event with req_type=2 upon termination of the call. Some of the fields

in the generated tuples (session_id, caller, callee, dest_domain,
start_time) never change during a call, whereas the others can be
updated when req_type equals either 1 (used_balance, used_time) or
2 (used_balance, used_time and term_cause).

5. Kerberos implementation

In this section we focus on the implementation of Kerberos. As
already anticipated, Kerberos has been structured as a COMET-based
(Crane and McCarthy, 2009) Rich Internet Application (RIA) offering
to the administrator a friendly Web GUI that can be used both to
configure the overall behavior of the system and to graphically present
push-based notifications (call statistics, alerts, etc.) coming from the
core system components running in the back-end. Apart from the real-
time functionality which represents the main focus of this paper,
Kerberos also offers a number of off-line CDR analysis features by
seamlessly integrating with a widely deployed open source tool called
CDR-Stats.4 With respect to this last point, the CDRs generated by
Kerberos (as soon as a call terminates, i.e., upon reception of a tuple
with req_type=2) get stored in a database that feeds an instance of the
CDR-Stats system running as one further backend component and
whose web interface is integrated in the Kerberos Web GUI as an
independent tab.

5.1. Kerberos event engine

Coming back to the real-time functionality of the system, the core
component is definitely represented by the Event Engine which is in
charge of performing the mentioned Complex Event Processing tasks.
For this part of the system Kerberos relies on Esper5, an open source
CEP engine which can be easily integrated into Java-based applica-
tions.

5.1.1. Stateless vs stateful processing in esper
The Esper engine leveraged by Kerberos is capable of going beyond

stateless processing of “streams”, where by the term stream we refer to
a flow of messages (often called events) spread over a well-defined
time-frame. Indeed, when analyzing a stream, the needed processing
might be either stateless or stateful, depending on the required use of
working memory. More precisely, working memory can be associated
with the slice of memory used by the processing engine to make
inferences, processing or computing. Actions may or may not change
the state of the working memory. For example, if a stock's prize change
is an event and we also store the number of occurrences of the prize
reaching a threshold value of ‘X′ $ during the day and use this ‘fact’
(number of threshold breaches) to take other action, the processing
would be called stateful. If we do not take into account the number of
breaches during the day and treat every event (stock's prize reaching X
$) independently to take an uncorrelated action (like, e.g., sending a
broadcast notification), the processing would be called stateless.
Stateless processing does not really call for a Complex Event
Processor (CEP) engine and could instead rely on simpler systems
called ‘rule engines’. Rules define actions for a given condition. For
example: “If the stock's prize reaches a value of X, send a broadcast
notification to subscribers’. Stock's prize reaching X is an event.
Sending out the broadcast notification is an action corresponding to
the event. The action would happen when the condition is met. An
engine that is able to process rules such as above is a rule engine.

It is typical to use the term Rule Engine with stateless processing
and CEP with stateful processing of events. As already stated, the “C” in
the CEP stands for Complex, which generally means that the engine
takes into account multiple events and often the state of facts or

4 http://www.cdr-stats.org
5 http://www.espertech.com/

L. Manunza et al. Journal of Network and Computer Applications 80 (2017) 22–34

25



concepts (for example the number of threshold breaches) to take an
action.

CEP is often used for pattern detection. Let us understand this
better by using the stock's prize example we have been using above.
“Given the prize has reached a value of X (Event 1) and given the
number of such occurrences is 7 or more (facts), send an alert to the
financial control department”.

CEP is also often used for sliding window implementation, which
uses time interval as a condition. An example could be a flight sending
information to the central monitoring system. If a flight sends out GPS
information at specific points in time and has not sent the any GPS
update during the last 30 min, the central monitoring system sends an
alert to the closest air traffic control tower for the last received GPS
location. As it comes out from the example above, in this case the ‘time’
is itself an event and the passage of time (i.e., a (sliding window) is a
condition.

