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A B S T R A C T

The human DKC1 gene encodes dyskerin, an evolutionarily conserved nuclear protein whose overexpression
represents a common trait of many types of aggressive sporadic cancers. As a crucial component of the nuclear
H/ACA snoRNP complexes, dyskerin is involved in a variety of essential processes, including telomere main-
tenance, splicing efficiency, ribosome biogenesis, snoRNAs stabilization and stress response. Although multiple
minor dyskerin splicing isoforms have been identified, their functions remain to be defined. Considering that
low-abundance splice variants could contribute to the wide functional repertoire attributed to dyskerin, possibly
having more specialized tasks or playing significant roles in changing cell status, we investigated in more detail
the biological roles of a truncated dyskerin isoform that lacks the C-terminal nuclear localization signal and
shows a prevalent cytoplasmic localization. Here we show that this dyskerin variant can boost energy meta-
bolism and improve respiration, ultimately conferring a ROS adaptive response and a growth advantage to cells.
These results reveal an unexpected involvement of DKC1 in energy metabolism, highlighting a previously un-
derscored role in the regulation of metabolic cell homeostasis.

1. Introduction

The human DKC1 gene encodes dyskerin, a highly conserved nu-
clear protein. Within the nucleus, dyskerin participates in the small
nucleolar ribonucleoprotein complexes (snoRNPs), where it binds to H/
ACA small nucleolar RNAs (snoRNAs) and acts as a snoRNA-guided
pseudouridine synthase, directing the enzymatic conversion of specific
uridines to pseudouridines on target RNAs (reviewed by [1]). Dyskerin
also participates in the telomerase active complex, contributing to
safeguarding telomere integrity [2]. Considering this wide repertoire of
essential functions, it is not surprising that DKC1 loss-of-function causes
X-linked dyskeratosis congenita and its severe variant Hoyeraal-Hrei-
darsson syndrome, both characterized by a plethora of disparate
symptoms and affecting highly renewing tissues [3–6]. While a large
number of studies have deeply investigated the consequences triggered
by DKC1 downregulation (reviewed by [5]), to date, little is known
about the effects of DKC1 overexpression, despite being well established
that it represents a hallmark of many types of sporadic cancers [7–17].

In addition, DKC1 overexpression is associated with resistance to
cancer-treating agents and tumor aggressiveness, and is thus considered
a marker of poor prognosis [9,14–18]. It is worth noting that DKC1
encodes multiple minor splice isoforms [19,20] whose functions remain
poorly understood. In particular, a truncated dyskerin variant that re-
tains intron 12, shows a peculiar cytoplasmic localization and stimu-
lates cell proliferation [19], raising the possibility that it is involved in
additional, previously undetermined, biological functions. Consistent
with this view, this specific splice variant has recently been related to
lipid metabolism [21]. Here we further explored the impact of this
dyskerin isoform on cell physiology, and demonstrated that it exhibits
new, uncanonical functions; having the ability to promote a metabolic
shift that enhances mitochondrial functionality, producing a globally
positive impact on oxidative metabolism and conferring a ROS adaptive
response and a growth advantage to cells.
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2. Materials and methods

2.1. Cell culture, rotenone and dimethyl malonate treatments

Stably transfected HeLa clones (3XF-Mock, carrying p3XFLAG-CMV-
10 empty vector; 3XF-Iso3 expressing the FLAG-tagged Isoform 3) used
in these experiments were previously described [19] and cultured in
high glucose (4.5 g/l) DMEM medium. For rotenone treatment, cells
were exposed overnight to 0.25 µM rotenone (R8875, Sigma-Aldrich,
Saint Louis MO) and analyzed by Flow cytometry as described below.
For dimethyl malonate (136441, Sigma) treatment, cells were exposed
to 100 µM dimethyl malonate for 12 h, and viable cells were counted
following 0.4% Trypan Blue (Thermo Fisher Scientific, Waltham, MA)
staining. Quiescent cells were obtained by starvation, upon 18 h culture
in serum-free medium.

