The $K(n)$-Euler characteristic of extraspecial p-groups

Maurizio Brunetti
Dipartimento di Matematica e Applicazioni, Università di Napoli, Via Claudio 21 I-80125 Napoli, Italy

Received 2 November 1997; received in revised form 11 May 1999
Communicated by J. Huebschmann

Abstract

Let p be an odd prime, and let $K(n)^{*}$ denote the nth Morava K-theory at the prime p; we compute the $K(n)$-Euler characteristic $\chi_{n, p}(G)$ of the classifying space of an extraspecial p-group G. Equivalently, we get the number of conjugacy classes of commuting n-tuples in the group G. We obtain this result by examining the lattice of isotropic subspaces of an even-dimensional \mathbb{F}_{p}-vector space with respect to a non-degenerate alternating form B. (c) 2001 Elsevier Science B.V. All rights reserved.

MSC: 55N20; 20J06

0. Introduction

A substantial and systematic account of what is known about the cohomology of extraspecial groups can be found in [1] (with a correction in [2]). In [1] the authors also explain the importance of the topic in various contexts.

Unfortunately when p is odd, the $\bmod p$ cohomology of an extraspecial p-group is not entirely known. The cases when $|G|=p^{3}$ were completely solved (see $[3,5,7]$), in [11] Tezuka and Yagita found revelant information for an arbitrary extraspecial p-group, and some calculations for $|G|=p^{5}$ appeared in [8] and in [14].

In this paper we study the Morava K-theories $K(n)^{*}(-)$ of $B G$, the classifying space of an extraspecial p-group G, and use the Hopkins-Kuhn-Ravenel formula [4] to calculate the number

$$
\chi_{n, p}(G)=\operatorname{rank}_{K(n)} K(n)^{\text {even }}(B G)-\operatorname{rank}_{K(n)} K(n)^{\text {odd }}(B G) .
$$

This number has a purely group-theoretic significance: it gives the number of conjugacy classes of commuting n-tuples of elements in G of prime power order. Recall that for

[^0]any integer $m \geq 1$ and each prime p, there are two isomorphism classes of extraspecial groups of order $p^{2 m+1}$. In the case when p is odd, one of these has exponent p and the other has exponent p^{2}. The results in this paper apply to both extraspecial groups of order $p^{2 m+1}$. The cases when $m=1$ have already been studied in [12] with a correction in [13].

The calculations in this paper could be useful to study the spectral sequence

$$
H^{*}(\underbrace{B \mathbb{Z} / p \times \cdots \times B \mathbb{Z} / p}_{2 m \text { times }} ; K(n)^{*}(B \mathbb{Z} / p)) \Rightarrow K(n)^{*}(B G)
$$

of Lyndon-Hochschild-Serre type in order to eventually get a complete description of $K(n)^{*}(B G)$ as a ring for an extraspecial p-group of order $p^{2 m+1}$. One could then use the Atiyah-Hirzebruch spectral sequence

$$
H^{*}\left(B G ; K(n)^{*}(\{p t\})\right) \Rightarrow K(n)^{*}(B G)
$$

backwards to get further information on the ordinary $\bmod p$-cohomology of G.

1. Preliminaries

From now on E will denote the middle term of the following central extension of groups:

$$
1 \rightarrow N \xrightarrow{i} E \xrightarrow{\pi} V \rightarrow 1,
$$

where N is cyclic of order p and V is elementary abelian of order $p^{2 m}$. We recall that E is called extraspecial if the cardinality of the center $Z(E)$ is exactly p. If we adopt an additive notation for N and V, these groups can be regarded as \mathbb{F}_{p}-vector spaces of dimension 1 and $2 m$, respectively. From this point of view, the group E determines an alternating form

$$
B: V \times V \rightarrow \mathbb{F}_{p}
$$

as follows: for any $(x, y) \in V \times V$, we take \tilde{x} and \tilde{y} in E such that

$$
\pi(\tilde{x})=x \quad \text { and } \quad \pi(\tilde{y})=y
$$

and define

$$
B(x, y)=[\tilde{x}, \tilde{y}] .
$$

Notice that for any abelian subgroup, $A \leq E, \pi(A)$ is an isotropic subspace of V, i.e.

$$
B(x, y)=0
$$

for all $x, y \in \pi(A)$.
In this way, the alternating form B establishes a correspondence between isotropic subspaces of V and abelian subgroups of E. Furthermore, we have the following lemma:

Lemma 1.1. There is a 1-1 correspondence Θ between isotropic subspaces of V and abelian subgroups of E containing the center $Z(E)$. The map Θ preserves inclusions.