We finally remark that CEP is also used for forward and backward
chaining of events. To summarise Rule engines are good for stateless
processing (any preprocessing, simple rule execution) and CEP for
stateful processing (correlate or aggregate events over a time window,
pattern detection involving multiple events or facts or in general
anything that requires the engine to be aware of the state of the
working memory to take an action). Esper is actually suitable for both
stateless and stateful processing needs. As it will come out from the
following discussion, the events we need to deal with for fraud
detection purposes fall, in the most general case, in the realm of
stateful processing.

5.1.2. Esper inner workings
With Esper, events can be associated with Java objects (the engine

actually uses the term POJO, standing for Plain Old Java Object). In a
nutshell, an event is represented as a Java class with a member variable
for each event property and getter methods adhering to the Java beans
convention. With this approach, as soon as an event occurs, an
application which uses Esper simply creates an object belonging to
the class that has been associated with that specific event. In order to
define the criteria for the detection of the occurrence of either a specific
event or a scheme representing a well defined relationship among
events, Esper makes use of a declarative language called EPL (Event
Processing Language), whose syntax, while recalling standard SQL,
actually differs from it since it works on event series rather than data
tables. An EPL expression (also called statement) hence allows to infer
(or aggregate) information starting from one or more event streams.

Esper adopts a publish/subscribe approach: Epser's engine sends
information derived from a statement to ad hoc defined listener objects
that have previously performed an explicit subscribe operation. In
practice, a listener has to obtain a reference to an instance of the Esper
engine and use it to both register a specific statement and subscribe
itself as a listener of the events that such a statement is going to
generate.

Kerberos also leverages some advanced features made available by
Esper, among which we cite the so-called view. A view is simply a

subset of the events that have to be analyzed by the event processing
engine. A couple of standard views, called windows, are available in
Esper: (i) length window: tells the statement to only process the latest
n events in a stream; (ii) time window: tells the statement to only
process the events falling in a well defined time frame. Windows are
often employed in conjunction with a number of predefined aggrega-
tion functions (e.g., count(property), sum(property), etc.) which take
an event property as an input parameter and, based on the values that
such a property assumes within the events belonging to the window in
question, compute a single value by applying a well-known function
(count, sum, average, etc.). As an example of the application of the
above mentioned concepts in Kerberos, we report below the Esper
statement implementing rule template number 2 associated with REQ-
9 of Section 4:

SELECT callee, sum(freeTime) FROM ClosedCallEvent.
win:time(“+timeRange+”) WHERE destDomain LIKE ‘%PSTN%’

GROUP BY callee”.
As the reader will easily recognize, the above statement allows

Kerberos to keep track of the duration of free calls received by a specific
PSTN user in a well defined time frame.

5.2. Event channel

With reference to the Event Driven Architecture discussed in
Section 3, the event channel between Tiscali's OCS and Kerberos has
been implemented through the RabbitMQ6 framework. RabbitMQ is an
open source software allowing for the exchanging of messages among
heterogeneous applications operating in a distributed environment. In
this respect, such a framework belongs to the so-called Message
Oriented Middleware (MOM) category, since it enables asynchronous
communication among loosely coupled interacting components (see
Fig. 3). A MOM is exactly what was needed in our case, since we had
loosely coupled interaction among our system requirements.

OCS events get published onto the event channel in JSON
(JavaScript Object Notation) format. Kerberos, acting as the
RabitMQ consumer, parses the events it receives and creates the
proper Esper event objects, as described above.

5.3. The observer pattern in kerberos

In order to clearly separate event processing from event visualiza-
tion activities, in Kerberos we made use of the well-known Observer
pattern.

Such a pattern envisages the presence of: (i) a Subject object whose
state can change over time; (ii) zero or more Observer objects which
are interested in receiving state change notifications associated with
the Subject object.

The Web application we devised for Kerberos is built around the
classical Model-View-Controller (MVC) approach. It contains some
real-time graphs about ongoing calls and alerts, fed with data gener-
ated by a number of Kerberos inner classes playing the role of the
Subject in the Observer pattern. The class acting as a controller in the
MVC architecture of the system (and which looks after graph updates
in the Web consolle) is hence playing the Observer role with respect to
the mentioned Subject classes.