2.2. MTT assay

Reduction of (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium
Bromide (MTT) (M2128, Sigma) to formazan salt is dependent on NAD
(P)H-dependent cellular oxidoreductases [22] and reflects cell pro-
liferation and metabolic activities. To measure MTT reduction by col-
orimetric assay, 2.5 * 103–1 * 104 cells were seeded, in triplicate, in flat
bottom 96 wells plates and incubated overnight to allow complete at-
tachment. The following day, cells were washed and incubated for three
hours in 100 µl DMEM without phenol red (D2429, Sigma) supple-
mented with 0.45 mg/ml MTT; the medium was then replaced by
100 µl of 0.1 M HCl in isopropanol and cells were incubated 30 min for
lysis. Resuspension of insoluble formazan and following steps were
according to MTT manufacturer's protocol. Optical densities were re-
corded by a Sinergy H4 spectrophotometer (BioTek, Winooski, VT).

2.3. Oxygen consumption measurements

Trypsinized cells were resuspended in PBS at 5 * 106cells/ml; 106

cells were added to 3 ml of fresh DMEM and oxygen consumption rate
was recorded by a Clark-type electrode (Yellow Springs Instruments
Co., Yellow Springs, OH).

2.4. Immunofluorescence analysis and MitoTracker Green staining

Immunofluorescence microscopy analysis was performed on con-
fluent cells as previously described [19]. Confocal micrographs were
taken by either the Zeiss LSM 700 microscope (Zeiss, Oberkochen,
Germany), or by the multiphoton Leica TCSSP5 MP (Leica, Solms,
Germany), using HC PL IRAPO 40x or 63x water objectives and ana-
lyzed by ImageJ software tools [23]. For LUT quantitative analysis,
confocal images of 3XF-Iso3 and 3XF-Mock cells were captured using
identical filters, laser power and gain settings. The intensity of the
fluorescent signals was calculated from total sum of planes. Obtained
values were normalized in respect to cell areas (MitoTracker Green and
PRDX-2, and reported as Intensity/cell area ratio) or in respect to F-
actin signal (TOM20, and reported as TOM20 intensity/actin intensity
ratio). To measure mitochondrial mass, live cells were stained with
100 nM MitoTracker Green (M7514, Thermo) for 30 min and confocal
pictures were acquired and analyzed as described above. Antibodies
used are listed in Appendix A, Supplemental Table 1.

2.5. qPCR and qRT-PCR analysis

DNA and RNA were extracted using TRI Reagent (T9424, Sigma)
according to the manufacturer's instructions and quantified by
NanoDrop 9000 (Thermo). qRT-PCR experiments aimed at determining
PGC1-α and PPRC1 expression in quiescent cells were performed as
described in [19]; the HPRT1 and GSS housekeeping genes were used
for normalization. For qPCRs, 25 ng total DNA were used. Cycling

profile for amplification of 16 S mt-rRNA gene consisted of; one step at
95 °C for 10 min; 40 two-step cycles at 95 °C for 10 s, and at 60 °C for
60 s. In order to avoid underestimation of the mitochondrial DNA
content due to eventual degradation, the integrity of total DNA was
checked by gel electrophoresis and the length of the amplified fragment
was designed to be 136 bp. The following cycling profile was used for
amplification of the TSH receptor gene; one step 95 °C for 10 min, 40
three-step cycles at 95 °C for 45 s, at 52 °C for 30 s, and at 72 °C for 35 s.
All oligonucleotides were selected using Primer3 software [24] and
synthesized on demand by Sigma; their sequences are listed in
Appendix A, Supplemental Table 2. For PGC1-α expression analysis,
oligonucleotides were derived from regions common to all known iso-
forms.

