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Abstract

Let p be an odd prime, and let K(n)∗ denote the nth Morava K-theory at the prime p; we com-
pute the K(n)-Euler characteristic �n;p(G) of the classifying space of an extraspecial p-group G.
Equivalently, we get the number of conjugacy classes of commuting n-tuples in the group G.
We obtain this result by examining the lattice of isotropic subspaces of an even-dimensional
Fp-vector space with respect to a non-degenerate alternating form B. c© 2001 Elsevier Science
B.V. All rights reserved.

MSC: 55N20; 20J06

0. Introduction

A substantial and systematic account of what is known about the cohomology of
extraspecial groups can be found in [1] (with a correction in [2]). In [1] the authors
also explain the importance of the topic in various contexts.
Unfortunately when p is odd, the modp cohomology of an extraspecial p-group is

not entirely known. The cases when |G| = p3 were completely solved (see [3,5,7]),
in [11] Tezuka and Yagita found revelant information for an arbitrary extraspecial
p-group, and some calculations for |G|= p5 appeared in [8] and in [14].
In this paper we study the Morava K-theories K(n)∗(−) of BG, the classifying

space of an extraspecial p-group G, and use the Hopkins–Kuhn–Ravenel formula [4]
to calculate the number

�n;p(G) = rankK(n)K(n)even(BG)− rankK(n)K(n)odd(BG):
This number has a purely group-theoretic signi�cance: it gives the number of conjugacy
classes of commuting n-tuples of elements in G of prime power order. Recall that for
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any integer m ≥ 1 and each prime p, there are two isomorphism classes of extraspecial
groups of order p2m+1. In the case when p is odd, one of these has exponent p and the
other has exponent p2. The results in this paper apply to both extraspecial groups of
order p2m+1. The cases when m=1 have already been studied in [12] with a correction
in [13].
The calculations in this paper could be useful to study the spectral sequence

H∗(BZ=p× · · · × BZ=p︸ ︷︷ ︸
2m times

;K(n)∗(BZ=p))⇒ K(n)∗(BG)

of Lyndon–Hochschild–Serre type in order to eventually get a complete description of
K(n)∗(BG) as a ring for an extraspecial p-group of order p2m+1. One could then use
the Atiyah–Hirzebruch spectral sequence

H∗(BG;K(n)∗({pt}))⇒ K(n)∗(BG)

backwards to get further information on the ordinary modp-cohomology of G.

1. Preliminaries

From now on E will denote the middle term of the following central extension of
groups:

1→ N i−→E �−→V → 1;

where N is cyclic of order p and V is elementary abelian of order p2m. We recall that
E is called extraspecial if the cardinality of the center Z(E) is exactly p. If we adopt
an additive notation for N and V , these groups can be regarded as Fp-vector spaces
of dimension 1 and 2m, respectively. From this point of view, the group E determines
an alternating form

B : V × V → Fp
as follows: for any (x; y) ∈ V × V , we take x̃ and ỹ in E such that

�(x̃) = x and �(ỹ) = y

and de�ne

B(x; y) = [x̃; ỹ]:

Notice that for any abelian subgroup, A ≤ E, �(A) is an isotropic subspace of V , i.e.
B(x; y) = 0

for all x; y ∈ �(A).
In this way, the alternating form B establishes a correspondence between isotropic

subspaces of V and abelian subgroups of E. Furthermore, we have the following lemma:

Lemma 1.1. There is a 1–1 correspondence � between isotropic subspaces of V and
abelian subgroups of E containing the center Z(E). The map � preserves inclusions.
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Proof. Take �(W ) = �−1(W ).

We recall now that for any odd prime, and a positive integer n, the nth Morava
K-theory at p is a complex oriented cohomology theory K(n)∗(−), whose coe�cients
are

K(n)∗ = Fp[�n; �−1n ]

with deg �n = −2(pn − 1). Any graded module for K(n)∗ is obviously free. Ravenel
proved in [10] that the K(n)∗-module K(n)∗(BG) is �nitely generated for any �nite
group G, and in [4] the authors showed that the integer

�n;p(G) = rankK(n)K(n)even(BG)− rankK(n)K(n)odd(BG)
is actually equal to the number of conjugacy classes of commuting n-tuples of elements
of G whose order is a power of the prime p.