5.4. Event representation and management

The first part of the sequence diagram in Fig. 4 illustrates how
Kerberos manages OCS update events. The classes RabbitMqProducer
and RabbitMqConsumer represent, respectively, the OCS-side process
producing events and the Kerberos-side process consuming them, as
briefly illustrated in Section 5.2.

Fig. 3. The role of RabbitMQ as a Message Oriented Middleware. 6 https://www.rabbitmq.com/
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The class CallListener represents a single call between two users. It
is created upon reception of an OCS event having the req_type field
equal to 0. Once created, a CallListener instance has to subscribe to
updates (i.e., events with the same session_id field of the tuple which
triggered the listener's instantiation, but with reqtype = 1) associated
with the specific call in question. Each such event is used to properly
update call statistics (thanks to fields like duration, used_balance,
free_time, etc.). Eventually, a terminating tuple (i.e., an event with the
same session_id field of the tuple which triggered the listener's
instantiation, but with reqtype = 2) will arrive, hence triggering the
following actions: (i) creation of a standard CDR associated with the
call, suitable for logging purposes as well as offline analysis; (ii)
generation of a brand new event, called ClosedCallEvent, which
represents a signal that the call in question is terminated. Such an
event can be used by Kerberos during what we call “inter-call
processing” activities, i.e., all those event processing tasks that infer
information from a set of calls rather than just computing statistical
summaries associated with a single call.

5.5. Pre-defined rules implementation

As explained in Section 4, Kerberos is configured to operate with at
least a set of four pre-defined rules whose structure has come out from
the requirements analysis and system specification phases. The class
diagram in Fig. 5 illustrates how such rules have been implemented. In
summary, each detection rule properly specializes the behavior of a
class called RuleListener (which in turns implements the standard
UpdateListener interface made available by Esper) by customizing the
implementation of an abstract method called createExpression(),

whose goal is the creation of the EQL statemet associated with the
rule in question. Each such class creates the related Esper statement
and subscribes itself as a listener of the update events associated with
it.

The companion class called RuleManager is instead used for
management purposes and hence takes care of rule creation and
deletion, as well as notification procedures (i.e., logging, sending alert
information through SMS and/or e-mail to the specified set of
recipients, etc).

5.6. Inter-call rules

The middle box in the sequence diagram in Fig. 4 illustrates what
happens in the system upon reception of an update event characterized
by reqtype = 2. As already anticipated, such an event represents a signal
that an ongoing call has just terminated. In such a case, the
CallListener object associated with the call in question completes the
computation of call statistics and prepares a new event (called
ClosedCallEvent), which will be in turn analyzed by what we have
called ‘inter-call rules’. The newly created event is sent to the Esper
engine and from there notified to the registered rule listener classes
introduced in the previous subsection. If the received event matches
the specific pattern associated with any such listener, the RuleManager
is contacted and an alert is raised.

5.7. Intra-call rules

The last part of the sequence diagram in Fig. 4 gives a complete
picture of the operation of the system, by showing the behavior of

Fig. 4. Sequence diagram associated with the management of events produced by the OCS.
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Kerberos in case of reception of an event associated with an ongoing
call (i.e., characterized by reqtype = 1). Such events are actually
consumed by those classes of the system which implement the so-
called ‘intra-call’ logic. By focusing on the final part of the diagram, we
can notice how Esper sends a copy of the OngoingCallEvent also to
customized versions of the afore-mentioned RuleListener abstract
class, whose main purpose is the definition of a specific intra-call
statement compliant with the generic pattern reported below:

SELECT <property > FROM OngoingCallEvent [additional
clauses].

The creation and activation of intra-call rule patterns is illustrated,
among other things, in the next subsection.

