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Abstract We develop an improved version of the parabolic Lipschitz truncation, which
allows qualitative control of the distributional time derivative and the preservation of zero
boundary values. As a consequence, we establish a new caloric approximation lemma. We
show that almost p-caloric functions are close to p-caloric functions. The distance is mea-
sured in terms of spatial gradients as well as almost uniformly in time. Both results are
extended to the setting of Orlicz growth.

Mathematics Subject Classification 35A35 · 35K55

1 Introduction

The purpose of the Lipschitz truncation is to regularize a given function by a Lipschitz
continuous one by changing it only on a small bad set. It is crucial for the applications that
the function is not changed globally, which rules out the possibility of convolutions. The
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Lipschitz truncation technique was introduced by Acerbi–Fusco [2] to show lower semi-
continuity of certain variational integrals.

Since then this technique has been successfully applied in many different areas. Let us
provide a few examples. The Lipschitz truncation was used in the context of biting lemmas,
existence theory and regularity results of non-linear elliptic PDE for example in [1,11,19,
20,27] and [15].

It was also successfully applied in the framework of non-Newtonian fluids of power law
type [4,7,16,24] and even in the context of numerical analysis [14]. In [8–10] the Lipschitz
truncation was used to develop an existence theory of vector valued very weak solutions of
elliptic PDEs.

All of these application have in common that the desired test functions are a priori not
admissible, but have to be approximated by Lipschitz functions. In order to preserve things
like pointwise monotonicity of the system, it is important that the truncation takes place only
on the small bad set. The bad set is usually defined in terms of the level sets of the maximal
operator of the gradients.

During these years the Lipschitz truncation technique has been refined with respect to
several aspects. In the stationary situation the picture is almost complete. It is now possible
to preserve zero boundary value, obtain stability in all L p-spaces and to apply the technique to
sequences of functions. Moreover, the Lipschitz truncation can be interpreted as a Calderón–
Zygmund decomposition in the Sobolev spaces of first order, see [3].

In the parabolic context the theory is much less developed. The parabolic Lipschitz trun-
cation was introduced by Kinnunen–Lewis [25]. They used it to prove higher integrability
for very weak solutions of the evolutive p-Laplacian systems. On the other hand, Diening–
Ruzicka–Wolf [17] developed a parabolic Lipschitz truncation to show existence of fluids of
power law type; i.e. the evolutive analogue to [24]. In [5,7] a parabolic Lipschitz truncation
was developed, which preserves the solenoidal structure of the given function and makes the
truncation more suitable for problems from fluids dynamics.

The difficulty of the parabolic Lipschitz truncation in contrast to the stationary case is due
to the fact, that the time-derivative of the solution is only defined in terms of negative Sobolev
spaces or in the distributional sense. Therefore, the parabolic Lipschitz truncations mentioned
above lacked the possibility to preserve zero boundary values and to obtain control on the
time derivative of the truncation. In this paper we will overcome both of these problems.

In what follows we will introduce our parabolic Lipschitz truncation in the setting of
p-growth assumptions. The full statement that holds for general Orlicz growth assumptions
can be found in Theorem 2.3 in the next section.

Our standing assumption for the Lipschitz truncation, is that the given function w has a
time derivative in the following sense:

∂tw = divG in D′(J × �) (1.1)

where J is a time interval and � is a bounded domain in R
m , m ≥ 2. We take as “bad set”

a superlevel set of the maximal function of the spatial gradient and of the time derivative in
the following way. Let

Oα
λ := {Mα(χJ×�∇w) > λ} ∪ {αMα(χJ×�G) > λ},

where λ > 0 and the α-parabolic maximal function Mα is defined using the (backwards in
time) parabolic cylinders Qα

r := (−αr2, 0) × Br in the following way:

(Mαg)(x) := sup
Q∈Qα : x∈Q

−
∫
Q

|g|. (1.2)
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where Qα is the family of cylinders Qα
r , r > 0.

Here α is a scaling quantity, to allow different integrability assumptions on ∇w and G.
Having collected the necessary notation we may state the theorem.

Theorem 1.1 Let G ∈ L p′
(J ×�) andw ∈ L p(J,W 1,p

0 (�)) satisfy (1.1). Then there exists

an approximation wα
λ ∈ L p(J,W 1,p

0 (�)) with the following properties:

(a) wα
λ = w on (Oα

λ )c.
(b) Mα(∇wα

λ ) ≤ c λ, i.e. wα
λ is Lipschitz continuous with respect to space.

(c) ∫

J×�

|∇(wα
λ − w)|p dz ≤ c

∫

Oα
λ

|∇w|p + λp|Oα
λ |.

(d) αN α(∂tw
α
λ ) ≤ cλ where N α is defined in (2.11).

(e) wα
λ is Lipschitz continuous with respect to the scaled, parabolic metric, i.e.

|wα
λ(t, x) − wα

λ (s, y)| ≤ c λ max

{ |t − s| 1
2

α
1
2

, |x − y|
}

for all (t, x), (s, y) ∈ J × �.
(f) for J = (t−, t+) and arbitrary η ∈ W 1,∞

0 (−∞, t+) it holds::

〈∂tw,wα
λη〉 = 1

2

∫

Q

(|wα
λ |2 − 2w · wα

λ )∂tηdz +
∫

Oα
λ

(∂tw
α
λ )(wα

λ − w)ηdz.

Observe, that (d) shows that our approximation does also approximate the distributional time-
derivative. The maximal operator N α is defined in terms of the distributional time derivative.
It seems to be a novel tool to quantify the distributional time derivative in such a way. In a
way the boundedness of N α(∂tw

α
λ ) corresponds to ∂tw

α
λ ∈ L∞(J,W−1,∞(�)).