Proposition 1.2. Let �G be a M�obius function de�ned recursively on the lattice of
abelian subgroups A of G as follows:∑

A≤A′
�G(A′) = 1;

where the sum is taken over all subgroups A′ ∈ A containing A.
The following equality holds:

�n;p(G) =
∑
A∈A

|A|
|G|�G(A)�n;p(A):

Proof. See [4].

In [4], the authors quote the following lemma without proof but because of its
relevance in the next section we provide a proof.

Lemma 1.3. For any �nite group G; the M�obius function �G de�ned above vanishes
on every subgroup not containing the center Z(G).

Proof. Let B be the sublattice of A of all subgroups not containing Z(G). Suppose
Amax is maximal in B. By de�nition we have

�G(Amax) +
∑

A′¿Amax

�G(A′) = 1:

Every A′ containing Amax properly also contains the subgroup �Amax generated by Amax
and Z(G). Therefore,

1− �G(Amax) =
∑

A′¿Amax

�G(A′) =
∑

A′≥ �Amax

�G(A′) = 1
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and hence �G(Amax) = 0. Now we use induction on the minimal number of edges
connecting the generic element A ∈ B with a maximal one in B. We denote by �A the
subgroup generated by A and Z(G). By de�nition of �G, we obtain∑

�A≤A′
�G(A′) +

∑
A¡A′∈B

�G(A′) = 1− �G(A):

The �rst sum gives 1 by de�nition, whereas the second one gives 0, since it is calculated
over elements in B on which �G vanishes for the inductive hypothesis. It follows that
�G(A) = 0 as we claimed.

2. The lattice of isotropic subspaces

Let A be an abelian group. Then

�n;p(A) = |A(p)|n;
where |A(p)|n is the nth power of the order of the p-component of A (see [6]). When
G is a p-group, the formula in the statement of Proposition 1.2 becomes

�n;p(G) =
∑
A∈A

|A|
|G|

n+1

�G(A):

The map � de�ned above maps B-isotropic subspaces W of V into abelian subgroups
of E, and

p|W |= |�(W )|:
To calculate �n;p(E) we introduce the M�obius function

� def= �G ◦�
and denoting by W the lattice of B-isotropic subgroups in V , we easily obtain

�n;p(E) =
∑
W∈W

|W |
|V |

n+1

�(W )pn: (1)

In order to evaluate the function � on W, we have to compute the number of isotropic
subspaces of �xed dimension in V , and the number of those which contain a �xed one.
We recall that any maximal subspace in W has dimension m= dim V=2 (see [11]).

Lemma 2.1. The number Nh;m of ags of length h

W1⊂W2⊂ · · ·⊂Wh
in W; where dimWi = i; is

Nh;m =

∏
j(p

2j − 1)
(p− 1)h ;

where m− h+ 1 ≤ j ≤ m.
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Proof. We borrow some ideas from [9]. The number N1;m gives actually the number
of all subspaces in V of dimension 1, hence,

N1;m =
p2m − 1
p− 1 :

We now use induction on m, and suppose that the statement is true for any h¡m−1.
Fixed a one-dimensional subspace W1, the number of ags of length h starting with
W1 is given by the number of ags of length h − 1 in (W1)⊥=W1, which is a vector
space of dimension 2(m− 1). It follows that

Nh;m = N1;mNh−1;m−1 =
p2m − 1
p− 1

∏
j(p

2j − 1)
(p− 1)h−1 ;

where m− h+ 1 ≤ j ≤ m− 1. The result follows.

Lemma 2.2. The number Mh of ags in W of length h which end with a �xed
subspace �Wh is

Mh =

∏
j(p

j − 1)
(p− 1)h

with 1 ≤ j ≤ h.

