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NEWTON’S LEMMA FOR DIFFERENTIAL EQUATIONS

FUENSANTA AROCA AND GIOVANNA ILARDI

Abstract. The Newton method for plane algebraic curves is
based on the following remark: the first term of a series, root of

a polynomial with coefficients in the ring of series in one variable,

is a solution of an initial equation that can be determined by the
Newton polygon.

Given a monomial ordering in the ring of polynomials in sev-
eral variables, we describe the systems of initial equations that

satisfy the first terms of the solutions of a system of partial dif-
ferential equations. As a consequence, we extend Mora and Rob-
biano’s Groebner fan to differential ideals.

0. Introduction

There is a growing interest in the mathematical community to extend the
tools developed in tropical geometry for algebraic varieties to the differential
case. In fact, “Tropical differential equations” was one of the six main topics
chosen for the seminar “Algorithms and Effectivity in Tropical Mathematics
and Beyond”, held in the Leibniz-Zentrum fur Informatik (Dagstuhl, 2016).

The first successful extension has been proposed by Grigoriev (see [10],
[3]). The aim of his approach is to describe the subsets that arise as sets of
exponents of solutions in K[[t]]M . The tropical variety is, then, a subset of
(P(Z≥0))

M .
Here we take another approach: We look for solutions in some extension

of K[x1, . . . , xn] of a system of equations in partial derivatives.
In 1670, Isaac Newton described an algorithm to compute, term by term,

the series arising as y-roots of algebraic equations f(x, y) = 0 ([13, pages 32
to 372], [14]).
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The method is based on the following remark, called Newton’s lemma: the
first term of a root series is a zero of the equation restricted to an edge of the
Newton polygon (the convex hull of the set of exponents).

In this note, we prove Newton’s lemma for systems of partial differential
equations in several variables.

Newton’s method for algebraic curves was extended to ordinary differential
equations by Fine [9], Briot and Bouquet [7]. Grigoriev and Singer used it
in [10] for finding solutions with real exponents. Using this method, Cano
proved in [8] the existence of local solutions of ordinary, non linear, differential
equations of first order and first degree.

J. McDonald, in 1995, extends the method to algebraic hypersurfaces [10].
In [1] and [2] Newton’s lemma (and all the algorithm) is extended to linear
and non linear equations in partial derivatives.

In [5], we extend Mc Donald’s algorithm to algebraic varieties of arbitrary
codimension. To do this, we do not work with polygons but with dual fans
and, instead of working with equations restricted to edges, we work with initial
equations.

This note is a first step for extending the algorithm in [4] to the differential
case. In the last section, we extend the notion of Groebner fan to differential
ideals in the ring of differential polynomials with coefficients in the ring of
Laurent polynomials in several variables.

1. Differential algebra

We begin by recalling some definitions of differential algebra. Standard
references are the books by J. F. Ritt [15] and Kolchin [11].

Let R be a commutative ring with unity, without zero divisors. A deriva-
tion on R is a map d : R → R that satisfies d(a + b) = d(a) + d(b) and
d(ab) = d(a)b+ ad(b), ∀a, b ∈R. Let δ1, . . . , δN be derivations and they com-
mute. The pair (R, (δ1, . . . , δN )) is called a differential ring with N deriva-
tions.

Let (R, (δ1, . . . , δN )) be a differential ring and let R{y1, . . . , yM} be the set
of polynomials with coefficients in R, in the variables {yjI : j = 1, . . . ,M, I ∈
(Z≥0)

N}, that is

R{y1, . . . , yM} :=R
[
{yjI}j=1,...,M,I∈(Z≥0)N

]
.

A monomial is given by

ye =Me(y) :=

M∏
j=1

( ∏
I∈ΛO

(yjI)
e(j,I)

)
,

where O is a natural number, ΛO is the set

ΛO :=
{
(i1, . . . , iN ) ∈ (Z≥0)

N | i1 + · · ·+ iN ≤O
}
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and e is a function

e : {1, . . . ,M} ×ΛO −→ Z≥0.

The space of functions from {1, . . . ,M} × ΛO to Z≥0 will be denoted by
CO.