5.8. User-defined rules creation

Kerberos also allows for the creation of user-defined rule templates.
This is achieved through the graphical interface reported in Fig. 6. Such
an interface basically allows for the definition of a set of generic rules,
each associated with a specific pair ‘caller/callee’ and a well-defined set

of constraints (number of free/paid seconds consumed by the call, cost
associated with the call, duration of the call), in a predetermined time
frame.

A corner case is represented by the creation of a rule in which either
the caller, or the callee (or both) are not specified. In such a case, we do
not talk anymore of a caller and a callee, but rather specify either
incoming or outgoing calls between any pair of users (see Fig. 7). With
respect to the indication of a call's ‘direction’, we invite the reader to
ponder the difference between a rule like “Any user makes calls towards
any other user, for a total of at least 100 min” and “Any user receives
calls from any other user, for a total of at least 100 min”. As Fig. 7
shows, in this case we also add a further filter (in the constraints
section) associated with the specification of the prefix of either the
caller or the callee (or both). The mentioned constraints can be used,
e.g., to spot calls to and from a well-defined geographical area,
associated with a specific prefix code.

Fig. 5. Class diagram associated with predefined rules.

Fig. 6. Web GUI for user-defined rules construction. Fig. 7. Building a ‘generic’ rule.
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Once all of the parameters needed in order to build a new rule have
been inserted, the user can add it to the available rule catalog. A newly
created rule is not necessarily ‘activated’ in the system, since the related
Esper statement in not yet registered and hence the rule has no impact
on the analysis of the events received from the OCS. The activation
process is explicitly triggered by pressing the ‘activate’ button on the
system's GUI. Similarly, rules can be either deactivated or deleted from
the system (see Fig. 8).

5.8.1. User-defined rules implementation
User-defined rules have been implemented similarly to pre-defined

ones: they are associated with Java classes, subscribe as listeners of
specific Esper statements and send alerts whenever the pattern they
implement is matched. The major difference between the two cate-
gories of rules resides in the fact that user-defined rules get created
during system operation and hence need to be compiled and loaded at
run time. To achieve this goal, we leveraged Java code injection, as
made available by a well-known library called Javassist7, which
enables Java programs to define new classes at runtime, as well as
modify a class file when the Java Virtual machine (JVM) loads it.
Javassist provides two levels of API: source level and bytecode level.
With the former API, users can edit a class file as they are used to do
(i.e., with the vocabulary of the Java language) with no need to master
Java bytecode specifications. Javassist compiles it on the fly. When
developing support for user-defined rules in Kerberos, we opted for the
source level API.

6. Performance assessment and system's scalability

Kerberos has been the subject of a thorough experimental campaign
aimed at assessing its performance. Before carrying out such a
campaign, we have preliminarily performed a number of functional
tests whose goal was to verify that the system behaved as expected
when fed with generic event patterns. The functional tests, which are
omitted here for the sake of brevity, have been based on ad hoc
generated event patterns and have proved that: (iii) both inter-call and
intra-call rule instances perform as expected; (ii) alerts are correctly
generated (and logged), in the presence of both the pre-defined set of
rules and a variegated set of user-defined templates; (iii) a new CDR is
correctly generated as soon as a call ends.

The technical specification of the server used for the trials is the
following: (i) 8 CPU Intel(R) core(TM) i7-4770 s @3.10 GHz; (ii)
16 GB of RAM memory; (iii) Ubuntu 14.10 LTS Operating System.

To generate the test load we have developed a dedicated stressing
tool. The tool, written in Java, emulates the behavior of the OCS by
acting as the producer of the events published onto the RabbitMQ
queue which Kerberos connects to in order to asynchronously receive
call-related information. OCS events are actually retrieved from a
database allowing us to properly reproduce a well-defined call scenario

in order to make comparative evaluations under different configura-
tions of the system. The stressing tool can hence be configured with the
following three parameters: (i) the specific database containing OCS
events; (ii) the specific database table from which events have to be
fetched; (iii) the specific event generation frequency.