Proof. Fixed a one-dimensional subspace �W1 of �Wh, we can assume by inductive
hypothesis that the number of ags of length h− 1 in �Wh= �W1 is

Mh−1 =

∏
j(p

j − 1)
(p− 1)h−1 ;

where 1 ≤ j ≤ h − 1. Now we use the fact that �Wh contains (ph − 1)=(p − 1)
one-dimensional subspaces to prove the result.

Proposition 2.3. The number of B-isotropic subspaces in V of dimension h is

Ph;m =
∏
i(p

2i − 1)∏
j(p

j − 1) ;

where m− h+ 1 ≤ i ≤ m; and 1 ≤ j ≤ h.

Proof. Using notation introduced above, it follows that

Ph;m ·Mh = Nh;m
and by Lemmas 2.1 and 2.2, Proposition 2.3 follows.

Proposition 2.4. Let Qh;l;m be the number

Qh;l;m =
∏
i(p

2i − 1)∏
j(p

j − 1) ;

where m − h − l + 1 ≤ i ≤ m − h; and 1 ≤ j ≤ l. The generic B-isotropic subspace
Wh of dimension h is contained in Qh;l;m subspaces of dimension h+ l in W.
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Proof. Since B is non-degenerate, the dimension of (Wh)⊥=Wh is 2m − 2h. Thus, the
number of B-isotropic subspaces of dimension l in (Wh)⊥=Wh is actually Qh;l;m by
Proposition 2.3.

3. Evaluating � on W

Let � be the M�obius function de�ned as above on the lattice W. On every subspace
Wm of dimension m we have �(Wm) = 1, since Wm is maximal. Consider now a
B-isotropic subspace Wm−1 of dimension m−1. Since Wm−1 is contained in Qm−1;1;m=
p+ 1 maximal isotropic subspaces, we have by de�nition

�(Wm−1) =−p:
To evaluate � on a generic Wh we need to prove some polynomial identities. In R[x]
we de�ne the following polynomials for h= 1; : : : ; n+ 1:

Fn;h(x)
def=

∏
j(x

2(n−j+1) − 1)∏
j(x

j − 1)
with 1 ≤ j ≤ h. For h= 0, we also de�ne

Fn;0(x)
def= 1

and for any n ≥ h ≥ 0

�n;h(x)
def=

h∑
j=0

(−1)n−jx(n−j)2Fn;j(x):

Notice that the polynomial Fm;h(x) evaluated at p gives the number Ph;m de�ned in
the statement of Proposition 2.3.

Lemma 3.1. For any n ≥ h¿ 1; we have

�n;h(x) = �n−1;h−1(x) + (−1)n−hx((n−h)2+h)Fn−1;h(x): (2)

Proof. We will prove the lemma by induction on h. It follows from calculations that

�n;2(x)− �n−1;1(x) = (−1)n−2x((n−2)2+2) (x
2(n−1) − 2)(x2(n−2) − 1)
(x − 1)(x2 − 1)

and hence, the identity (2) holds for h = 2. Suppose now that (2) is true for a �xed
h ≥ 2 and for any n ≥ h. It follows by de�nition that

�n;h+1(x) = �n;h(x) + (−1)n−h−1x(n−h−1)2Fn;h+1(x)
and

�n−1;h(x) = �n−1;h−1(x) + (−1)n−h−1x(n−h−1)2Fn−1;h(x):
Subtracting side by side, the induction hypothesis gives the di�erence

�n;h+1(x)− �n−1;h(x)
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equal to

(−1)n−hx((n−h)2+h)Fn−1;h(x) + (−1)n−h−1x(n−h−1)2 (Fn;h+1(x)− Fn−1;h(x))

= (−1)n−h−1x(n−h−1)2Fn−1;h(x)
(
−x(2n−h−1) + x

2n − xh+1
xh+1 − 1

)
:

The last bracket is

xh+1(x2(n−h−1) − 1)
xh+1 − 1

and the lemma follows.