2.6. Flow cytometry analysis

For TMRE staining, cells were washed three times with PBS, tryp-
sinized and resuspended in staining solution [156 mM NaCl, 3 mM KCl,
2 mM MgSO4, 1.25 mM KH2PO4, 2 mM CaCl2, 10 mM glucose, 10 mM
HEPES and 10 nM TMRE (T669, Thermo)]. After incubation for 20 min
at 37 °C in the dark, the staining solution was discarded and cells were
resuspended in PBS. For H2DCFDA staining, cells were washed three
times with PBS, stained with 50 µM H2DCFDA (D399, Thermo) in
culture media for 30 min at 37 °C in the dark, washed, trypsinized and
resuspended in PBS. For MitoSOX Red staining, cells were washed three
times with PBS, trypsinized and resuspended in culture media con-
taining 5 µM MitoSOX Red (M36008, Thermo) dissolved in DMSO.
After staining for 10 min at 37 °C in the dark, cells were washed and
resuspended in PBS; centrifugation steps were performed in 15 ml
conical tubes at 600×g. Propidium iodide staining, with or without
prior overnight exposure to 0.25 µM rotenone (R8875, Sigma), was
performed as described in [25]. After appropriate staining, cell data
acquisition was performed by FACSCalibur or BD Accuri C6 flow cyt-
ometers (Becton Dickinson, Franklin Lakes NJ). FlowJo vX. 0.7 (FlowJo
LLC, Ashland OR) was used for analysis. Autofluorescent cells were
excluded by red (H2DCFDA) or green (TMRE and MitoSOX Red) signal
following definition of forward Scattering (FSC) and Side Scattering
(SSC) parameters, used to identify cells and exclude debris. Flow cy-
tometry raw data were deposited in flowrepository under the acces-
sions: FR-FCM-ZY2Q for TMRE, FR-FCM-ZY2N for H2DCFDA; FR-FCM-
ZY2X for MitoSOX and FR-FCM-ZY2P for Propidium iodide.

2.7. Evaluation of NAD(P)H and FAD autofluorescence in live cells

In vivo FAD and NAD(P)H signals were measured according to [26]
and recorded by setting the Leica TCSSP5 MP "Laser (MP, MP) (Power)"
at "1747.00 W (720 nm)%", using a HC PL IRAPO 40x water objective
to avoid geometric aberrations. According to the protocol [26], regions
of interest (ROI) were selected on the basis of high mitochondrial
density and fluorescence measured by LAS-Lite 4.2 program (Leica
Microsystems CMS GmbH, Mannheim, Germany); numerical analysis
was performed by Excel software (Microsoft, Redmond, WA).

2.8. Western blotting analysis

Unless otherwise stated, proteins were extracted from confluent
cells and analyzed by western blotting as previously described [19].
The Page ruler (26616, Thermo) was used as protein ladder; β-tubulin
was used as internal loading control. Membrane pictures were taken by
a ChemiDoc XRS+ System (Bio-Rad, Hercules CA), bands densities
analyzed with Image Lab Software (Bio-Rad) and numerical analysis
performed by Excel software (Microsoft). Antibodies used are listed in
Appendix A, Supplemental Table 1.
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Fig. 1. Overexpression of dyskerin Isoform3 boosts respiratory rate and mitochondrial membrane potential. (A) Schematic organization of full-length dyskerin (Isoform1) and
dyskerin Isoform 3, lacking the C-terminal NLS. Colored boxes indicate structural domains: DKCLD, associated N-terminal domain of dyskerin-like proteins of unknown function; TRUB_N,
pseudouridine synthase catalytic domain; PUA, pseudouridine synthase and archaeosine transglycosylase RNA binding domain; orange boxes, lysine-arginine rich NLS sequences. (B)
3XF-Iso3 and control cells (2.5 * 103–1 * 104) were seeded in triplicate, incubated overnight to allow attachment and the following day subjected to MTT assay to measure cell
proliferation and metabolic activities. The amount of precipitated formazan was quantified by absorbance and expressed as optical density. (C) Oxygen consumption rate of 3XF-Iso3 and
control cells was measured by Clark's electrode. Note that respiration, expressed as nmol O2/min * 106 cells, was nearly doubled in 3XF-Iso3 cells. (D) Mitochondrial /nuclear DNA
content was quantified by qPCR; the mitochondrial/nuclear DNA ratio is reported. In this experiment, the 16S rRNA coding region was amplified and normalized with respect to the TSH
receptor (TSHR) single-copy nuclear gene. (E) On the left: LUT quantitative analysis of confocal images of 3XF-Iso3 and 3XF-Mock viable cells, captured under the same conditions, upon
staining with MitoTracker Green (in gray), which is insensitive to mitochondrial ΔΨ and allows a direct visualization of the mitochondrial network. Sum of total confocal planes is shown;
magnification: 40×; scale bars: 10 µm. The white-dashed squares are enlarged in the insets. On the right: to estimate the mitochondrial mass, the intensity of the MitoTracker Green
fluorescent signal was calculated from the same confocal images; values obtained from the sum of total planes were normalized in respect to cell areas and expressed as Intensity/cell area
ratio by ImageJ tools. Data derived from the analysis of n = 90 cells. (F) qRT-PCR analysis of PGC-1α and PPRC1 expression in 3XF-Iso3 and 3XF-Mock quiescent cells; GSS and HPRT1
were used as normalizing reference genes. (G) Histogram representative of PGC-1α expression in 3XF-Iso3 and 3XF-Mock quiescent cells, as derived from western blotting densitometric
quantification normalized with respect to β-tubulin (original data in Supplemental Fig. 1A). (H) Mitochondrial ΔΨ determined by flow cytometry analysis of TMRE stained cells. The
TMRE dye permeates and is sequestered in active mitochondria, so that the amount of sequestered dye is directly dependent on mitochondrial ΔΨ. On the left, data derived from three
different experiments; on the right, one representative experiment. Gate 1 represents the population identified as “cells”; gate 2 the “stained” population. In the right histogram,
fluorescence intensity is plotted vs. cells count. All experiments were performed in triplicate; in B–D, F–H data are expressed as the mean±SD.
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2.9. Statistical analysis