In order to let Kerberos work with a realistic set of events, we have
made use of a real dataset represented by a copy of Tiscali's event logs
associated with a period of time of one week, between December 1st

2014 and December 7th 2014. Such logs contain 562.533 events
corresponding to 119.034 calls. For privacy reasons, we're not going
to disclose any detailed information about the logs in question. This
does not at all undermine the results of the analysis, since what is
needed for our purposes is just high-level information about call
patterns, generic users’ behaviors and capability of the system to keep
the pace of OCS event generation as long as the overall load of the
system increases.

Fig. 9 reports the profile of the analyzed traffic, together with its
slightly increasing trendline (in red).

The above reported data allow us to draw some considerations.
First, we can state that a single call is associated, on average, with
around 5 (namely, 4,72) events. If we have 119.034 calls in a week, we
basically have to consider around 17.000 calls per day, which means
708 calls per hour, or, equivalently, about 11,8 calls per minute. In
terms of events, we then have about 55,74 events per minute, i.e., 0,92
events per second. An event generation frequency of 1 event/sec can
hence be considered as close as possible to Tiscali's current operational
scenario.

6.1. Long-run test

The so-called “long-run” test has been carried out with the
following parameter set: (i) event generation frequency=250 msec;
(ii) rule instances=8 (2 instances per pre-defined category); (ii) test
duration=8 h. Under these conditions Kerberos has processed 150.310
events associated with 32.480 calls related to an actual time frame of
about 36 h. During the test, 3.222 alerts have been generated, as
reported in the scatter plot in Fig. 10.

CPU and memory utilization data are instead reported in Fig. 11. As
expected, the picture clearly shows that Kerberos is a memory-
intensive application. CPU utilization is in fact definitely low for the
entire duration of the test. Coming to memory, its average utilization
level stays around 500 MB with the mentioned (slightly increasing)
traffic profile. We can hence claim that Kerberos shows good perfor-
mance when subjected to a realistic load.

6.2. Stress tests

In this section we focus on the results of a dedicated stress-testing
campaign we devised for our system. We will first focus on increasing
the event generation frequency (given a fixed set of rules). Hence, we
will analyze the behavior of the system in the presence of an increasing

Fig. 8. User-defined rules list example.

7 http://jboss-javassist.github.io/javassist/
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number of (either pre-defined or user-defined) rules.

6.2.1. Increasing OCS event generation frequency
In this testing scenario, we progressively increase the rate at which

events are sent to a Kerberos system hosting the following set of pre-

defined rules:

1. An Indoona user makes free calls to more than 2 callees
in a 1 hour time window;

2. An Indoona user makes more than 6.000 s of free calls in a

Fig. 9. Tiscali's Indoona traffic profile between December 1st 2014 and December 7th 2014. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 10. Alerts generated during the long-run test.

Fig. 11. CPU and memory consumption measured during the long-run test.
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2 hours time window;
3. An Indoona user makes more than 100 s free calls towards

at most 1 callee in a 1 hour time window;
4. An Indoona user spends more than 1€on charged calls in a

1 hour time window.

We have run one-hour-long tests and considered an event genera-
tion frequency of, respectively, 0,1 – 1 – 10 and 100 events/sec. For the
sake of brevity, we report in Fig. 12 the results associated with the two
extreme cases (0,1 and 100 events/sec). The graphs show both memory
and CPU consumption. For the picture on the left, Kerberos has
analyzed 97 calls and has not generated any alert. For what concerns
the picture on the right, the system has instead processed (in just one
hour, corresponding to a real-world profile of about 4 days) 79.050
calls, for which 2.887 alerts have been produced. As witnessed by the
CPU and memory curves in the graph, the system attains good
performance also in this somewhat extreme working condition.

6.2.2. Increasing rule instances
In this testing scenario we have fixed the event generation

frequency (at a value of 10 events/sec) and progressively increased
the number of rules (both pre-defined and user-defined) configured
into the system. In the case of pre-defined rules, this has been done by
simply replicating the basic rule set we described in the previous
subsection. The increase has been done in a stepwise fashion, 5 rules at
a time, starting at 5 and stopping at 50 rule instances. The same holds
true for the user-defined class, whose basic set has been constructed by
choosing 5 templates covering a widely differentiated configuration

scenario. Once again, in Fig. 13 we just present the results of the
analysis in the most challenging scenarios, namely those related to the
presence of 50 rule instances (either pre-defined or user-defined).