Proposition 3.2. For any subspace Wh ∈ W of dimension h; we have

�(Wh) = (−1)m−hp(m−h)2 :

Proof. We recall that every B-isotropic subspace �Wh of the 2m-dimensional vector
space V is contained in Qh;l;m subspaces in W of dimension h+ l. By Proposition 2.4
we have

�( �Wh) +
m−h∑
i=1

Qh;i;m�(Wh+i) = 1: (3)

If we use induction on m− h, by Proposition 2.4 Eq. (3) becomes
�( �Wh) + �m−h;m−h(p)− (−1)m−hp(m−h)2 = 1:

Notice now that the polynomial Fn−1; n(x) is identically zero for any n. Therefore,
Lemma 3.1 gives

�m;m(p) = �m−1;m−1(p) = · · ·= �1;1(p) = 1
and Proposition 3.2 follows.

From formula (1) at the beginning of Section 2, the next theorem now follows.

Theorem 3.3. Let Em be an extraspecial p-group of order p2m+1. The K(n)-Euler
characteristic of Em is given by

�n;p(Em) = pn−1
m∑
h=0

(−1)m−hp(m−h−1)2+h(n−1)Fm;h(p):

The formula of Theorem 3.3 specializes for m= 1 to

�n;p(E1) = pn−1(pn+1 + pn − 1);
which could also be obtained by a direct investigation of the ring structure of K(n)∗(BE1)
as described in [12] (with a correction in [13]).

Corollary 3.4. The number �1;p(Em) is given by

�1;p(Em) = p2m + p− 1:
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Proof. By Theorem 3.3 we have just to prove that the polynomial

Sm(x) =
m∑
h=0

(−1)m−hx(m−h−1)2Fm;h(x)

is equal to x2m + x − 1.
Since �m;m(x) is identically equal to 1, we have

Sm(x)− x= Sm(x)− x�m;m(x)

=
m∑
j=0

(−1)m−jx(m−j−1)2 (1− x2(m−j))Fm;j(x)

=
m−1∑
j=0

(−1)m−jx(m−j−1)2 (1− x2m)Fm−1; j(x)

= (x2m − 1)�m−1;m−1(x) = x2m − 1
as we claimed.

Corollary 3.4 gives just a check on Theorem 3.3. In fact �1;p(Em) gives the number
of conjugacy classes in Em. This is easy to compute directly since every element in
Em \ Z(Em) belongs to a conjugacy class of size p.

Corollary 3.5. The number �2;p(Em) is given by

�2;p(Em) = p2m−1(p2m + p3 − 1):

Proof. Let Rn(x) denote the following polynomial of R[x]:

Rn(x) =
n∑
j=0

(−1)n−jx(n−j−1)2+j+1Fn;j(x):

It follows by Theorem 3.3 that �2;p(Em) = Rm(p). Therefore, it su�ces to prove that

Rn(x) = x2n−1(x2n + x3 − 1):
By de�nition we have

Rn(x) =
n∑
j=0

(−1)n−jx(n−j−1)2+1Fn;j(x) +
n∑
j=0

(−1)n−jx(n−j−1)2+1(xj − 1)Fn;j(x):

The �rst sum is the product of x with the polynomial Sn(x) de�ned in the proof of the
previous lemma. Therefore, we get

Rn(x) = xSn(x) + x ·
n∑
j=1

(−1)n−jx(n−j−1)2 (x2n − 1)Fn−1; j−1(x)

= x(Sn(x) + (x2n − 1)Sn−1(x))
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and the formula is proved since

Sn(x) = x2n + x − 1
by the previous corollary.

Corollaries 3.4 and 3.5 enable us to calculate very quickly the number �n;p(Em) for
n=1; 2. Unfortunately, for n¿ 2, an equally fast way to obtain �n;p(Em) does not seem
to exist as the following examples show:

�3;p(E1) = p6 + p5 − p2;

�3;p(E2) = p9 + p8 + p7 − p6 − p5 − p4 + p3:
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