Proof. Take $\Theta(W)=\pi^{-1}(W)$.
We recall now that for any odd prime, and a positive integer n, the nth Morava K-theory at p is a complex oriented cohomology theory $K(n)^{*}(-)$, whose coefficients are

$$
K(n)^{*}=\mathbb{F}_{p}\left[v_{n}, v_{n}^{-1}\right]
$$

with $\operatorname{deg} v_{n}=-2\left(p^{n}-1\right)$. Any graded module for $K(n)^{*}$ is obviously free. Ravenel proved in [10] that the $K(n)^{*}$-module $K(n)^{*}(B G)$ is finitely generated for any finite group G, and in [4] the authors showed that the integer

$$
\chi_{n, p}(G)=\operatorname{rank}_{K(n)} K(n)^{\text {even }}(B G)-\operatorname{rank}_{K(n)} K(n)^{\text {odd }}(B G)
$$

is actually equal to the number of conjugacy classes of commuting n-tuples of elements of G whose order is a power of the prime p.

Proposition 1.2. Let μ_{G} be a Möbius function defined recursively on the lattice of abelian subgroups \mathscr{A} of G as follows:

$$
\sum_{A \leq A^{\prime}} \mu_{G}\left(A^{\prime}\right)=1
$$

where the sum is taken over all subgroups $A^{\prime} \in \mathscr{A}$ containing A.
The following equality holds:

$$
\chi_{n, p}(G)=\sum_{A \in \mathscr{A}} \frac{|A|}{|G|} \mu_{G}(A) \chi_{n, p}(A)
$$

Proof. See [4].
In [4], the authors quote the following lemma without proof but because of its relevance in the next section we provide a proof.

Lemma 1.3. For any finite group G, the Möbius function μ_{G} defined above vanishes on every subgroup not containing the center $Z(G)$.

Proof. Let \mathscr{B} be the sublattice of \mathscr{A} of all subgroups not containing $Z(G)$. Suppose $A_{\text {max }}$ is maximal in \mathscr{B}. By definition we have

$$
\mu_{G}\left(A_{\max }\right)+\sum_{A^{\prime}>A_{\max }} \mu_{G}\left(A^{\prime}\right)=1
$$

Every A^{\prime} containing $A_{\max }$ properly also contains the subgroup $\bar{A}_{\text {max }}$ generated by $A_{\text {max }}$ and $Z(G)$. Therefore,

$$
1-\mu_{G}\left(A_{\max }\right)=\sum_{A^{\prime}>A_{\max }} \mu_{G}\left(A^{\prime}\right)=\sum_{A^{\prime} \geq \bar{A}_{\max }} \mu_{G}\left(A^{\prime}\right)=1
$$

and hence $\mu_{G}\left(A_{\max }\right)=0$. Now we use induction on the minimal number of edges connecting the generic element $A \in \mathscr{B}$ with a maximal one in \mathscr{B}. We denote by \bar{A} the subgroup generated by A and $Z(G)$. By definition of μ_{G}, we obtain

$$
\sum_{\bar{A} \leq A^{\prime}} \mu_{G}\left(A^{\prime}\right)+\sum_{A<A^{\prime} \in \mathscr{B}} \mu_{G}\left(A^{\prime}\right)=1-\mu_{G}(A)
$$

The first sum gives 1 by definition, whereas the second one gives 0 , since it is calculated over elements in \mathscr{B} on which μ_{G} vanishes for the inductive hypothesis. It follows that $\mu_{G}(A)=0$ as we claimed.