The left-hand graph shows CPU and memory consumption for the
pre-defined rules case. We remind the reader that the test lasted for
about one hour. During this time frame, Kerberos has analyzed 7.768
calls, raising a total of 1.521 alerts. The curves in the graph show how
Kerberos is able to easily keep the pace of OCS-generated events in the
mentioned setup.

Coming to user-defined rules, the graph on the right reports a
slightly higher load of the system, in terms of both CPU and memory
consumption. This is actually due to the fact that this specific set of
rules has led the system to generate 18.818 alerts (while analyzing
7.818 calls). Such alerts, for which a scatter plot is reported in Fig. 14,
are an order of magnitude higher than those associated with the pre-
defined rules scenario. Also with this last setup, Kerberos has none-
theless demonstrated its ability to cope with a massive events stream
whose features have to be properly analyzed (and put into correlation)
in real-time.

6.3. Profiling kerberos

As witnessed by the above discussed scalability figures, by lever-
aging the Esper framework Kerberos has been made capable of
handling very high throughput streams with very little latency between
event reception and output result posting. Kerberos itself, as well as
Esper, runs on top of a JVM, so at least some familiarity with JVM
tuning is needed in order to arrive at optimal performance. Key

Fig. 12. Stress testing results: increasing event generation frequency. (a) 0,1 events/sec, 4 pre-defined rules, (b) 100 events/sec, 4 pre-defined rules.

Fig. 13. Stress testing results: increasing the number of rules. (a) 10 events/sec, 50 pre-defined rules, (b) 10 events/sec, 50 user-defined rules.
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parameters to be taken into account include minimum and maximum
heap memory, as well as so called ‘nursery’ heap sizes. Statements with
time-based data windows, in particular, can consume large amounts of
memory as their size and length can become large as well. In particular,
for time-based data windows, one needs to be aware that the memory
consumed depends on the actual event stream input throughput. Event
pattern instances also consume memory.

Kerberos management console receives output events from Esper
statements via strongly-typed subscriber POJO objects. Such output
events are delivered by the application or timer thread(s) that sends an
input event into the engine instance. Furthermore, the processing of
output events that a listener (or subscriber) performs, temporarily
blocks the thread until the processing completes and may thus reduce
throughput. We found out that it is therefore highly beneficial to
process output events asynchronously and not block the Esper engine
while an output event is being elaborated by an application's listener,
especially if the listener itself performs blocking I/O operations.

Since we were interested in understanding in more depth the
potential performance bottlenecks of Kerberos, we also carried out
some fine-grained profiling of the entire application's state, by lever-
aging the well known New Relic Application Performance Monitoring
(APM) framework. Based on the consideration that the key perfor-
mance indicator is in our case represented by dynamic memory
allocation and management, we focused on monitoring the behavior
of heap memory. This is justified by the fact that Kerberos works, in the
most challenging cases, with time-based processing of aggregated event
streams. The larger the time window, the higher the load (especially the
memory load) on the detection system. Also, rules that require the
system to perform a lot of “join-like” operations (by borrowing a term
coming from databases and referring to queries which span across
multiple tables) on the monitored event streams definitely incur in a
higher overhead. As expected, heap memory consumption turned out
to be the critical parameter to monitor, as witnessed by the graphs in
Fig. 15, related to a typical high-load (i.e., 100 events/sec and 100
active time-based rules) execution of the system. The graphs show that:
(i) consumed heap memory is an order of magnitude higher than non-
heap memory, on average; (ii) non-heap memory stays constant over
time (Fig. 15(a)), whereas heap memory keeps on growing (Fig. 15(b))
as long as the system tracks long-lived event streams.