As an application of our parabolic Lipschitz truncation, we present a new caloric approxi-
mation lemma. We show that every “almost p-caloric” function has a p-caloric approximation
“close enough”. The following theorem is the p-version of the more general result for Orlicz
function, see Theorem 4.2.

Theorem 1.2 Let p ∈ (1,∞) and Q be a times-space cylinder, Q = I × B = (t−, t+)× B.
Let σ ∈ (0, 1), q ∈ [1,∞) and θ ∈ (0, 1). Moreover, let Q̃ be such that Q ⊂ Q̃ ⊂ 2Q.
Then, for all ε > 0 there exists a δ > 0 s.t. the following holds: if u ∈ L p(I,W 1,p

0 (B)), ut =
div G, G ∈ L p′

(J × �), is almost p-caloric in the sense that for all ξ ∈ C∞
0 (Q),

∣∣∣−
∫
Q
−u∂tξ + |∇u|p−2∇u∇ξdz

∣∣∣ ≤ δ

(
−
∫
Q̃

|∇u|p + |G|p′
dz + ‖∇ξ‖p∞

)

then there exists a p-caloric function h s.t. h = u on ∂pQ and

(
−
∫
I

(
−
∫
B

( |u − h|2
|t+ − t−|

)σ

dx
) q

σ
dt

) 1
q +

(
−
∫
Q

|V (∇u) − V (∇h)|2θdz

) 1
θ

≤ ε−
∫
Q̃

|∇u|p + |G|p′
dz.

where V (z) = |z| p−2
2 z.
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If u would be p-caloric, then we could choose δ = 0 in the assumption of Theorem 1.2 and
h = u as an approximation. The small parameter δ > 0 indicates, that u behaves like a small
perturbation of a p-caloric function. This smallness however is only needed in reaction to
very regular test functions ξ . Nevertheless, Theorem 1.2 ensures that u is close to a p-caloric
function h. The closeness is expressed up to a small loss in the exponent in the natural distance
of the p-heat equation, which are L∞(L2) and L p(W 1,p). In particular, we have control on
the distance in the sense of space and time derivatives.

In the stationary case, the method is called harmonic approximation lemma and its idea
goes back to De Giorgi. He used it in geometric measure theory to prove regularity of harmonic
maps. See [22] for an overview on the harmonic approximation lemma. The closeness in the
sense of gradients and the preservation of the boundary values was introduced in [19].

The p-caloric approximation method was developed by Bögelein, Duzaar and Mingione
[6], (see also [21,23]). We wish to quickly point the improvements of the approximation
lemma here with respect to the one in [6]. First, our assumptions are weaker: we only assume
(1.1) and we deduce the validity of a Poincaré inequality. Second, our proof is directly and
completely avoids any argument by contradiction and the proof is much shorter. Second,
this direct approach via the parabolic Lipschitz truncations gives us a much finer control on
the quantities. Indeed, we can show closeness of the p-caloric approximation function both
in Lq(L2σ ) and L pθ (W 1,pθ ) norms, (the last closeness is via the natural quantity V (z) =
|z| p−2

2 z). This means that our estimates measure the closeness of the weak time derivatives
and spatial gradients in a quantitative way. Third, we can preserve boundary values, which
is very handy for applications. Forth, our technique is developed in the more general frame
of Orlicz spaces.

Besides the potential use for applications that was described above, we will demonstrate
the useability of our method in a forthcoming paper where we will consider parabolic systems
with critical growth, [18].

2 Parabolic Lipschitz truncation

In this section with derive an improved version of the parabolic Lipschitz truncation. Earlier
versions are due to [26] and [17].

We start by assuming that w ∈ L1(J,W 1,1
0 (�)) is a distributional solution (possible

vectorial) to

∂tw = divG in D′(J × �)

w = 0 on ∂par(J × �)
. (2.1)

Here J = (−t0, 0) denotes the time interval. The space domain � ⊂ R
m should have the

fat complement property, see Remark 2.1. In particular, it suffices that � is a bounded open
domain with Lipschitz boundary. In many applications it is enough to consider the case
where � is a ball or a cube. By ∂par(J × �) we denote the parabolic boundary of J × � =
({−t0} × �) ∪ (J × ∂�). The function G will at least be in L1(J × �). Note that the zero
boundary values on the parabolic boundary are well defined due to w ∈ L1(J,W 1,1

0 (�)) and

∂tw ∈ L1(J, (W 1,∞
0 (�))∗).

Remark 2.1 It is sufficient for us to consider domains � that have the fat complement prop-
erty, i.e. there exists A1 ≥ 1 such that for all x ∈ �

|B2 dist(x,��)
(x)| ≤ A1 |B2 dist(x,��)

(x) ∩ ��|. (2.2)
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If � ⊂ R
d is an open bounded set with Lipschitz boundary then � has the fat complement

property.

Let us recall some definitions and results that are standard in the context of N-functions.
A real function φ : R

≥0 → R
≥0 is said to be an N-function if it satisfies the following

conditions:φ(0) = 0 and there exists the derivativeφ′ ofφ. This derivative is right continuous,
non-decreasing and satisfies φ′(0) = 0, φ′(t) > 0 for t > 0, and limt→∞ φ′(t) = ∞.
Moreover, φ is convex.

We say that φ satisfies the �2-condition, if there exists c > 0 such that for all t ≥ 0 holds
φ(2t) ≤ c φ(t). We denote the smallest possible constant by �2(φ). Since φ(t) ≤ φ(2t) the
�2 condition is equivalent to φ(2t) ∼ φ(t).

By Lφ and W 1,φ we denote the classical Orlicz and Sobolev-Orlicz spaces, i. e. f ∈ Lφ

iff
∫

φ(| f |) dx < ∞ and f ∈ W 1,φ iff f,∇ f ∈ Lφ . By W 1,φ
0 (�) we denote the closure of

C∞
0 (�) in W 1,φ(�).