With these notations an element of R{y1, . . . , yM} is written as:

(1.1)
∑
e∈CO

ϕeMe(y) with ϕe ∈R

for some O ∈N.
The derivations δi on R can be extended to derivations δi on R{y1, . . . , yM}

by setting

(1.2) δiyjI := yj(I+ε(i)),

where ε(i) = (0, . . . ,0,
(i)

1 ,0, . . . ,0) and I ∈ (Z≥0)
N .

With these derivations (R{y1, . . . , yM}, (δ1, . . . , δN )) is a differential ring
called the ring of differential polynomials in M variables with coefficients
in R.

A differential polynomial of the form (1.1) is said to be of order less than
or equal to O.

Given I = (I1, . . . , IN ) ∈ (Z≥0)
N we will denote by δI the composition of

derivations given by

δI := δInn · · · δI11 .

A differential polynomial f ∈ R{y1, . . . , yM} induces a mapping from RM

to R given by

(1.3)
f : RM −→R,

(ϕ1, . . . , ϕM ) �→ f |yjI=δIϕj .

In particular, for ϕ= (ϕ1, . . . , ϕM ) ∈RM and e ∈ CO, we have:

(1.4) Me(ϕ) :=

M∏
j=1

( ∏
I∈ΛO

(δIϕj)
e(j,I)

)
.

An element ϕ ∈RM is a solution of f = 0 if and only if f(ϕ) = 0.

Remark 1.1. Given ϕ ∈RM , Me(ϕ) = 0 if and only if δIϕj = 0, for some
(j, I) with e(j, I) �= 0.

An ideal I ⊂ R is said to be a differential ideal when δi(I) ⊂ I, ∀i ∈
1, . . . ,N .

Let S ⊂R{y1, . . . , yM} be a set of differential polynomials. The differen-
tial ideal generated by S is the smallest differential ideal containing S.
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That is:

〈S〉dif :=
{

r∑
k=1

gkδI(k)fk

∣∣∣ gk ∈R{y1, . . . , yM}, I(k) ∈ (Z≥0)
N , fk ∈ S

}
.

Remark 1.2. If, for every f ∈ S, ϕ is a solution of f , then, ϕ is also a
solution of f for every f ∈ 〈S〉dif .

2. The differential ring of Laurent polynomials

We will work on an algebraically closed field K, of characteristic zero.
We will denote by

K
[
x∗] :=K

[
x1, x

−1
1 , . . . , xN , x−1

N

]
the ring of Laurent polynomials in N variables with coefficients in K, that is,
expressions of the form:

(2.1) ϕ=
∑

α∈Λ⊂ZN

aαx
α,

where aα ∈K, xα = xα1
1 · · ·xαn

n and Λ is a finite set.
We will denote by K(x) the field of rational functions. There are natural

inclusions:

K[x] ↪→K
[
x∗] ↪→K(x).

The ring of Laurent polynomials in N variables is a differential ring with
N derivatives:

∂

∂xi
:

∑
α∈ZN

aαx
α �→

∑
α∈ZN

αiaαx
α−ε(i) ,

where ε(i) = (0, . . . ,0,
i)

1,0, . . . ,0).
For our purposes, it is more convenient to work with the differential oper-

ators δxi = xi
∂

∂xi
instead of ∂

∂xi
.

Note that:

δxiδxi = xi
∂

∂xi
+ x2

i

∂2

∂x2
i

and

δxiδxj = δxjδxi .

As in (1.2), for I ∈ (Z≥0)
N , define inductively

δ(0,...,0)(ϕ) := ϕ, δI+ε(i)(ϕ) := δxiδI(ϕ).

A differential polynomial in M variables with coefficients in the differential
ring (K[x∗], (δx1 , . . . , δxN

)) is written as:∑
(α,e)∈Λ×CO

a(α,e)x
αMe(y) with a(α,e) ∈K and Λ⊂ Z

N finite.
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3. Order and initial part of a Laurent polynomial

There is no natural order in K[x∗], the initial part will depend of the chosen
order. In this note, we will work with monomial orderings.