Experiments were performed in biological triplicates; the Mann-
Whitney test for variance analysis was applied. A difference of p<0.05
was considered statistically significant.

3. Results

3.1. Dyskerin isoform 3 boosts energy metabolism

In our previous study, we showed that a truncated dyskerin variant,
named Isoform 3 (hereafter called Iso3) retained all dyskerin functional
domains, with the exception of the C-terminal bipartite nuclear locali-
zation signal (NLS) (see Fig. 1A), and displayed a peculiar subcellular
localization, being predominantly cytoplasmic [19]. To gain more in-
formation about its impact on cell metabolism, we took advantage of
previously obtained stably-transfected HeLa clones (hereafter called
3XF-Iso3) that overexpress this Flag-tagged isoform under the control of
the CMV promoter [19]. First, we performed a (MTT) reduction assay,
commonly used for assessing cell proliferation and metabolic activities.
As showed in Fig. 1B, the reduction of tetrazole to formazan salt
markedly increased in 3XF-Iso3 with respect to control cells (carrying
the p3XFLAG-CMV-10 empty vector; hereafter called 3XF-Mock). Since
MTT reduction is mainly dependent on mitochondrial reductases [22],
we next evaluated the total oxygen consumption rate and found that it
was raised significantly in 3XF-Iso3 cells, indicating that cellular re-
spiration was upregulated (Fig. 1C). Given that mitochondrial activity
generally correlates directly with mitochondrial number/mass, we next
calculated the mitochondrial/nuclear DNA ratio by qPCR. As shown in
Fig. 1D, this value remained substantially unchanged compared to
control cells. To reaffirm this point, we stained cells with MitoTracker
green, which is insensitive to mitochondrial membrane potential (ΔΨ)
and allows the direct visualization of the mitochondrial network. In
these experiments, confocal images of 3XF-Iso3 and 3XF-Mock cells
were acquired with the same parameters and subjected to LUT quan-
titative analysis by ImageJ tools, to precisely quantify the mitochon-
drial mass. To take into consideration the distinct morphologies of 3XF-
Iso3/ 3XF-Mock cells [19], the intensity of the fluorescent signal was
normalized per cell area. Consistent with previous observation, this
analysis indicated that the mitochondrial mass does not increase in
3XF-Iso3 cells (Fig. 1E). We then used reverse qRT-PCR to check the
expression of members of the PGC-1 family of positive regulators of
cellular respiration. Transcription of peroxisome proliferator-activated
receptor gamma coactivator-1alpha (PGC-1α) was found modestly in-
duced (≈ 1.8 fold) in 3XF-Iso3 quiescent cells, while that of peroxisome
proliferator-activated receptor gamma co-activator-related 1 (PPRC1)
slightly decreased (Fig. 1F). PGC-1α expression was further checked by
western blotting analysis (Fig. 1G; Supplemental Fig. 1A). PGC-1α is a
master regulator of mitochondrial activity whose induction can be due
to different physiological context and stimuli; it can exert a positive
impact on cellular respiration by either increasing the number of mi-
tochondria in cells or by improving the respiratory capacity of in-
dividual mitochondria, remodeling their composition (reviewed in
[27]). Given that direct measurements showed that the mitochondrial
mass was unaffected by Iso3 over-expression (Fig. 1D, E), we presumed
that PGC-1α induction in 3XF-Iso3 quiescent cells might contribute to