By (φ′)−1 : R
≥0 → R

≥0 we denote the function

(φ′)−1(t) := sup {s ∈ R
≥0 : φ′(s) ≤ t}.

If φ′ is strictly increasing then (φ′)−1 is the inverse function of φ′. Then φ∗ : R
≥0 → R

≥0

with

φ∗(t) :=
t∫

0

(φ′)−1(s) ds

is again an N-function and (φ∗)′(t) = (φ′)−1(t) for t > 0. It is the complementary function
of φ. Note that φ∗(t) = sups≥0(st −φ(s)) and (φ∗)∗ = φ. For all δ > 0 there exists cδ (only
depending on �2(φ, φ∗) such that for all t, s ≥ 0 holds

t s ≤ δ φ(t) + cδ φ∗(s), (2.3)

This inequality is called Young’s inequality. For all t ≥ 0

t

2
φ′( t

2

)
≤ φ(t) ≤ t φ′(t),

φ

(
φ∗(t)
t

)
≤ φ∗(t) ≤ φ

(
2 φ∗(t)

t

)
.

(2.4)

Therefore, uniformly in t ≥ 0

φ(t) ∼ φ′(t) t, φ∗(φ′(t)
) ∼ φ(t), (2.5)

where the constants only depend on �2(φ, φ∗).
We will assume that φ satisfies the following assumption.

Assumption 2.2 Let φ be an N-function such that φ is C1 on [0,∞) and C2 on (0,∞).
Further assume that

φ′(t) ∼ t φ′′(t) (2.6)

uniformly in t > 0. The constants in (2.6) are called the characteristics of φ.

We remark that under these assumptions �2(φ, φ∗) < ∞ will be automatically satisfied,
where �2(φ, φ∗) depends only on the characteristics of φ.
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For given φ we define the associated N-function ψ by

ψ ′(t) := √
φ′(t) t . (2.7)

We remark that if φ satisfies Assumption 2.2, then also φ∗, ψ , and ψ∗ satisfy this assump-
tion.

The idea of the parabolic Lipschitz truncation is to cut certain maximal functions of the
gradient and the time derivative. Since the time derivative is only defined in the weak sense
by ∂tw = divG, we will cut the maximal operator of G instead of ∂tw.

The properties of the Lipschitz truncation are summarized in the following theorem.

Theorem 2.3 Let w ∈ L1(J,W 1,1
0 (�)) and ∇w ∈ Lφ(J × �) satisfies (2.1). For λ, α > 0

define the bad set Oα
λ by

Oα
λ := {Mα(χJ×�∇w) > λ} ∪ {αMα(χJ×�G) > λ}, (2.8)

Then there exists an approximation wα
λ ∈ Lφ(J,W 1,φ

0 (�)) with the following properties:

(a) wα
λ = w on (Oα

λ )c.
(b) Mα(∇wα

λ ) ≤ c λ, i.e. wα
λ is Lipschitz with respect to space.

(c) ∫

J×�

φ(|∇(wα
λ − w)|) dz ≤ c

∫

Oα
λ

φ(|∇w|) + φ(λ)|Oα
λ |.

(d) αN α(∂tw
α
λ ) ≤ cλ where N α is defined in (2.11).

(e) wα
λ is Lipschitz continuous with respect to the scaled, parabolic metric, i.e.

|wα
λ(t, x) − wα

λ (s, y)| ≤ c λ max

{ |t − s| 1
2

α
1
2

, |x − y|
}

for all (t, x), (s, y) ∈ J × �.
(f) for J = (t−, t+) and arbitrary η ∈ W 1,∞

0 (−∞, t+) it holds:

〈∂tw,wα
λη〉 = 1

2

∫

Q

(|wα
λ |2 − 2w · wα

λ )∂tηdz +
∫

Oα
λ

(∂tw
α
λ )(wα

λ − w)ηdz

The proof will be achieved through several lemmas.

2.1 Parabolic Poincaré type inequality

The goal of this subsection is to derive a very weak form of the parabolic Poincaré inequal-
ity on parabolic cylinders, where the time derivative is just defined in a weak sense, see
Theorem 2.8.

We start with some notations. By Br (x), resp. Ir (t), we denote the standard euclidean
ball with radius r and center x ∈ R

m , resp. t ∈ R. For α > 0 define the α-parabolic metric
dα : R × R

m → [0,∞) by

dα

(
(t, x), (τ, y)) := max

{
α− 1

2 |t − τ | 1
2 , |x − y|}.

The balls with radius r respect to dα are called α-parabolic cylinders with radius r . Any
α-parabolic cylinder Q can be represented in terms of euclidean balls, i.e.

Q = Qα
r (t, x) := Iαr2(t) × Br (x) = I × B.
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for some (t, x) ∈ R
m+1, where r is the radius of Q.

By σQ (for σ > 0) we denote the parabolic scaled cylinder with the same center but σ -times
the radius with respect to dα . In particular, for Q = I × B we have σQ = (σ 2 I )× (σ B). We
denote by |E | the Lebesque measure of E for a measurable set E and by χE its characteristic
function. We define

−
∫
E

| f | dx =: 1

|E |
∫

E

| f | dx .

For a non-negative integrable function η we define

〈 f 〉η := 1

‖η‖1

∫
f η dx

and for a measurable set E we define 〈 f 〉E := 〈 f 〉χE . The integration is taken over the
natural domain of f , so if f is defined on Q, then the integral is over Q.
We need the following version of the norm conjugate formula for L1

0(I ).

