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Abstract

Let p be an odd prime, and let K(n)* denote the nth Morava K-theory at the prime p; we com-
pute the K(n)-Euler characteristic y, ,(G) of the classifying space of an extraspecial p-group G.
Equivalently, we get the number of conjugacy classes of commuting n-tuples in the group G.
We obtain this result by examining the lattice of isotropic subspaces of an even-dimensional
[ ,-vector space with respect to a non-degenerate alternating form B. (©) 2001 Elsevier Science
B.V. All rights reserved.

MSC: 55N20; 20J06

0. Introduction

A substantial and systematic account of what is known about the cohomology of
extraspecial groups can be found in [1] (with a correction in [2]). In [1] the authors
also explain the importance of the topic in various contexts.

Unfortunately when p is odd, the mod p cohomology of an extraspecial p-group is
not entirely known. The cases when |G| = p* were completely solved (see [3,5,7]),
in [11] Tezuka and Yagita found revelant information for an arbitrary extraspecial
p-group, and some calculations for |G| = p° appeared in [8] and in [14].

In this paper we study the Morava K-theories K(n)*(—) of BG, the classifying
space of an extraspecial p-group G, and use the Hopkins—Kuhn—Ravenel formula [4]
to calculate the number

n.p(G) = rankg (K (1) (BG) — rankg K (n)°*4(BG).

This number has a purely group-theoretic significance: it gives the number of conjugacy
classes of commuting n-tuples of elements in G of prime power order. Recall that for
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any integer m > 1 and each prime p, there are two isomorphism classes of extraspecial
groups of order p*"*!. In the case when p is odd, one of these has exponent p and the
other has exponent p?. The results in this paper apply to both extraspecial groups of
order p*"*!. The cases when m=1 have already been studied in [12] with a correction
in [13].

The calculations in this paper could be useful to study the spectral sequence

H*(BZ/p x --- x BZ| p;K(n)"(BZ/p)) = K(n)"(BG)

2m times
of Lyndon—Hochschild—Serre type in order to eventually get a complete description of
K(n)*(BG) as a ring for an extraspecial p-group of order p?"*!. One could then use
the Atiyah—Hirzebruch spectral sequence

H*(BG:K(n)"({pt})) = K(n)"(BG)

backwards to get further information on the ordinary mod p-cohomology of G.

1. Preliminaries

From now on E will denote the middle term of the following central extension of
groups:
1 >N-SE S -1,
where N is cyclic of order p and V is elementary abelian of order p*”. We recall that
E is called extraspecial if the cardinality of the center Z(E) is exactly p. If we adopt
an additive notation for N and V', these groups can be regarded as [,-vector spaces

of dimension 1 and 2m, respectively. From this point of view, the group E determines
an alternating form

B:VxV—TF,
as follows: for any (x,y) € V' x V, we take X and y in E such that

n(X)=x and w(y)=y

and define
B(x,y) =[x, 7]

Notice that for any abelian subgroup, 4 < E, n(A4) is an isotropic subspace of V, i.e.
B(x,y)=0

for all x, y € n(A4).
In this way, the alternating form B establishes a correspondence between isotropic
subspaces of V' and abelian subgroups of E. Furthermore, we have the following lemma:

Lemma 1.1. There is a 1-1 correspondence ® between isotropic subspaces of V and
abelian subgroups of E containing the center Z(E). The map © preserves inclusions.
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Proof. Take O(W)=n"'(W). [

We recall now that for any odd prime, and a positive integer n, the nth Morava
K-theory at p is a complex oriented cohomology theory K(n)*(—), whose coefficients
are

K(n)* = Fp[va,v, ']

with degv, = —2(p" — 1). Any graded module for K(n)* is obviously free. Ravenel
proved in [10] that the K(n)*-module K(n)*(BG) is finitely generated for any finite
group G, and in [4] the authors showed that the integer

np(G) = rankg K (n)™"(BG) — rankg( K (n)**(BG)
is actually equal to the number of conjugacy classes of commuting #-tuples of elements

of G whose order is a power of the prime p.

Proposition 1.2. Let ug be a Mobius function defined recursively on the lattice of
abelian subgroups </ of G as follows:

> e =1,

A<d’

where the sum is taken over all subgroups A' € .o/ containing A.
The following equality holds:

A
np(G) = %uc;(A)xn,p(A).
A€o

Proof. See [4]. [

In [4], the authors quote the following lemma without proof but because of its
relevance in the next section we provide a proof.

Lemma 1.3. For any finite group G, the Mobius function uc defined above vanishes
on every subgroup not containing the center Z(G).