mitochondrial remodeling. To note, PGC-1α also promotes peroxisomal
biogenesis and remodeling and stimulates the increase in content of
ROS-detoxifying enzymes, thereby improving cell survival during con-
ditions of oxidative stress [27]. Instead, lowered PPRC1 expression has
been associated with elevated basal metabolic rate and increased en-
ergy expenditure [28]. Altogether, these results lead to focus our at-
tention on mitochondrial activity, prompting us to measure the mi-
tochondrial membrane potential. When TMRE-stained cells were
analyzed by Flow cytometry, a significant increase of mitochondrial
membrane polarization was observed in 3XF-Iso3 cells (Fig. 1H). Con-
sidering that mitochondrial ΔΨ is directly linked to the proton gradient
generated through the electron transport chain (ETC), and is a direct
indicator of the efficiency of coupling between respiration and ATP
production, these results converged to indicate that Iso3 overexpression
stimulates respiration efficiency and energy metabolism.

3.2. Dyskerin Iso3 modulates global redox ratio and ROS level

To further investigate the relationship between respiratory effi-
ciency and increased growth rate, we treated cells with rotenone, which
blocks the ETC by specifically inhibiting complex I [29], and analyzed
them by FACS after propidium iodide staining. As shown in Fig. 2A,
3XF-Iso3 cells were more sensitive to rotenone-induced cytotoxicity
compared to controls, suggesting that their enhanced growth rate is
primarily dependent on a higher respiratory efficiency. Next, we de-
termined the cellular global redox level, which is regulated by the
equilibrium between the oxidized and reduced forms of NADH/NAD+,
NADPH/NADP+ [altogether NAD(P)H/NAD(P)+] and FADH2/FAD,
which are the main cellular redox cofactors. NAD(P)H and FAD are the
only two ETC cofactors to be intrinsically fluorescent, with their
fluorescence depending on binding to metabolic enzymes. In fact, NAD
(P)H quantum yield increases, whereas FAD quantum yield decreases,
when they are bound to proteins [30–32]. To precisely determine the
redox ratio, we utilized multiphoton confocal laser microscopy fol-
lowing near-infra red excitation, that allows for the evaluation of the
NAD(P)H and FAD autofluorescence in live cells with high resolution,
while avoiding any staining or cell manipulation [26]. While NAD(P)H
fluorescence was found substantially unchanged in 3XF-Iso3 cells, FAD
fluorescence increased significantly with respect to the control
(Fig. 2B). This resulted in a significant rise in the redox ratio [expressed
as FAD/(FAD + NAD(P)H)], and suggested a more active reduction of
ubiquinone to ubiquinol by complex II, the reaction coupled with
FADH2 oxidation. This view is further supported by the observation
that treatment with dimethyl malonate, a permeable precursor of the
SDH inhibitor malonate, reduced more severely the vitality of 3XF-Iso3
compared to controls, as observed by Trypan Blue viable cell count
(Fig. 2C).

Next, we checked total ROS and mitochondrial superoxide levels by
Flow Cytometry analysis of cells stained with H2DCFDA or MitoSOX
Red, respectively. As shown in Fig. 2D–E, both levels increased upon
Iso3 over-expression. Interestingly, Flow Cytometry of MitoSOX stained
cells revealed that 3XF-Iso3 and control cells were both composed of
two subpopulations, specifically characterized by low or high mi-
tochondrial superoxide levels (note the double peaks in Fig. 2E).
However, the fraction of cells that incorporate higher levels of MitoSOX
increases markedly in 3XF-Iso3 cells (by SE Dymax calculation, more