Lemma 2.4 Let f ∈ L1(I ), then∫

I

| f − 〈 f 〉I | dt ≤ 2 sup
β∈C∞

0,0(I ),‖β‖∞≤1

∫

I

fβ dt ≤ 2
∫

I

| f − 〈 f 〉I | dt.

Proof The second estimate is obvious, so we just need to prove the first one. It suffices to
prove the case I = (0, 1). Fix δ > 0. Then due to the isometry (L1(I ))∗ = L∞(I ), we can
find g ∈ L∞(I ) with ‖g‖∞ ≤ 1, such that∫

I

| f − 〈 f 〉I | dt ≤ δ +
∫

I

( f − 〈 f 〉I )g dt = δ +
∫

I

f (g − 〈g〉I ) dt. (2.9)

For ε ∈ (0, 1
4 )define Iε = (ε, 1−ε). Letψε denote a standard mollifier with suppψε ⊂ Bε(0).

Define

hε := (
χIε (g − 〈g〉Iε )

) ∗ ψε/2.

It is easy to see that hε ∈ C∞
0,0(I ),(subspace of C∞

0 whose elements have mean value zero),
hε → g−〈g〉I almost everywhere for ε → 0, ‖hε‖L∞(I ) ≤ 2 ‖g‖∞. In particular, it follows
by the dominated convergence theorem that∫

I

f (g − 〈g〉I ) dt = lim
ε→0

∫

I

f hε dt.

This and (2.9) imply∫

I

| f − 〈 f 〉I | dt ≤ δ + sup
hε∈C∞

0,0(I ),‖hε‖∞≤2

∫

I

f hε dt.

The claim follows, since δ > 0 was arbitrary. ��
Lemma 2.5 Let f ∈ L1(I ), then∫

I

| f − 〈 f 〉I | dt ≤ 2 sup
γ∈C∞

0 (I ),‖γ ′‖∞≤1

∣∣∣∣
∫

I

f γ ′ dt

∣∣∣∣ ≤ 2
∫

I

| f − 〈 f 〉I | dt.
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Proof This follows immediately from Lemma 2.4. Indeed, if β ∈ C∞
0,0(I ), then its primitive

γ (t) :=
t∫

−∞
β(s) ds satisfies γ ∈ C∞

0,0(I ). On the other hand for every γ ∈ C∞
0 (I ), we have

γ ′ ∈ C∞
0,0(I ). ��

For an α-parabolic cylinder Q = Qr = Iαr2 × Br we define

FQ := {ξ ∈ C∞
0 (Q) : ‖ξ‖FQ

:= ‖ξ‖∞ + r‖∇ξ‖∞ + αr2‖∂tξ‖∞ ≤ 1},
Define

MQ(a) := −
∫
Q

|a| dz,

M�,1
Q (a) := −

∫
Q

|a − 〈a〉Q |
rQ

dz

For a distribution a ∈ D′(Q) we define

NQ(a) := sup
ξ∈FQ

(
r |Q|−1|〈a, ξ 〉|).

We use the letter N for “negative”, since we measure somehow the local information on ∂t a
in a negative space. We can observe that

(Mαa)(x) = sup
Q∈Qα : x∈Q

MQ(a), (2.10)

We also define the maximal operator

(N αa)(x) := sup
Q∈Qα : x∈Q

NQ(a). (2.11)

Remark 2.6 If ∂t a = divG on Q, then

NQ(∂t a) = sup
ξ∈FQ

(
r |Q|−1|〈∂t a, ξ 〉|)

= sup
ξ∈FQ

(
r |Q|−1|〈G,∇ξ〉|)

≤ −
∫
Q

|G| dz.

We need the following version of parabolic Poincaré’s inequality with respect to time.

Lemma 2.7 Let η ∈ C∞
0 (B) with η ≥ 0,

∫
B η(x) dx > 0 and ‖η‖∞ + r ‖∇η‖∞ ≤

c0 |B|−1‖η‖1. Then for every α-parabolic cube Q = I × B we have

−
∫
I

∣∣〈a(t)〉η − 〈a〉η×I
∣∣ dt ≤ c rαNQ(∂t a),

where c depends on η only through c0. Here we use the notation 〈a〉η×I = 1
|I |

∫
I
〈a(t)〉ηdt.
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Proof We can assume without loss of generality that
∫
B η(x) dx = 1. From Lemma 2.5 it

follows that

−
∫
I

∣∣〈a(t)〉η − 〈a〉η×I
∣∣ dt ≤ 2 sup

γ∈C∞
0 (I ),‖γ ′‖∞≤1

∣∣∣∣−
∫
I
〈a(t)〉ηγ ′(t) dt

∣∣∣∣

= 2 |B| sup
γ∈C∞

0 (I ),‖γ ′‖∞≤1

∣∣∣∣−
∫
Q
a ∂t (ηγ ) dz

∣∣∣∣.

We want to estimate the integral in the last expression by means of NQ(∂t a). Let γ ∈ C∞
0 (I )

with ‖γ ′‖∞ ≤ 1. Then ‖γ ‖∞ ≤ c|I |. We estimate

‖ηγ ‖∞ ≤ ‖η‖∞‖γ ‖∞ ≤ c0 |B|−1|I |,
r‖∇(ηγ )‖∞ ≤ r‖∇η‖∞‖γ ‖∞ ≤ c0 |B|−1|I |,

αr2‖∂t (ηγ )‖∞ ≤ ‖η‖∞αr2‖∂tγ ‖∞ ≤ c0 |B|−1|I |.
In particular, ‖ηγ ‖FQ

≤ c0|B|−1|I | = c0|B|−1αr2. Therefore, using the definition of
NQ(∂t a) we have

|B|
∣∣∣∣−
∫
Q
a ∂t (ηγ ) dz

∣∣∣∣ ≤ c |B| r−1NQ(∂t a) ‖ηγ ‖FQ
≤ c αrNQ(∂t a).

and the claim follows. ��

We are now in a position to state the following Poincaré inequality :

Theorem 2.8 Let Q = I × B be α-parabolic cube and let ρ ∈ L1(Q) be such that ρ ≥ 0
and ‖ρ‖∞ ≤ c0|Q|−1‖ρ‖1. Then

−
∫
Q

∣∣∣∣a − 〈a〉ρ
r

∣∣∣∣ dz ≤ c−
∫
Q

|∇a| dz + c α NQ(∂t a).