Proof. Let % be the sublattice of .o/ of all subgroups not containing Z(G). Suppose
Amax 18 maximal in 4. By definition we have

Ho(Ama) + Y p(A) =1.
A >Amax

Every A’ containing A,y properly also contains the subgroup Am., generated by Amax
and Z(G). Therefore,

L= poAmn) = Y ped)= > pe(d)=1

A" > Amax A" > Amax
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and hence pg(Amax) = 0. Now we use induction on the minimal number of edges
connecting the generic element 4 € % with a maximal one in %. We denote by 4 the
subgroup generated by A4 and Z(G). By definition of pg, we obtain

S e+ Y ped) =1 ug(4).
A<4’ A<A' e

The first sum gives 1 by definition, whereas the second one gives 0, since it is calculated
over elements in 4 on which pg vanishes for the inductive hypothesis. It follows that
tg(4) =0 as we claimed. [

2. The lattice of isotropic subspaces

Let A be an abelian group. Then

Inp(A) = A",
where [4(,)|" is the nth power of the order of the p-component of 4 (see [6]). When
G is a p-group, the formula in the statement of Proposition 1.2 becomes

|A| n+1
np(G) = 1G] e

A€
The map @ defined above maps B-isotropic subspaces W of V' into abelian subgroups
of E, and
vl =lem)|.
To calculate y, ,(£) we introduce the Mobius function

g o0

and denoting by #~ the lattice of B-isotropic subgroups in V', we easily obtain
| l n+1

=3 0y pr, (1)

=il
In order to evaluate the function p on ¥, we have to compute the number of isotropic
subspaces of fixed dimension in ¥, and the number of those which contain a fixed one.
We recall that any maximal subspace in ¥~ has dimension m = dim V/2 (see [11]).

Lemma 2.1. The number Ny, of flags of length h
WiyCcWy,c---CW,

in W, where dim W; =i, is

I D
M= =

where m —h+1 < j <m.
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Proof. We borrow some ideas from [9]. The number N, , gives actually the number
of all subspaces in V' of dimension 1, hence,

Nim = pzm ! .
. p—1
We now use induction on m, and suppose that the statement is true for any 2 < m —1.
Fixed a one-dimensional subspace W), the number of flags of length /4 starting with
W, is given by the number of flags of length 4 — 1 in (W,)"/W;, which is a vector

space of dimension 2(m — 1). It follows that
pzm -1 Hj(ij - 1)

p—1 (p—DF1"
where m —h+1 < j <m — 1. The result follows. [

Nim =NimNp—1,m—1 =

Lemma 2.2. The number M) of flags in W of length h which end with a fixed
subspace W is
(p/ =1
M, — [L;(» h)
(p—=1)
with 1 < j < h.

Proof. Fixed a one-dimensional subspace W, of W), we can assume by inductive
hypothesis that the number of flags of length & — 1 in W,/W, is

Hj(p/ - 1)

(p— 11"

where 1 < j < h — 1. Now we use the fact that W, contains (p" — 1)/(p — 1)
one-dimensional subspaces to prove the result. [

My, =

Proposition 2.3. The number of B-isotropic subspaces in V of dimension h is

_ Hi(pzif 1)
L — 1)
where m —h+1<i<m,and 1 <j<h.

Ph,m

Proof. Using notation introduced above, it follows that
Ph,m 'Mh :Nh,m
and by Lemmas 2.1 and 2.2, Proposition 2.3 follows. [

Proposition 2.4. Let Oy, be the number
. H,’(pzi -1)
Onim==———"0»
IL,(p/ - 1)
where m —h—1+1<i<m—h, and 1 < j <1 The generic B-isotropic subspace
Wy, of dimension h is contained in Qy 1, subspaces of dimension h+ 1 in W .



110 M. Brunetti/ Journal of Pure and Applied Algebra 155 (2001) 105-113

Proof. Since B is non-degenerate, the dimension of (W), )*/W,, is 2m — 2h. Thus, the
number of B-isotropic subspaces of dimension / in (W) /W), is actually Qp;. by
Proposition 2.3. [

3. Evaluating p on ¥/~

Let u be the Mdbius function defined as above on the lattice #". On every subspace
W,, of dimension m we have w(W,) =1, since W,, is maximal. Consider now a
B-isotropic subspace W,,_; of dimension m—1. Since W,,_, is contained in Qy_11.m=
p + 1 maximal isotropic subspaces, we have by definition

UWWp—1)=—p.

To evaluate u on a generic W), we need to prove some polynomial identities. In R[x]
we define the following polynomials for A=1,...,n+ 1:

dof Hj(xZ(n—./’H) —1)
Fn,h(x) - H_,-(xj — 1)

with 1 < j < h. For h =0, we also define

Fro(x) &1

and for any n > h >0

def

h
i) E 3 (1) x0T, ().

j=0
Notice that the polynomial F,, ;(x) evaluated at p gives the number P, defined in
the statement of Proposition 2.3.