Fig. 2. Redox state and ROS induction in Isoform 3 over-expressing cells. (A) Cells were stained with propidium iodide and analyzed by flow cytometry in the absence (−) or
following overnight treatment with 0.25 µM rotenone (+). Percentages refer to the total number of examined cells, while plots compare an equal number (10.000) of 3XF-Iso3 and
control cells. Note that the fraction of hypodiploid cells does not increase in untreated 3XF-Iso3 cells, indicating that Iso3 overexpression per se does not affect the healthy state of cell
population; in contrast, this fraction significantly increases in the 3XF-Iso3 cell population upon rotenone treatment. (B) Cellular redox status analyzed by live multiconfocal microscopy
following near-infra red excitation. Upper panel shows confocal micrographs of FAD (green) and NAD(P)H (red) autofluorescence signals; lower table reports statistical analysis of
fluorescence signals from at least 50 analyzed ROI, selected on the basis of their high mitochondrial content; values are expressed as gray scale units. Scale bars: 10 µm. (C) 3XF-Iso3 cells
are more sensitive to malonate treatment compared to controls. In both cases, the treatment induces a marked change in cells (on the left). (D–E) Total ROS and mitochondrial superoxide
levels were measured upon H2DCFDA or MitoSOX Red staining and flow cytometry analysis. Right inset (red rectangle) in D highlights the increase of the superoxide high-producer cell
fraction present in 3XF-Iso3 population, identified as “% cells gate 2” in the exp 1 reported in the enclosed table.
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than 36% of 3XF-Iso3 cells resulted positive with respect to the control),
with the superoxide high-producer population consisting of about three
times the number of cells with respect to that of the control (see inset in
Fig. 2E and compare “% cells gate 2”). Since increased mitochondrial
function and ROS generation correlate with metabolic rate [33], this
finding suggests that Iso3 can promote an endogenous metabolic re-
wiring resulting at a higher respiratory rate.

3.3. Dyskerin Iso3 induces a ROS adaptive response

To check whether the higher respiratory rate displayed by 3XF-Iso3
cells correlated with overexpression of OXPHOS components, we fol-
lowed the expression of key ETC enzymes: the NADH-coenzyme Q re-
ductase (NDUFS3; Complex I), the succinate dehydrogenase subunit b
(SDHb; Complex II), and the monomeric cytochrome c (CYSC; Complex
III). Indeed, all these enzymes showed increased levels in 3XF-Iso3 cells
(Fig. 3A; Supplemental Fig. 1B), supporting the notion that ETC activity
was improved. We then checked the expression of key regulators of the
morphology of the mitochondrial network, which depends on the bal-
ance between mitochondrial fission and fusion, and ultimately reflects
mitochondrial functionality (reviewed by [34]). First, we followed the
expression of DRP1, a dynamin-related protein that promotes mi-
tochondrial fission [35], and found its level substantially unchanged in
3XF-Iso3 cells (Fig. 3A). Next, we examined OPA1, a pro-fusion protein
present in multiple isoforms [defined as long (L-OPA1) or short (S-
OPA1)] produced by both alternative splicing and proteolytic proces-
sing; a disproportionate accumulation of S-OPA1 forms is known to
correlate with mitochondrial fragmentation and loss of mitochondrial
ΔΨ [36,37]. Consistent with previous results, no excessive accumula-
tion of S-OPA1 forms was observed in 3XF-Iso3 cells (Fig. 3A), although
the longest L-OPA1 isoform appeared slightly underproduced (Fig. 3A).

Next, we focused on TOM20, a key marker of the outer mitochon-
drial membrane that acts as a receptor for the import of mitochondrial
pre-proteins (reviewed by [38]). Intriguingly, expression of this protein
was found to be significantly up-regulated in 3XF-Iso3 cells, as shown
by both western blotting and LUT quantitative analyses of confocal
images (Fig. 3A, B). Since TOM20 upregulation can have beneficial
effects on cell growth [39], it is plausible that this trait may contribute
to improving mitochondrial functionality. Note that, although TOM20
expression is usually taken as a marker of increased mitochondrial
biogenesis, it is known that it has additional localization on vesicles
that detach from mitochondria and transport selected cargo to peroxi-
somes [40] and lysosomes [41].

We thus wondered whether 3XF-Iso3 cells could counteract ROS-
induced deleterious effects by improving their anti-oxidant defenses.
The expression of key detoxifying enzymes, such as superoxide dis-
mutases1 (SOD1; cytoplasmic) and 2 (SOD2; mitochondrial), catalase
(peroxisomal), and redox-regulatory protein peroxiredoxin 2 (PRDX-2;
cytoplasmic) was then measured by western blotting. Levels of these
enzymes all increased in 3XF-Iso3 cells (Fig. 3C; Supplemental Fig. 1C);
however, catalase, SOD1 and SOD2 were only modestly enhanced,