Recall that NQ(∂t a) ≤ −
∫
Q |G| dz if ∂t u = divG with G ∈ L1(Q), due to Remark 2.6.

Proof We begin with the special case ρ = χIη with η as in Lemma 2.7.

−
∫
Q

∣∣∣∣a − 〈a〉η×I

r

∣∣∣∣ dz ≤ −
∫
I
−
∫
B

∣∣∣∣a − 〈a(t)〉η
r

∣∣∣∣ dx dt + −
∫
I

∣∣∣∣ 〈a(t)〉η − 〈a〉η×I

r

∣∣∣∣ dt

=: I + I I.

Now the claim follows by using Poincaré in space for the first term and Lemma 2.7 for the
second term.

Now consider the case of arbitrary ρ as in the assumptions. Then

−
∫
Q

∣∣a − 〈a〉ρ
∣∣ dz ≤ −

∫
Q

∣∣a − 〈a〉η×I
∣∣ dz + ∣∣〈a〉ρ − 〈a〉η×I

∣∣.
Now Jensen’s inequality with respect to the integration of 〈a〉ρ together with the assumptions
on ρ imply

∣∣〈a〉ρ − 〈a〉η×I
∣∣ ≤ ‖ρ‖L∞(Q)

‖ρ‖L1(Q)

∫

Q

∣∣a − 〈a〉η×I
∣∣ dz ≤ c0−

∫
Q

∣∣a − 〈a〉η×I
∣∣ dz.
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In particular, we have

−
∫
Q

∣∣a − 〈a〉ρ
∣∣ dz ≤ (1 + c0)−

∫
Q

∣∣a − 〈a〉η×I
∣∣ dz,

so the general case follows from the special one. ��

Since the above (weak) setting can not be applied to the Orlicz setting in modular form, we
include the following classical space-time Poincaré in modular Orlicz form.

Lemma 2.9 Let Q = I × B be α-parabolic cube and let ρ ∈ L1(Q) be such that ρ ≥ 0
and ‖ρ‖∞ ≤ c0|Q|−1‖ρ‖1.

Moreover, let ∂t a = divG with G ∈ L1(Q) in the sense of distributions. Let φ be an
Orlicz function satisfying the �2-condition. Then for every α-parabolic cube Q = I × B we
have

−
∫
Q

φ
(∣∣∣a − 〈a〉ρ

r

∣∣∣
)

dz ≤ c−
∫
Q

φ
(|∇a|) dz + c φ

(
α−
∫
Q

|G| dz

)
.

Proof As in Theorem 2.8 we begin with ρ = χIη with η as in Lemma 2.7. Analogously to
the proof of Theorem 2.8 we estimate

−
∫
Q

φ
(∣∣∣a − 〈a〉η×I

r

∣∣∣
)

dz

≤ −
∫
I
−
∫
B

φ
(∣∣∣a − 〈a(t)〉η

r

∣∣∣
)

dx dt + −
∫
I
φ
(∣∣∣ 〈a(t)〉η − 〈a〉η×I

r

∣∣∣
)

dt

=: I + I I.

Now I can be estimated by −
∫
Q φ(|∇a|) dz by using Poincaré in space for Orlicz functions,

see e.g. [13, Theorem 7]. For the second we estimate

|〈a(t)〉η − 〈a〉η×I | =
∣∣∣−
∫
I
〈a(t)〉η − 〈a(s)〉η ds

∣∣∣ =
∣∣∣−
∫
I

1

‖η‖L1(B)

t∫

s

〈∂t a(τ ), η〉dτ ds
∣∣∣

=
∣∣∣−
∫
I

1

‖η‖L1(B)

t∫

s

〈G,∇η〉 ds
∣∣∣

≤ cαr−
∫
Q

|G| dz.

(2.12)

This can be used to estimate (I I ) and the claim follows for ρ = χIη.
Now as in the proof of Theorem 2.8 we can change to general ρ by showing in the same

manner

−
∫
Q

φ(
∣∣a − 〈a〉ρ

∣∣) dz ≤ (1 + c0)−
∫
Q

φ
(∣∣a − 〈a〉η×I

∣∣) dz.

��
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2.2 Extension

It is convenient for our purpose to use function which are defined on the whole space R×R
m .

Therefore, we will extend our function w from (2.1) to a function on R×R
m such that most

of its properties are preserved.
We therefore extend G and w from J × � to (−∞, 0] × R

m by zero. Since w(−t0) = 0
in the sense of a (W 1,∞

0 (�))∗)-trace, it is easy to see that ∂tw = divG on D′((−∞, 0),Rm).
Next, we extend w to R×R

m by even reflection and G by odd reflection. Then it follows
that

∂tw = divG in D′(R × �)

w = 0 outside of (−t0, t0) × �,

G = 0 outside of (−t0, t0) × �.

(2.13)

We will construct a Lipschitz truncation wα
λ of w on R × R

m , which is zero outside
of (−t0, t0) × �. The restriction of wα

λ back to J × � will then provide the Lipschitz
truncation for our Theorem 2.3.