Given an element ϕ ∈K[x∗] of the form (2.1), the set of exponents of ϕ
is the set

E(ϕ) :=
{
α ∈ Z

N | aα �= 0
}
.

A vector v ∈R
N induces a mapping

valv : K
[
x∗] �→R

given by
valvϕ := min

α∈E(ϕ)
v · α

that extends to a valuation of the field of rational functions. To this valuation
we may associate, in a natural way, an initial part

invϕ :=
∑

v·α=valvϕ

aαx
α.

Remark 3.1. For φ,ϕ ∈K(x) and v ∈R
N

1. a) valv(φ) =∞ if and only if φ= 0.
b) valv(φ+ϕ)≥min{valvφ, valvϕ}.
c) valv(φ ·ϕ) = valvφ+ valvϕ.
d) valv(δIφ)≥ valv(φ), if the coordinates of v are non negative.

2. a) inv(invφ) = invφ.
b) inv(φ ·ϕ) = invφ · invϕ.
c) If δI invφ �= 0 then invδIφ= δI invφ.

3. a) valv(φ+ϕ)>min{valvφ, valvϕ} if and only if valvφ= valvϕ and invφ+
invϕ= 0.

b) valv(δIφ)> valvφ if and only if δI invφ= 0, if the coordinates of v are
non negative.

Let K be a field extension of K(x) to which extends valv , inv and
δx1 , . . . , δxn keeping the properties in Remark 3.1.

The v-initial part of the M -tuple ϕ= (ϕ1, . . . , ϕM ) ∈KM is the M -tuple

invϕ := (invϕ1, . . . , invϕM )

and the v-order of ϕ is the M -tuple of real numbers

valvϕ := (valvϕ1, . . . , valvϕM ).

An element ϕ ∈KM is called v-homogeneous when invϕ= ϕ. The set of
v-homogeneous elements in K will be denoted by Kv . That is:

Kv := {ϕ ∈K | invϕ= ϕ}.
Remark 3.2. Given φ,ϕ ∈Kv :

1. valv(φ+ϕ)>min{valvφ, valvϕ} if and only if φ=−ϕ.
2. valv(δIφ)> valvφ if and only if δIφ= 0.



864 F. AROCA AND G. ILARDI

4. Cloud of points, order and initial part
of a differential polynomial

Given a mapping e ∈ CO we will denote

|e| :=
( ∑

I∈ΛO

e(1, I), . . . ,
∑
I∈ΛO

e(M,I)

)
.

Let f be a differential polynomial with coefficients in the differential ring
(K[x∗], (δx1 , . . . , δxn)):

f =
∑
(a,e)

a(α,e)x
αMe(y), with a(α,e) ∈K.

The cloud of points of f is the subset of ZN ×Z
M
≥0 given by

N(f) :=
{(

α, |e|
)
| a(α,e) �= 0

}
.

Remark 4.1. For any I ∈ (Z≥0)
N , N(δIf)⊂N(f).

Given (v, η) ∈R
N ×R

M the (v, η)-order of f is

ord(v,η) f := min
(α,β)∈N(f)

v · α+ η · β

and the (v, η)-initial part of f is

In(v,η) f :=
∑

v·α+η·|e|=ord(v,η) f

a(α,e)x
αMe(y).

The convex hull of the cloud of points of f is the Newton polyhedron of f ,
we call it PN(f).

The hyperplane

π(v,η) =
{
(α,β) ∈R

N+M | v · α+ η · β = ord(v,η) f
}

is a supporting hyperplane of the Newton polyhedron of f . The (v, η)-face of
the Newton polyhedron is defined as

face(v,η) f := π(v,η) ∩PN(f).

We have

In(v,η) f =
∑

(α,|e|)∈face(v,η) f

xαMe(y).

Different v and η, may give distinct initial parts. The set of the initial parts,
so obtained, will be in bijection with the faces of the Newton polyhedron, or,
equivalently, with the cones of its dual fan.
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5. Newton’s lemma

Given v ∈R
N , let [K :K(x)] be a differential field extension. Where K is a

differential valued field with initial part, such that its valuation, its initial part,
and its derivatives, are extensions of valv , inv , and (δ1, . . . , δn), respectively
and such that properties in Remarks 3.1 and 3.2 hold.