2. The lattice of isotropic subspaces

Let A be an abelian group. Then

$$
\chi_{n, p}(A)=\left|A_{(p)}\right|^{n},
$$

where $\left|A_{(p)}\right|^{n}$ is the nth power of the order of the p-component of A (see [6]). When G is a p-group, the formula in the statement of Proposition 1.2 becomes

$$
\chi_{n, p}(G)=\sum_{A \in \mathscr{A}} \frac{|A|}{|G|}^{n+1} \mu_{G}(A)
$$

The map Θ defined above maps B-isotropic subspaces W of V into abelian subgroups of E, and

$$
p|W|=|\Theta(W)|
$$

To calculate $\chi_{n, p}(E)$ we introduce the Möbius function

$$
\mu \stackrel{\text { def }}{=} \mu_{G} \circ \Theta
$$

and denoting by \mathscr{W} the lattice of B-isotropic subgroups in V, we easily obtain

$$
\begin{equation*}
\chi_{n, p}(E)=\sum_{W \in \mathscr{W}} \frac{|W|}{|V|}^{n+1} \mu(W) p^{n} \tag{1}
\end{equation*}
$$

In order to evaluate the function μ on \mathscr{W}, we have to compute the number of isotropic subspaces of fixed dimension in V, and the number of those which contain a fixed one. We recall that any maximal subspace in \mathscr{W} has dimension $m=\operatorname{dim} V / 2$ (see [11]).

Lemma 2.1. The number $N_{h, m}$ of flags of length h

$$
W_{1} \subset W_{2} \subset \cdots \subset W_{h}
$$

in \mathscr{W}, where $\operatorname{dim} W_{i}=i$, is

$$
N_{h, m}=\frac{\prod_{j}\left(p^{2 j}-1\right)}{(p-1)^{h}}
$$

where $m-h+1 \leq j \leq m$.

Proof. We borrow some ideas from [9]. The number $N_{1, m}$ gives actually the number of all subspaces in V of dimension 1, hence,

$$
N_{1, m}=\frac{p^{2 m}-1}{p-1}
$$

We now use induction on m, and suppose that the statement is true for any $h<m-1$. Fixed a one-dimensional subspace W_{1}, the number of flags of length h starting with W_{1} is given by the number of flags of length $h-1$ in $\left(W_{1}\right)^{\perp} / W_{1}$, which is a vector space of dimension $2(m-1)$. It follows that

$$
N_{h, m}=N_{1, m} N_{h-1, m-1}=\frac{p^{2 m}-1}{p-1} \frac{\prod_{j}\left(p^{2 j}-1\right)}{(p-1)^{h-1}}
$$

where $m-h+1 \leq j \leq m-1$. The result follows.
Lemma 2.2. The number M_{h} of flags in \mathscr{W} of length h which end with a fixed subspace \bar{W}_{h} is

$$
M_{h}=\frac{\prod_{j}\left(p^{j}-1\right)}{(p-1)^{h}}
$$

with $1 \leq j \leq h$.
Proof. Fixed a one-dimensional subspace \bar{W}_{1} of \bar{W}_{h}, we can assume by inductive hypothesis that the number of flags of length $h-1$ in $\bar{W}_{h} / \bar{W}_{1}$ is

$$
M_{h-1}=\frac{\prod_{j}\left(p^{j}-1\right)}{(p-1)^{h-1}}
$$

where $1 \leq j \leq h-1$. Now we use the fact that \bar{W}_{h} contains $\left(p^{h}-1\right) /(p-1)$ one-dimensional subspaces to prove the result.

Proposition 2.3. The number of B-isotropic subspaces in V of dimension h is

$$
P_{h, m}=\frac{\prod_{i}\left(p^{2 i}-1\right)}{\prod_{j}\left(p^{j}-1\right)}
$$

where $m-h+1 \leq i \leq m$, and $1 \leq j \leq h$.
Proof. Using notation introduced above, it follows that

$$
P_{h, m} \cdot M_{h}=N_{h, m}
$$

and by Lemmas 2.1 and 2.2, Proposition 2.3 follows.
Proposition 2.4. Let $Q_{h, l, m}$ be the number

$$
Q_{h, l, m}=\frac{\prod_{i}\left(p^{2 i}-1\right)}{\prod_{j}\left(p^{j}-1\right)}
$$

where $m-h-l+1 \leq i \leq m-h$, and $1 \leq j \leq l$. The generic B-isotropic subspace W_{h} of dimension h is contained in $Q_{h, l, m}$ subspaces of dimension $h+l$ in \mathscr{W}.