2.3 Whitney covering

For α, λ > 0 we define the bad set Oα
λ as

Oα
λ := {Mα(∇w) > λ} ∪ {αMα(G) > λ}. (2.14)

Note that this differs slightly from the definition (2.8) in the Theorem 2.3, since we extend w

and G partly by reflection. This increase the maximal function Mα(∇w) and Mα(G) but at
most by a factor of two. Therefore, for the sake of readability we prefer to work with (2.14).
The result certainly also holds for (2.8).

According to [17, Lemma 3.1] there exists an α-parabolic Whitney covering {Qα
j } =

{I j × Bj } of Oα
λ in the following sense:

(W1)
⋃

j
1
2 Q

α
j = Oα

λ ,

(W2) for all j ∈ N we have 8Qα
j ⊂ Oα

λ and 16Qα
j ∩ (Rm+1 \ Oα

λ ) �= ∅,

(W3) if Qα
j ∩ Qα

k �= ∅ then 1
2rk ≤ r j ≤ 2 rk ,

(W4) 1
4 Q

α
j ∩ 1

4 Q
α
k = ∅ for all j �= k,

(W5) each x ∈ Oα
λ belongs to at most 120m+2 of the sets 4Qα

j ,

where r j := rBi , the radius of Bj and Qα
j = I j × Bj .

With respect to the covering {Qα
j } there exists a partition of unity {ρ j } ⊂ C∞

0 (Rm+1) such
that

(P1) χ 1
2 Q

α
j
≤ ρ j ≤ χ 3

4 Q
α
j

(P2) ‖ρ j‖∞ + r j‖∇ρ j‖∞ + r2
j ‖∇2ρ j‖∞ + α r2

j ‖∂tρ j‖∞ ≤ c.

For each k ∈ N we define Ak := { j : 3
4 Q

α
k ∩ 3

4 Q
α
j �= ∅}. Then

(P3)
∑

j∈Ak
ρ j = 1 on 3

4 Q
α
k .

We get the following additional property

(W6) If j ∈ Ak , then |Qα
j ∩ Qα

k | ≥ 16−m−2 max {|Qα
j |, |Qα

k |}.
(W7) If j ∈ Ak , then | 3

4 Q
α
j ∩ 3

4 Q
α
k | ≥ max {|Qα

j |, |Qα
k |}.
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(W8) If j ∈ Ak , then 1
2rk ≤ r j < 2rk .

(W9) #Ak ≤ 120m+2.

Now, we define w j by

wα
j :=

{
〈w〉ρ j if 3

4 Q
α
j ⊂ J × �,

0 else.

We define our truncation wα
λ via the formula

wα
λ := w −

∑
j

ρ j (w − wα
j ). (2.15)

Since the ρ j are locally finite, the sum is pointwise well defined. We will see later that the
sum converges also as a distribution and in a few function spaces.

Note that the sum
∑

j ρ j (w − wα
j ) is zero outside of (−t0, t0) × �. So also wα

λ is zero
outside of (−t0, t0) × �. In fact, we have

supp(ρ j (w − wα
j )) ⊂ 3

4 Q
α
j ∩ ((−t0, t0) × �). (2.16)

Indeed, suppρ j ⊂ 3
4 Q

α
j , so the case 3

4 Q
α
j ⊂ J × � is obvious. If 3

4 Q
α
j �⊂ J × �, then

wα
j = 0 and the claim follows by suppρ j ⊂ 3

4 Q
α
j and suppw ⊂ J × �.

2.4 Estimates on the Whitney cylinders

We need a few auxiliary results that allow to estimate w −wα
j on our Whitney cylinders. The

estimates are based on our parabolic Poincaré’s inequality of Sect. 2.1.
Since the equation ∂tw = divG only holds on R × �, we need the following auxiliary

result to deal with the case of cylinders that our also outside of this domain. We use the fact
that w is zero outside of R × �.

Lemma 2.10 Let Q be an α-parabolic cylinder with radius r . If 4
5 Q �⊂ R × �, then

αNQ(∂tw) ≤ cMQ(∇w).

Proof We calculate

α NQ(∂tw) = α sup
ξ∈FQ

(
r |Q|−1|〈w, ∂tξ 〉|) ≤ c−

∫
Q

|w|
r

dz.

Let Q =: I × B. Since 4
5 Q �⊂ R × � and � has fat complement, we have |B \ �| ≥ c |B|.

Thus, we can apply the space Poincaré (with w = 0 outside of R × �) to get

−
∫
Q

|w|
r

dz ≤ c−
∫
Q

|∇w| dz.

This proves the claim. ��
Lemma 2.11 The following holds.

(a) If 3
4 Q

α
j ⊂ J × �, then wα

j = 〈w〉η j×I and

−
∫

3
4 Q

α
j

∣∣∣∣
w − wα

j

r j

∣∣∣∣ dz ≤ cM 3
4 Q

α
j
(∇w) + c αN 3

4 Q
α
j
(∂tw).
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(b) If 4
5 Q

α
j ⊂ R × � and 3

4 Q
α
j �⊂ J × �, then wα

j = 0 and

−
∫

4
5 Q

α
j

∣∣∣∣
w − wα

j

r j

∣∣∣∣ dz ≤ cM 4
5 Q

α
j
(∇w) + c αN 4

5 Q
α
j
(∂tw).

(c) If 4
5 Q

α
j �⊂ R × �, then wα

j = 0 and

−
∫
Qα

j

∣∣∣∣
w − wα

j

r j

∣∣∣∣ dz ≤ cMQα
j
(∇w).