while PRDX-2 was dramatically upregulated, suggesting a specific role
in the ROS tolerance of 3XF-Iso3 cells. Enhanced PRDX-2 expression
was confirmed by LUT quantitative analysis of confocal images
(Fig. 3D). Intriguingly, analysis of PRDX-2 intracellular distribution
revealed that this protein concentrates specifically in the nucleoli in
both 3XF-Iso3 and control cells (Fig. 3D). To our knowledge, this is the
first report of PRDX-2 nucleolar localization. Robust expression of
PRDX-2 protects cells against oxidative stress [42,43]; moreover, PRDX-
2 nuclear translocation is reported to safeguard cancer cells from DNA-
damaging agents [44]. We also noted that in the cytoplasm of control
cells PRDX-2 assumed a mostly vesicular pattern, while in Iso3 cells it
displayed a more filamentous arrangement (Fig. 3D), typical of the
protein hyperoxidation state [45]. PRDX-2 hyperoxidation leads to its
temporary inactivation, a state that has been linked to the acquisition of
chaperone function and of a regulatory role in redox-dependent sig-
naling (reviewed by [46,47]). In its reversible inactive state, PRDX-2
can in fact act as a “floodgate” [47], permitting hydrogen peroxide to
accumulate and act as a diffusible secondary messenger in redox-de-
pendent signaling [47,48]. Lastly, to check whether ROS over-
production could induce damage to nuclear DNA, we followed the
subcellular localization of the apoptosis-inducing factor mitochondrion-
associated 1 (AIFM1), a NADH oxidoreductase flavoprotein that resides
in mitochondrial intermembrane space but, in response to apoptotic
stimuli, translocates to the nucleus and promotes apoptosis [49]. As
shown in Fig. 3E, the absence of AIFM1 nuclear translocation further
confirmed the healthy state of 3XF-Iso3 cells, in line with previous re-
sults of FACS analysis. Collectively, these data support the view that
3XF-Iso3 cells acquired a tolerance to increased levels of endogenous
ROS.

4. Discussion

We showed that Iso3, a truncated dyskerin splice-variant, exhibits
new uncanonical functions, having the ability to promote a metabolic
shift that enhances the respiratory rate without significantly altering
the mitochondrial volume. Since mitochondria represent the main
source of ROS in many cell types (reviewed by [50]), it is not surprising
that the observed respiratory boost is accompanied by augmented ROS
generation. Specific enzymes, such as those of the NADPH oxidase
(NOX) family, can contribute to increased ROS formation; however, if
this was true, in 3XF-Iso3 cells the NAD(P)H/NAD(P)+ ratio would
have shifted towards its oxidized form. Conversely, this ratio was un-
changed, while the FAD/(FAD + NAD(P)H) ratio increased. In addi-
tion, the findings that rotenone and dimethyl malonate treatments have
a stronger effect on the survival of 3XF-Iso3 cells demonstrate their
higher dependence on OXPHOS compared to controls. Worth noting are
the findings by Thyagarajan et al., that Iso3 is upregulated by incuba-
tion with hydrolysis products generated by lipoprotein lipase [21].
Since fatty acid β-oxidation occurs in both mitochondria and peroxi-
somes, the increased level of catalase observed in 3XF-Iso3 cells fits
well with the possibility that Iso3 might fuel OXPHOS through this