Proof. Since B is non-degenerate, the dimension of $\left(W_{h}\right)^{\perp} / W_{h}$ is $2 m-2 h$. Thus, the number of B-isotropic subspaces of dimension l in $\left(W_{h}\right)^{\perp} / W_{h}$ is actually $Q_{h, l, m}$ by Proposition 2.3.

3. Evaluating $\boldsymbol{\mu}$ on \mathscr{W}

Let μ be the Möbius function defined as above on the lattice \mathscr{W}. On every subspace W_{m} of dimension m we have $\mu\left(W_{m}\right)=1$, since W_{m} is maximal. Consider now a B-isotropic subspace W_{m-1} of dimension $m-1$. Since W_{m-1} is contained in $Q_{m-1,1, m}=$ $p+1$ maximal isotropic subspaces, we have by definition

$$
\mu\left(W_{m-1}\right)=-p
$$

To evaluate μ on a generic W_{h} we need to prove some polynomial identities. In $\mathbb{R}[x]$ we define the following polynomials for $h=1, \ldots, n+1$:

$$
F_{n, h}(x) \stackrel{\text { def }}{=} \frac{\prod_{j}\left(x^{2(n-j+1)}-1\right)}{\prod_{j}\left(x^{j}-1\right)}
$$

with $1 \leq j \leq h$. For $h=0$, we also define

$$
F_{n, 0}(x) \stackrel{\text { def }}{=} 1
$$

and for any $n \geq h \geq 0$

$$
\Lambda_{n, h}(x) \stackrel{\text { def }}{=} \sum_{j=0}^{h}(-1)^{n-j} x^{(n-j)^{2}} F_{n, j}(x)
$$

Notice that the polynomial $F_{m, h}(x)$ evaluated at p gives the number $P_{h, m}$ defined in the statement of Proposition 2.3.

Lemma 3.1. For any $n \geq h>1$, we have

$$
\begin{equation*}
\Lambda_{n, h}(x)=\Lambda_{n-1, h-1}(x)+(-1)^{n-h} x^{\left((n-h)^{2}+h\right)} F_{n-1, h}(x) . \tag{2}
\end{equation*}
$$

Proof. We will prove the lemma by induction on h. It follows from calculations that

$$
\Lambda_{n, 2}(x)-\Lambda_{n-1,1}(x)=(-1)^{n-2} x^{\left((n-2)^{2}+2\right)} \frac{\left(x^{2(n-1)}-2\right)\left(x^{2(n-2)}-1\right)}{(x-1)\left(x^{2}-1\right)}
$$

and hence, the identity (2) holds for $h=2$. Suppose now that (2) is true for a fixed $h \geq 2$ and for any $n \geq h$. It follows by definition that

$$
\Lambda_{n, h+1}(x)=\Lambda_{n, h}(x)+(-1)^{n-h-1} x^{(n-h-1)^{2}} F_{n, h+1}(x)
$$

and

$$
\Lambda_{n-1, h}(x)=\Lambda_{n-1, h-1}(x)+(-1)^{n-h-1} x^{(n-h-1)^{2}} F_{n-1, h}(x) .
$$

Subtracting side by side, the induction hypothesis gives the difference

$$
\Lambda_{n, h+1}(x)-\Lambda_{n-1, h}(x)
$$

equal to

$$
\begin{aligned}
& (-1)^{n-h} x^{\left((n-h)^{2}+h\right)} F_{n-1, h}(x)+(-1)^{n-h-1} x^{(n-h-1)^{2}}\left(F_{n, h+1}(x)-F_{n-1, h}(x)\right) \\
& \quad=(-1)^{n-h-1} x^{(n-h-1)^{2}} F_{n-1, h}(x)\left(-x^{(2 n-h-1)}+\frac{x^{2 n}-x^{h+1}}{x^{h+1}-1}\right)
\end{aligned}
$$

The last bracket is

$$
\frac{x^{h+1}\left(x^{2(n-h-1)}-1\right)}{x^{h+1}-1}
$$

and the lemma follows.
Proposition 3.2. For any subspace $W_{h} \in \mathscr{W}$ of dimension h, we have

$$
\mu\left(W_{h}\right)=(-1)^{m-h} p^{(m-h)^{2}} .
$$

Proof. We recall that every B-isotropic subspace \bar{W}_{h} of the $2 m$-dimensional vector space V is contained in $Q_{h, l, m}$ subspaces in \mathscr{W} of dimension $h+l$. By Proposition 2.4 we have

$$
\begin{equation*}
\mu\left(\bar{W}_{h}\right)+\sum_{i=1}^{m-h} Q_{h, i, m} \mu\left(W_{h+i}\right)=1 \tag{3}
\end{equation*}
$$