Proof Part (a) follows immediately from Theorem 2.8 with ρ = ρ j .
Let us consider part (b). In this situation R × � \ (J × �) contains a large part of 4

5 Q
α
j

so that we can find a a function ρ ∈ L∞ with support in 4
5 Q

α
j ∩ ((R × �) \ (J × �)) such

that ‖ρ‖∞ ≤ c |Qα
j |−1‖ρ‖1. Since w = 0 on supp(ρ), we have wα

j = 0 = 〈w〉ρ . Again the
claim follows by Theorem 2.8.
Let us now prove (c). Since 4

5 Q
α
j �⊂ R × �, we can find a function ρ with support outside

in Qα
j ∩ R × � with ‖ρ‖∞ ≤ c |Qα

j |−1‖ρ‖1. Since w = 0 on supp(ρ), we have wα
j = 0 =

〈w〉ρ . Now Theorem 2.8 proofs our claim with an additional NQα
j
(∂tw) on term on the right

hand side. Due to Lemma 2.10 this term can be controlled again by MQα
j
(∇w), which proves

our claim. ��
Lemma 2.12 We have

−
∫

3
4 Q

α
j

∣∣∣∣
w − wα

j

r j

∣∣∣∣ dz ≤ −
∫
Qα

j

|∇w| dz + αN 4
5 Q

α
j
(∂tw) + α−

∫
Qα

j

|G| dz ≤ c λ.

Proof Since 16Qα
j ∩(Rm+1 \Oα

λ ) �= ∅, it follows thatM16Qα
j
(∇w) ≤ λ and αM16Qα

j
(G) ≤

λ. Thus also MQα
j
(∇w) ≤ c λ and αMQα

j
(G) ≤ c λ.

The estimate αNQα
j
(∂tw) ≤ c λ follows from Remark 2.6 if 4

5 Q
α
j ⊂ R × � and from

Lemma 2.10 if 4
5 Q

α
j �⊂ R × �. ��

Lemma 2.13 We have

−
∫

3
4 Q

α
j

φ

(∣∣∣∣
w − wα

j

r j

∣∣∣∣
)

dz ≤ −
∫
Qα

j

φ(|∇w|) dz + φ

(
α−
∫
Qα

j

|G| dx
)

.

Proof The proof is similar to the one of Lemma 2.11 and Lemma 2.12 by using Lemma 2.9
instead of Theorem 2.8. ��
2.5 Stability

In this subsection we will show the stability of the Lipschitz truncation with respect to some
norms.

Lemma 2.14 If w ∈ L1(J,W 1,1
0 (�)) and G ∈ L1(J × �), then wα

λ ∈ L1(J,W 1,1
0 (�)).

Moreover, ∫

Oα
λ

|∇(w − wα
λ )| dz ≤ c

∫

Oα
λ

|∇w| dz + λ|Oα
λ |.
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Proof It follows from the definition of wα
λ that

w − wα
λ =

∑
j

ρ j (w − wα
j ).

Due to (2.16) the sum is zero outside of Oα
λ . Using that

∑
j ρ j = 1 on Oα

λ we get

∇(w − wα
λ ) = ∇w +

∑
j

∇ρ j (w − wα
j ). (2.17)

Now it follows with the help of (P2), (W1), (W5) and (2.16) that

∫

Oα
λ

|∇(w − wα
λ )| dz ≤

∫

Oα
λ

|∇w| dz + c
∑
k

∫

3
4 Q

α
j

∣∣∣w − wα
j

r j

∣∣∣ dz.

This and Lemma 2.12 implies
∫

Oα
λ

|∇(w − wα
λ )| dz ≤

∫

Oα
λ

|∇w| dz + c λ|Oα
λ |,

which proves the lemma. ��

Lemma 2.15 We get
∫

Oα
λ

φ(|∇(w − wα
λ )|) dz ≤ c

∫

Oα
λ

φ(|∇w|) + c |Oα
λ |φ(λ).

Proof The proof is similar to Lemma 2.14. Starting with (2.17) and using (P2), (W1), (W5),
(2.16), and the �2-condition we get

∫

Oα
λ

φ(|∇(w − wα
λ )|) dz ≤

∫

Oα
λ

φ(|∇w|) dz + c
∑
k

∫

3
4 Q

α
j

φ

(∣∣∣w − wα
j

r j

∣∣∣
)

dz.

By Lemma 2.13 we can estimate the summands of the second part by

∫

3
4 Q

α
j

φ

(∣∣∣w − wα
j

r j

∣∣∣
)

dz ≤ c
∫

3
4 Q

α
j

φ(|∇w|) dz + c |Qα
j |φ

(
α−
∫

3
4 Q

α
j

|G| dz
)

.

Using Lemma 2.12, we see that the mean value integral in the last term is bounded by c λ,
so overall we get

∫

Oα
λ

φ(|∇(w − wα
λ )|) dz ≤

∫

Oα
λ

φ(|∇w|) dz + c |Oα
λ |φ(λ),

which proves the lemma. ��
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3 Lipschitz property

In this section we show that the truncated function wα
λ has some sort of Lipschitz properties.

In particular, we used Mα(∇w) and α N α(∂tw) (more precisely its upper bound Mα(G)) to
define the bad set, where we truncate the function. It turns out thatMα(∇wα

λ )+αN α(∂tw
α
λ ) ≤

c λ.

Lemma 3.1
∑
j∈Ak

|wα
j − wα

k |
r j

≤ c
∑
j∈Ak

−
∫

3
4 Q

α
j

|w − wα
j |

r j
dz ≤ c λ.

Proof Due to (W7) and (W8) for every j ∈ Ak holds | 3
4 Q

α
j ∩ 3

4 Q
α
k | ≥ max {|Qα

j |, |Qα
k |}

and r j ≥ 1
2rk . Thus we can estimate

∑
j∈Ak

|wα
j − wα

k |
r j

≤
∑
j∈Ak

−
∫
Qα

j ∩Qα
k

|wα
j − wα

k |
r j

dz

≤ c−
∫
Qα

j ∩Qα
k

|w − wα
k |

rk
dz + c

∑
j∈Ak

−
∫
Qα

j ∩Qα
k

|w − wα
j |

r j
dz

≤
∑
j∈Ak

−
∫
Qα

j

|w − wα
j |

rk
dz,

where we also used k ∈ Ak . The rest follows by Lemma 2.12. ��
We need the following geometric alternatives.