To understand the mapping in (1.3) in terms of valuations, we will start
with the simplest case. That is when ϕ is v-homogeneous and f is a monomial.

Lemma 5.1. Let e ∈ CO be a mapping, set v ∈R
N , let ϕ ∈ (Kv)

M be an M -
tuple of v-homogeneous elements and let a(x) ∈K(x) be a rational function.
If Me(ϕ) �= 0, then

valv
(
a(x)Me(ϕ)

)
= valva(x) + |e|valvϕ.

Proof. Given an M -tuple ϕ= (ϕ1, . . . , ϕM ) ∈ (Kv)
M and e ∈ CO, by equa-

tion (1.4 ) and Remark 3.1(1c), we have

valv
(
Me(ϕ)

)
=

M∑
j=1

∑
I∈ΛO

e(j, I) · valvδIϕj .

Since the ϕj are v-homogeneous and Me(ϕ) is not equal to zero, by Re-
mark 1.1, δIϕj �= 0 for all (j, I) with e(j, I) �= 0 and, by Remark 3.1(1d) and
3.2(3b), we have valvδIϕj = valvϕj . Then

valv
(
Me(ϕ)

)
=

M∑
j=1

( ∑
I∈ΛO

e(j, I)

)
valvϕj = |e|valvϕ,

and the result follows from Remark 3.1(1c). �

Now that we have introduced the right terminology the proof of Newton’s
lemma is straight-forward using the properties of valuations and initial parts.

The following theorem is shown in [2] when v is of rationally independent
coordinates, M equals one, and K is a ring of series with exponents in a cone.

Theorem 5.2 (Newton’s lemma). If ϕ ∈KM is a solution of the differen-
tial polynomial f(x, y), then Inv ϕ is a solution of In(v,valvϕ) f .

Proof. Set η := valvϕ. Suppose that ϕ ∈KM is a zero of f =
∑

e φe(x)×
Me(y), then ∑

e

φeMe(ϕ) = 0

by Lemma 5.1 and Remark 3.1(3a)∑
valv(φeMe(ϕ))=ord(v,η) f

inv

(
φeMe(ϕ)

)
= 0,
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by Remarks 3.1(2b) and 3.1(2c)∑
valv(φe)+η·|e|=ord(v,η) f

Me(invϕ) �=0

invφeMe(invϕ) = 0

and then, by definition

In(v,η) f(invϕ) = 0. �

6. The Groebner subdivision

Mora and Robbiano in [12], introduced the Groebner fan of an ideal in
K[x∗]. The tropical variety of an ideal is a union of cones of the Groebner
fan.

In [6], Assi, Castro-Jimenez and Granger extended Mora and Robbiano’s
fan to the ring of germs of linear differential operators. In this section, we
give an extension of Mora and Robbiano’s fan to differential ideals in the ring
of differential polynomials in M variables with coefficients in K[x∗].

Let I be a differential ideal of the ring of differential polynomials. The
ideal of (v, η)-initial parts of I is the differential ideal generated by the
(v, η)-initial parts of the elements of I. That is:

In(v,η) I :=
〈
{In(v,η) f | f ∈ I}

〉
dif

.

Once we have introduced this terminology, we can state a result that is
direct consequence of Newton’s lemma.

Corollary 6.1. If ϕ ∈ KM is a zero of the differential system G ⊂
K[x∗]{y1, . . . , yM}, then invϕ is a zero of the initial ideal In(v,valvϕ)〈G〉dif .

Proof. By Remark 1.2 the solutions of a differential system coincide with
the solutions of the differential ideal generated by the system. The corollary
is a direct consequence of this fact and Theorem 5.2. �

Given I ⊂K[x∗]{y1, . . . , yM}, a differential ideal, we define an equivalence
relation in R

N ×R
M , by

(v, η)∼
(
v′, η′

)
⇐⇒ In(v,η) I = In(v′,η′) I.

The Groebner subdivision of I is the collection

Σ(I) :=
{
C(v, η); (v, η) ∈R

N
}
,

where C(v, η) stands for the closure of the equivalence class of (v, η).
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