If we use induction on $m-h$, by Proposition 2.4 Eq. (3) becomes

$$
\mu\left(\bar{W}_{h}\right)+\Lambda_{m-h, m-h}(p)-(-1)^{m-h} p^{(m-h)^{2}}=1 .
$$

Notice now that the polynomial $F_{n-1, n}(x)$ is identically zero for any n. Therefore, Lemma 3.1 gives

$$
\Lambda_{m, m}(p)=\Lambda_{m-1, m-1}(p)=\cdots=\Lambda_{1,1}(p)=1
$$

and Proposition 3.2 follows.
From formula (1) at the beginning of Section 2, the next theorem now follows.
Theorem 3.3. Let E_{m} be an extraspecial p-group of order $p^{2 m+1}$. The $K(n)$-Euler characteristic of E_{m} is given by

$$
\chi_{n, p}\left(E_{m}\right)=p^{n-1} \sum_{h=0}^{m}(-1)^{m-h} p^{(m-h-1)^{2}+h(n-1)} F_{m, h}(p) .
$$

The formula of Theorem 3.3 specializes for $m=1$ to

$$
\chi_{n, p}\left(E_{1}\right)=p^{n-1}\left(p^{n+1}+p^{n}-1\right)
$$

which could also be obtained by a direct investigation of the ring structure of $K(n)^{*}\left(B E_{1}\right)$ as described in [12] (with a correction in [13]).

Corollary 3.4. The number $\chi_{1, p}\left(E_{m}\right)$ is given by

$$
\chi_{1, p}\left(E_{m}\right)=p^{2 m}+p-1
$$

Proof. By Theorem 3.3 we have just to prove that the polynomial

$$
S_{m}(x)=\sum_{h=0}^{m}(-1)^{m-h} x^{(m-h-1)^{2}} F_{m, h}(x)
$$

is equal to $x^{2 m}+x-1$.
Since $\Lambda_{m, m}(x)$ is identically equal to 1 , we have

$$
\begin{aligned}
S_{m}(x)-x & =S_{m}(x)-x \Lambda_{m, m}(x) \\
& =\sum_{j=0}^{m}(-1)^{m-j} x^{(m-j-1)^{2}}\left(1-x^{2(m-j)}\right) F_{m, j}(x) \\
& =\sum_{j=0}^{m-1}(-1)^{m-j} x^{(m-j-1)^{2}}\left(1-x^{2 m}\right) F_{m-1, j}(x) \\
& =\left(x^{2 m}-1\right) \Lambda_{m-1, m-1}(x)=x^{2 m}-1
\end{aligned}
$$

as we claimed.

Corollary 3.4 gives just a check on Theorem 3.3. In fact $\chi_{1, p}\left(E_{m}\right)$ gives the number of conjugacy classes in E_{m}. This is easy to compute directly since every element in $E_{m} \backslash Z\left(E_{m}\right)$ belongs to a conjugacy class of size p.

Corollary 3.5. The number $\chi_{2, p}\left(E_{m}\right)$ is given by

$$
\chi_{2, p}\left(E_{m}\right)=p^{2 m-1}\left(p^{2 m}+p^{3}-1\right) .
$$

Proof. Let $R_{n}(x)$ denote the following polynomial of $\mathbb{R}[x]$:

$$
R_{n}(x)=\sum_{j=0}^{n}(-1)^{n-j} x^{(n-j-1)^{2}+j+1} F_{n, j}(x) .
$$

It follows by Theorem 3.3 that $\chi_{2, p}\left(E_{m}\right)=R_{m}(p)$. Therefore, it suffices to prove that

$$
R_{n}(x)=x^{2 n-1}\left(x^{2 n}+x^{3}-1\right) .
$$

By definition we have

$$
R_{n}(x)=\sum_{j=0}^{n}(-1)^{n-j} x^{(n-j-1)^{2}+1} F_{n, j}(x)+\sum_{j=0}^{n}(-1)^{n-j} x^{(n-j-1)^{2}+1}\left(x^{j}-1\right) F_{n, j}(x) .
$$

