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ABSTRACT: Process mining is the approach that extracts real workflows by database
of events (logs) and compares them to the predefined procedures estimating the pro-
cess gap for process improvement. It is a different ovesture from Data Mining that
extracts hidden information and relations from data, with whom it is often confused.
The most important tool for the development of process mining is ProM, an open
~ source suite which implements a lot of technical approaches for process mining,

This paper aims to present Process Mining approach showing the differences from
Data Mining, and the implementation by ProM on real logs of an Ttalian company,
comparing the extracted workflows to ISO9001 predefined procedures.

KEYWORDS: Big Data, Process Mining, Process Tool, Data Mining.

1 Introduction

Data analysis for clustering and extracting patterns from a big group of data is
an old issue.

Early methods of identifying patterns in data include Bayes’ theorem {1700s)
and regression analysis (1800s) (Pelloni, 1987).

During the whole 20th century, the fields that involved more the development
of this branches of statistics were the finance and (of course) the birth of com-
puter science. Finding a valid way to understand the relationship among data
is essential in finance analysis when predicting future trends.

Especially computer science-after the launch of web-lead the problem to a
higher level. Infact, the dimension of random data that can be extracted from
the web is huge. This is the reason why, since the 90’s, Data Mining became



the heart of various branches identified as Business intelligence and Big Data
analysis played also an important rule for DNA studies, data warehouse and
for meta data business intelligence (Giacalone, Scippacercola, 2016).

2 Data Mining and Process Mining comparison

Data Mining and Process Mining can be categorised as Business Intelligence
that refers to techniques and tools used to analyse large amounts of digital data
and retrieve valuable business knowledge out of them. This purpose is as true
for data mining techniques as process mining techniques, even if with different
perspectives on the analysis and the results they produce. Both techniques are
used to analyse large amounts of data, that it would be impossible to analyse
manually and they produce information that can be used in business decisions
(D’ Alessandro, et al, 2015).

Data Mining techniques are primarily used to find patterns in a large data sets.
With data mining techniques it may be possible to find that cerfain categories
of customers demand a certain product, or to find that the customers who most
frequently buy product A are also the ones who just as often buy product B,
or that the products placed on a specific location in the shop are also the ones
that sell the best. Or in a medical analysis that patients that smoke are the most
related to develop lung cancer, or that a large consume of alcohol increase the
amount of depressed people. In this way is possible to understand important
relationships to improve a business to plan more awareness against cancer.
Process mining is not used to find relationship data patterns, but rather to find
process relationships among data. Process relationship among data tries also
to analyse the relationship between causes and effects among the data in a
certain process. The input to the process mining analysis are event logs, audit
trails, events. So, the apalysis provides an overview of processes and activities.
Process mining’s perspective is not on patterns in the data but in the process
events (Trnka, 2010).

Process Mining is the ‘missing link’ between data mining and traditional BPM
(Business Process Management},

Data Mining provides valuable insights through analysis of data, but it does
not generally concern processes. The scope of the two branches is to give a
powerful instrument in order to better understand data and process and then to
find a way to underline the data relationship of pattern and process to find out
the weakness and try to improve the business.



3 Process Mining for the Process Gap Analysis

One of the most important tools used to conduct real Process Mining from logs
is ProM, an extensible framework, written in Java, that supports a wide variety
of process mining techniques in the form of plug-ins. The input of ProM is
represented by logs, characterized by events, concepts and timestamps. Con-
sidering an OLTP log, events are represented by the tasks of the operators
{concepts) and timestamps are the date and time records of the operations.
The choice of the algorithm of process mining determines the different repre-
sentation of the process analyzed. In the following images there are the work-
flows obtained through the use of inductive visual Miner and Petri Net. This is
an important choice to focus the attention on the Process Gap Analysis.
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The evaluation of the process gap is the estimation of the distance between
the actual process model and the expected process model. The last is a process
known as conformance checking (Van der Aalst, et al, 2012).