The mentioned memory footprints are associated with the manage-
ment of an overall number of about 9.000 classes, as showed in Fig. 16.

Delving further into the details of how the heap is actually managed
during execution, we herein briefly recall that Java memory space is
divided into three regions (or generations) for the sake of garbage
collection: (i) New Generation; (ii) Old (or tenured) Generation; (iii)

Fig. 14. Alerts scatter plot with 10 events/sec and 50 user-defined rules.

Fig. 15. Heap vs Non-heap memory allocation. (a) Kerberos usage of non-heap memory,
(b) Kerberos usage of heap memory.

Fig. 16. Kerberos allocated classes during the profiling experiment.
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Perm (i.e., permanent) Space. The former two categories (New and
Old) are managed through the heap, whereas the latter (Perm) is dealt
with in the stack. It holds all the reflective data of the virtual machine
itself and stores class level details by loading and unloading classes,
methods, String pools, etc.. Coming back to the heap, the JVM allocates
every generation its own memory pool. It has at least one memory pool
and may create or remove memory pools during execution. More
precisely, we have the following sub-categories:

1. Eden Space, associated with heap new (young) generation: the pool
from which memory is ‘initially’ allocated for most objects;

2. Survivor Space, also associated with heap young generation: the
pool containing objects that have survived Garbage Collection of the
eden space;

3. Tenured Generation, associated with heap old generation: the pool
containing objects that have existed for some time in the survivor
space.

The VM initially assigns all objects to the eden space, and most
objects die there. When it performs a minor (or partial) GC, the VM
moves any remaining objects from the eden space to one of the survivor
spaces. The VM moves objects that live long enough in the survivor
spaces to the “tenured” space in the old generation. When the tenured
generation fills up, there is a full Garbage Collection that is often much
slower because it involves all ‘live’ objects. From the analysis of the
graphs in Fig. 17 we can clearly identify the evolution of memory
allocation during the trial in question. Basically, due to the high
number of active objects associated with the on-line tracking of
monitored calls within Kerberos, most of the dynamically allocated
objects keep on being active for a long time, hence causing a double
transition form the eden space (Fig. 17(a)) to the survivor space
(Fig. 17(b)) and then to the tenured, or Old Gen, space (Fig. 17(c))
which keeps on growing at a fairly sustained rate. This causes the

garbage collector to perform, on a regular basis, i.e., every time the
previously committed Olg Gen heap allocation becomes insufficient
(Fig. 17(d)), a full garbage collection.

7. Conclusions and future work

In this paper we presented Kerberos, a system for real-time
detection of frauds in next-generation VoIP networks. Kerberos has
been designed and implemented with a well defined set of require-
ments in mind, ranging from scalability to adaptability to dynamic
operational scenarios. The system leverages complex event processing
techniques, combined with components separation and asynchronous
communication, in order to achieve good performance in the presence
of a significant stream of call-related events. The system is currently
operating “on stage” inside Tiscali's infrastructure and is almost ready
to go into production.

Many are the possible improvements to the system, which all
represent the subject of our future work. We are indeed improving
both the detection and the remediation parts of the system. With
respect to the former, and based on the experiences some of us have
made in the past in the field of anomaly-based intrusion detection, we
are focusing on improving the capability of the system to self-configure
by somehow ‘learning’ from the traffic patterns observed during its past
operation. Coming to remediation, we have recently started to devise
solutions aimed at effectively dealing with an ongoing fraud while at
the same time retrieving as much information as possible from it. In
particular, apart from somehow standard black-listing strategies, we
are investigating the adoption of call diversion solutions whereby
fraudsters’ calls are sent to an advanced honeypot component which
tries to gather as many details as possible from them. Information
collected at the honeypot side is then processed and exploited in order
to further improve the detection part of the system.

Fig. 17. Heap memory usage: detailed view. (a) Heap usage: “Eden” space, (b) Heap usage: “Survivor” space, (c) Heap usage: “Old Gen” space, (d) Garbage Collector CPU utilization.
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