Lemma 3.1. For any n > h > 1, we have

App(x) = Ap_1p—1(x) + (—1)"’hx((nfh)uh)an1,h(x)- (2)

Proof. We will prove the lemma by induction on 4. It follows from calculations that
=1 )22 1)
(xr—D(x*—1)

and hence, the identity (2) holds for # =2. Suppose now that (2) is true for a fixed
h > 2 and for any n > h. It follows by definition that

2
An,h+l(x) = An,h(x) + (71)n7h71x(n7h—1) Fn,h+l(x)

2(n
—2 (-2 x
Apo(x) — Ap_11(x) = (—1)" 2,((n=2) +2)(

and
A1) = Apmipmr () + (= 1O E, (),
Subtracting side by side, the induction hypothesis gives the difference
Anjpe1(x) = Ap—15(x)
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equal to

2 2
(=1 =D, ) + (=1 T NE, () — Fu(x)

5 x2n _ xh+1
— (1= (_x(Znhl) + 1 > .
’ xhtl —1

The last bracket is
xh-‘rl(xZ(n—h—l) _ 1)

Y]

and the lemma follows. [

Proposition 3.2. For any subspace Wy, € W~ of dimension h, we have
(W) = (=1 p

Proof. We recall that every B-isotropic subspace W, of the 2m-dimensional vector
space V' is contained in O, subspaces in ¥~ of dimension % + /. By Proposition 2.4
we have

m—h

RO+ Onimt( W) = 1. (3)
i=1

If we use induction on m — A, by Proposition 2.4 Eq. (3) becomes

7 2
H(Wh) + Am—h,m—h(p) _ (_l)mfhp(mfh) -1

Notice now that the polynomial F,_; ,(x) is identically zero for any n. Therefore,
Lemma 3.1 gives

Am,m(p) = Amfl,mfl(p) == /11,1(17) =1
and Proposition 3.2 follows. [

From formula (1) at the beginning of Section 2, the next theorem now follows.

Theorem 3.3. Let E,, be an extraspecial p-group of order p*"*'. The K(n)-Euler
characteristic of E,, is given by

m
n— — —h—1)? —
Tonp(En) = P~y (=1 ptn == DE, L ().
h=0

The formula of Theorem 3.3 specializes for m =1 to

Tnp(E1) = p""' (P 4 p" = 1),
which could also be obtained by a direct investigation of the ring structure of K(n)*(BE)
as described in [12] (with a correction in [13]).

Corollary 3.4. The number y1 ,(Ey) is given by

Xl,p(Em) = p2m +p—-1L
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Proof. By Theorem 3.3 we have just to prove that the polynomial

Su(x) =3 (=1)"x ", (x)
h=0

is equal to x*" +x — 1.

Since A, ,(x) is identically equal to 1, we have

Sm(x) —X= Sm(x) - XAm,m(x)

= Z(, yn—ixm=i=D" — 2 DYF, ()
j=0
m—1

. . 2
=) (=11 = Y (x)

J=0

— (x2m o I)Am—l,m—l(x) :x2m -1

as we claimed. [

Corollary 3.4 gives just a check on Theorem 3.3. In fact y; ,(E,) gives the number
of conjugacy classes in E,. This is easy to compute directly since every element in
E,. \ Z(E,) belongs to a conjugacy class of size p.

Corollary 3.5. The number y» ,(E,) is given by
1o.p(En) = P~ (p™" + PP = 1),

Proof. Let R,(x) denote the following polynomial of R[x]:

n . . 2.
Ry(x) = (=1 /x=I= 0 E, ().
j=0

It follows by Theorem 3.3 that y5 ,(E,) = R,(p). Therefore, it suffices to prove that
R,(x)=x*""1x?" +x3 = 1).

By definition we have

n

n
Ry(x) =3 (=1, ) 4+ (1) Ix D (I — 1F, ().
j=0 j=0

The first sum is the product of x with the polynomial S,(x) defined in the proof of the
previous lemma. Therefore, we get

Roor) = 68,6) 3+ (=1 I G D, (x)

J=1

=x(S,(x) + (x2n —1)S—1(x))
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and the formula is proved since
S,(x)=x"4+x—1

by the previous corollary. [

Corollaries 3.4 and 3.5 enable us to calculate very quickly the number y, ,(E,,) for
n=1,2. Unfortunately, for n > 2, an equally fast way to obtain ¥, ,(£,) does not seem
to exist as the following examples show:

np(ED)=p°+ p° — p’,

B E)=p"+p +p —p°—p —pt+p.
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