These models differ by nature as the former is merely descriptive whereas the
latter is essentially prescriptive. In addition, they are usually developed with
both different conceptual and practical tools and, as a consequence, they may
also be represented in different ways and formats. In general, moreover, the
models can be encoded in multiple representations to serve different goals.
When comparing two models using a practical computer-based procedure, ob-
vious prerequisites include the comparability of their (ultimate) representa-
tions — which must be digital, formal, unambiguous — and the comparability at
the conceptual meta-level. In this sense, the flexibility of ProM for what con-
cerns the output format represents a valuable feature for a tool which aimes



to support automated process analysis.The intended process model is created
in order to document how the actual business process should be carried out.
To fulfill its prescriptive role, a hard or soft copy of the procedural description
of the process is typically handed out to the operational stakeholders. Such a
procedural specification is often represented in natural language — which is in-
herently subject to ambiguity - possibly accompanied by diagrams expressed
in informal or semi-formal notations (e.g., UML activity diagrams or BPMN
(White, Stephen, 2004)).

In more concrete terms, the key question is the following one: how can we cre-
ate — e.g., from process descriptions expressed in natural language — a model
that can be used to produce representations that can be effectively compared
against the actual process description — ¢.g., as produced by a tool such as
ProM? It seems reasonable to have the chosen approach provide for i} a com-
mon semantic layer to give name and meaning to process elements, i1) a well-
defined notation (comprehensible and/or usable by business experts) for de-
scribing processes with clear semantic links, and iii) tools to analyse and com-
pare process descriptions according to proper semantic rules.

In practice, the choice of the modeling language is not easy because a tension
exists between expressivity and analysability. For example, a notation such
as BPMN, while suitable for modeling, tends to produce diagrams that are not
amenable to analysis — unless considering a proper BPMN subset or transform-
ing BPMN diagrams to Peiri nets (Kalenkova, et al, 2015).

By the way, keeping a distinction between ‘external’ models (employed for
process specification and human communication) and ‘internal’ models (used
for analysis) may be valuable. Conformance checking is commonly imple-
mented by replaying history (i.e., event logs) on the expected process madel,
which is typically represented as a transition system such as a Petri net. How-
ever, the initial mode] representation may be different. For instance, it is possi-
ble to load a BPMN diagram into ProM, which results in a BPMN-to-Petri-Net
conversion, and then use the too] to analyse and enrich the model with confor-
mance information (Kalenkova, et al, 2015).

4 Process Mining on IS0 9001 process

An interesting application of Process Mining is related to the control of pro-
cesses based on ISO STANDARDS, as the ISO9001 (International Organiza-
tion for Standardization, 2015).

ISO 9001:2015 sets out the criteria for a quality management system and it



is a certifiable standard. It can be used by any organization, large or small,
regardless of its field of activity. In fact, there are over one million companies
and organizations in over 170 countries certified.
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Figure 2. Process Mining on 15O 9001 Maintenance Extinguishers process

As a case study application of process mining, we show the process mining
applied to an ISO 9001 Maintenance Extinguishers process of an Italian com-
pany. Process Mining requires logs about the process, then to avoid this task
we have considered the log of Eugenio (fire extinguishers management tool),
PassPartout (accounting tool) and the log of the Internet of Things scenario of
security objects,

The IoT scenario has been made through the use of unigue QRCODE on each
devices that produces an innovative interactive network of objects, producing
also OLTP logs thanks to the interactions of the users (maintainers and clients)
with the single objects. All these logs have been analyzed through ProM suite
and compared with the models obtained from ISO 9001 Procedures.

The process gap obtained underlined the underestimation of the Work Plans
imparted by the specialist coordinator of maintainers and the incorrect com-
pletion of the work plans by the maintainers that made the intervention. After
one year, the process mining analyis has led to a renovation of some workflows
with noted improvement of efficiency and employees’ awareness.



5 Final Remarks

We have created a dataset named “ProLantincendio” that collects data from
3 years (2014, 2015 and 2016) for all logs and data from Eugenio software,
PassPartout, and Internet of Things software. In fact, this data warehouse has
as its common elements the individual protection devices and the individual
operators, present in all 3 software collections that come into the informa-
tion dataset which our business started from. This data warehouse allows to
proceed with 2 types of analysis, Process Mining on Transaction Data (Log)
and Data Mining on non-transactional data (Sales, Estimates, Contracts, Cus-
tomers, Maintenance, Timeline, Operator Performance). Process Mining from
process evidence, modeling its real flow and allowing comparison with the pro-
cess defined by procedures (the company is ISO 9001 certified). Data Mining
does not extract knowledge from logs, but extracts hidden know-how within
heterogeneous sources. Our experiments focused essentially on the use of al-
gorithm J48 (implementation of C4.5 decision trees) with the extraction of
evidence between operator performances, time of year, localization of the cus-
tomer’s business and maintainer’s experience.
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