The first sum is the product of x with the polynomial $S_{n}(x)$ defined in the proof of the previous lemma. Therefore, we get

$$
\begin{aligned}
R_{n}(x) & =x S_{n}(x)+x \cdot \sum_{j=1}^{n}(-1)^{n-j} x^{(n-j-1)^{2}}\left(x^{2 n}-1\right) F_{n-1, j-1}(x) \\
& =x\left(S_{n}(x)+\left(x^{2 n}-1\right) S_{n-1}(x)\right)
\end{aligned}
$$

and the formula is proved since

$$
S_{n}(x)=x^{2 n}+x-1
$$

by the previous corollary.
Corollaries 3.4 and 3.5 enable us to calculate very quickly the number $\chi_{n, p}\left(E_{m}\right)$ for $n=1,2$. Unfortunately, for $n>2$, an equally fast way to obtain $\chi_{n, p}\left(E_{m}\right)$ does not seem to exist as the following examples show:

$$
\begin{aligned}
& \chi_{3, p}\left(E_{1}\right)=p^{6}+p^{5}-p^{2} \\
& \chi_{3, p}\left(E_{2}\right)=p^{9}+p^{8}+p^{7}-p^{6}-p^{5}-p^{4}+p^{3}
\end{aligned}
$$

Acknowledgements

The author is indebted to Marcin Mazur for assistance with the proofs of Lemma 3.1 and Corollary 3.5, and to the anonymous referee for a number of comments which helped improve the exposition.

References

[1] D.J. Benson, J.F. Carlson, The cohomology of extraspecial groups, Bull. London Math. Soc 24 (1992) 209-235.
[2] D.J. Benson, J.F. Carlson, Erratum to The cohomology of extraspecial groups, Bull. London Math. Soc. 25 (1993) 498.
[3] T. Diethelm, The mod p cohomology rings of the nonabelian split metacyclic p-groups, Arch. Math. (Basel) 44 (1985) 29-38.
[4] M.J. Hopkins, N.J. Kuhn, D.C. Ravenel, Morava K-theories of classifying spaces and generalized characters for finite groups, in: Algebraic Topology, Barcelona, 1990, Lecture Notes in Mathematics, vol. 1509, Springer, Berlin, 1990, pp. 186-209.
[5] I. Leary, The mod p cohomology rings of some p-groups, Math. Proc. Cambridge Philos. Soc. 112 (1992) 63-75.
[6] N.J. Kuhn, The Morava K-theories of some classifying spaces, Trans. AMS 304 (1987) 193-205.
[7] P.A. Minh, H. Mui, The mod p cohomology algebra of the group $M\left(p^{n}\right)$, Acta Math. Vietnaminica 7 (1982) 17-26.
[8] P.A. Minh, The mod p cohomology group of extraspecial p-group of order p^{5} and of exponent p^{2}, Math. Proc. Cambridge Philos. Soc. 120 (1996) 423-440.
[9] D. Quillen, The mod 2 cohomology of extraspecial 2-groups and the spinor groups, Math. Ann. 194 (1971) 197-212.
[10] D.C. Ravenel, Morava K-theories and finite groups, Contemp. Math. 12 (1982) 289-292.
[11] M. Tezuka, N. Yagita, The varieties of the mod p cohomology rings of extraspecial p-groups for an odd prime p, Math. Proc. Cambridge Philos. Soc. 94 (1983) 449-459.
[12] M. Tezuka, N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, in: Algebraic Topology, Arcata, 1986, Lecture Notes in Mathematics, vol. 1370, Springer, Berlin, 1989, pp. 396-408.
[13] M. Tezuka, N. Yagita, Complex K-theory of $B S L_{3}(\mathbb{Z}), K$-Theory 6 (1992) 87-95.
[14] M. Tezuka, N. Yagita, Calculations in mod p cohomology of extraspecial p-groups I, in: Topology and Representation Theory, Evanston, IL, 1992, Contemp. Math. 158 (1994) 281-306.

[^0]: E-mail address: brunetti@matna2.dma.unina.it (M. Brunetti).