Fig. 3. Enhanced expression of mitochondrial proteins and detoxification enzymes contribute to the healthy state of Iso3 over-expressing cells. On the top are histograms
representative of expression levels of ETC components and key mitochondrial proteins. Data derived from western blotting densitometric quantification, normalized with respect to β-
tubulin (original data in Supplemental Fig. 1B); Note that NDUFS3 (Complex I), SDHb (complex II), CYSC (Complex III) levels all increased in 3XF-Iso3 cells; instead, expression of DRP1,
which promotes mitochondrial fission, and of OPA1, a pro-fusion protein that produces long (L-OPA1) and short (S-OPA1) isoforms (bottom), remained substantially unvaried. Expression
of TOM20, a component of the outer mitochondrial membrane, was significantly up-regulated in 3XF-Iso3 cells. (B) LUT quantitative analysis of confocal images, captured under the same
conditions, depicting TOM20 expression in 3XF-Iso3 and 3XF-Mock cells. The anti-TOM20 antibody (green/gray) stains the mitochondrial network; Phalloidin (red) marks the actin
cytoskeleton; DAPI (blue) counterstains the nuclei. Images are at 63× magnification; scale bars: 10 µm; the sum of total confocal planes is shown. On the right: intensity signal values
obtained from the sum of total planes were normalized with respect to F-actin signal and expressed as TOM20 intensity/actin intensity ratio by ImageJ tools. Data derived from the
analysis of n = 50 cells. (C) Histograms representative of expression levels of a panel of detoxifying enzymes. Data derived from western blotting densitometric quantification, normalized
with respect to β-tubulin (original data in Supplemental Fig. 1C). (D) LUT quantitative analysis of confocal images, captured under the same conditions, of 3XF-Iso3 and 3XF-Mock cells
stained with anti-PRDX-2 (gray); nuclei are counterstained by DAPI (blue). Sum of total planes is shown; magnification is at 63×; scale bars: 10 µm. On the right: intensity signal values
obtained from the sum of total planes were normalized with respect to cell areas and expressed as Intensity/cell area ratio by ImageJ tools. Data derived from the analysis of n = 50 cells.
(E) Confocal images of 3XF-Iso3 and 3XF-Mock cells upon staining with the anti-AIFM1 antibody (green); nuclei are counterstained by DAPI (blue). On the left, maximum projection of z-
stack confocal planes; on the right, maximum projection of z-stack, flanked by orthogonal views. Scale bars: 10 µm. In A, C, blotting were performed in triplicate, and data expressed as
the mean±SD.
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route.
Although further experiments need to be performed to define the

specific molecular pathways stimulated by Iso3 overexpression, it is
reasonable to suppose that the protein could have a general impact on
snoRNA-mediated processes, including pseudouridylation, thereby
concomitantly regulating multiple processes connecting energy meta-
bolism with cell homeostasis. Several considerations support this view:
first, snoRNAs are assuming expanding roles in the regulation of cell
homeostasis [51]; second, the mammalian transcriptome is known to be
pseudouridylated in a specific manner according to diverse metabolic
conditions [52]; third, Drosophila dyskerin is deeply implicated in the
regulation of cell homeostasis in vivo [53–55].

We also demonstrated that the boost in ROS production is efficiently
counterbalanced by antioxidant defenses, allowing 3XF-Iso3 cells to
acquire a ROS adaptive tolerance. Note that this finding suggests novel
mechanisms by which DKC1 overexpression might contribute to cancer
aggressiveness, particularly in cancer cell types known to synthesize
ATP mainly through mitochondrial respiration (reviewed by [56]).
Mitochondrial ROS have been implicated in mitochondria-to-nucleus
signaling, regulating the expression of detoxifying enzymes, with hy-
drogen peroxide appearing to be the main ROS with such signaling
properties. Peroxidases have a high affinity for hydrogen peroxide and
act as localized sensors of this molecule in specialized compartments
[47]. Indeed, the NADPH-dependent cytosolic PRDX-2 enzyme is likely
to play a key role in activating the ROS protective response of 3XF-Iso3
cells, and possibly in stimulating their proliferative rate. In fact, in
many types of cancer cells characterized by high level of ROS produc-
tion, PRDX-2 up-regulation serves as a mechanism of defense against
oxidative damage, assuring survival and proliferation [57,58]; in ad-
dition, PRDX-2 has been identified as the molecular link that propa-
gates the ROS beneficial signal in the mitohormetic pathway [59].

Taken together, the data reported here reveal a new moonlight
function for the DKC1 gene, whose more abundant protein isoform is
restricted to the nuclei, where it is enriched in the nucleoli and the Cajal
bodies (reviewed by [5]). Several proteins thought to have specific
nuclear functions have subsequently been found to have an additional
localization in the cytoplasm, or more specifically in the mitochondria,
and play distinct roles in their diverse subcellular locations (reviewed
by [60]). The most striking example is that of telomerase reverse
transcriptase (TERT), whose mitochondrial localization improves re-
spiration and protects cells from oxidative stress and apoptosis (re-
viewed by [61]). Considering that dyskerin participates with TERT in
the formation of the nuclear telomerase complex, the ability of its
truncated variant to enhance mitochondrial functionality further re-
inforces the functional relationship between telomerase and mi-
tochondrial status. It will be interesting to see whether, owing to its
peculiar cytoplasmic localization, Iso3 can transduce a nucleus-mi-
tochondria signal, or interact with TERT in the cytosol, or even in mi-
tochondria.
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