Lemma 3.2 Let Q beanα-parabolic cylinderwith radius r . Thenat least one of the following
alternatives holds.

(A1) There exists k ∈ N such that Q ∩ 1
2 Q

α
k �= ∅, 8r ≤ rk and Q ⊂ 3

4 Q
α
k .

(A2) For all j ∈ N with Q ∩ 3
4 Q

α
j �= ∅, there holds r j ≤ 16r and |Qα

j | ≤ 8m+2|Qα
j ∩ Q|.

Moreover, 137Q ∩ (Rm+1 \ Oα
λ ) �= ∅.

Proof If there exists k ∈ N such that Q∩ 1
2 Q

α
k �= ∅ and 8r ≤ rk , then automatically Q ⊂ Qα

k .
Assume now that such an k does not exist. Then for every l ∈ N with Q ∩ 1

2 Ql �= ∅, there
holds rl ≤ 8r . Suppose that Q∩ 3

4 Q
α
j �= ∅. Now let x ∈ Q∩ 3

4 Q
α
j , then by (W1) there exists

m such that x ∈ 1
2 Qm . In particular, we have Q ∩ 3

4 Q
α
j �= ∅ and 1

2 Qm ∩ 3
4 Q

α
j �= ∅, since

both sets contain x . Now, our assumption and Q ∩ 3
4 Q

α
j �= ∅ implies rm ≤ 8r . On the other

hand 1
2 Qm ∩ 3

4 Q
α
j �= ∅ and (W3) imply r j ≤ 2rm . Thus, r j ≤ 16r . Moreover, it follows

from 8r ≥ rm that 137Q = (1 + 17 · 8)Q ⊃ 16Qm . Since 16Qm ∩ (Rm+1 \ Oα
λ ) �= ∅,

we also get 137Q ∩ (Rm+1 \ Oα
λ ) �= ∅. Now, let z0 ∈ Q ∩ 3

4 Q
α
j . It remains to prove

|Qα
j | ≤ 8m+2|Qα

j ∩ Q|. If r ≤ 1
8r j , then Q ⊂ Qα

j and the claim follows. If r ≥ 1
8r j , then

there exists an α-parabolic cylinder Q′ with radius 1
8r j such that Q′ ⊂ Qα

j ∩ Q. So in this

case |Qα
j ∩ Q| ≥ |Q′| ≥ 8−m−2|Qα

j |. ��
Lemma 3.3 There holds

Mα(∇wα
λ ) ≤ c λ.
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Proof Let Q be an α-parabolic cylinder with radius R. We use the alternatives of Lemma 3.2.
We begin with alternative (A1). In particular, there exists k ∈ N such that Q ∩ 1

2 Q
α
k �= ∅,

8R ≤ rk and Q ⊂ 3
4 Q

α
k .

Then w = ∑
j∈Ak

ρ jw
α
j on Q and therefore

MQ(∇wα
λ ) = MQ(∇(wα

λ − wα
k )) = MQ

(
∇

( ∑
j∈Ak

ρ j (w
α
j − wα

k )
))

≤
∑
j∈Ak

MQ

(
∇(

ρ j (w
α
j − wα

k )
))

≤ c
∑
j∈Ak

|wα
j − wα

k |
r j

.

Now, Lemma 3.1 implies MQ(∇wα
λ ) ≤ c λ.

We turn to alternative (A2). In particular, for all j ∈ N with Q ∩ 3
4 Q

α
j �= ∅, there holds

r j ≤ 16r and |Qα
j | ≤ 8m+2|Qα

j ∩ Q|. Moreover, 137Q ∩ (Rm+1 \ Oα
λ ) �= ∅. Using wα

λ =
w − ∑

j ρ j (w − wα
j ) we estimate

MQ(∇wα
λ ) ≤ MQ(∇w) +

∑
j : Q∩ 3

4 Q
α
j �=∅

MQ(∇(ρ j (w − wα
j )).

≤ MQ(∇w) + c
∑

j : Q∩ 3
4 Q

α
j �=∅

|Qα
j |

|Q| M 3
4 Q

α
j
(∇(ρ j (w − wα

j ))).

≤ MQ(∇w) + c
∑

j : Q∩ 3
4 Q

α
j �=∅

|Qα
j ∩ Q|
|Q| M 3

4 Q
α
j
(∇(ρ j (w − wα

j ))).

Due to Lemma 2.12 there holds

M 3
4 Q

α
j
(∇(ρ j (w − wα

j ))) ≤ c−
∫

3
4 Q

α
j

|w − wα
j |

r j
dz + c−

∫
3
4 Q

α
j

|∇w| dz ≤ c λ.

On the other hand

MQ(∇w) ≤ M137Q(∇w) ≤ c λ,

since 137Q ∩ (Rm+1 \ Oα
λ ) �= ∅. We summarize the above estimate to get

MQ(∇wα
λ ) ≤ c λ + c λ

∑
j : Q∩ 3

4 Q
α
j �=∅

|Qα
j ∩ Q|
|Q| ≤ c λ,

where we used that the Qα
j are locally finite, see (W5). ��

Lemma 3.4 There holds

α N α(∂tw
α
λ ) ≤ c λ.

Proof Let Q be an α-parabolic cylinder with radius R and Q ⊂ R × �. We have to show
that αNQ(∂tw

α
λ ) ≤ c λ. If 137Q �⊂ R × �, then the claim follows from Lemma 2.10 and

Lemma 3.3, so we can assume in the following 137Q ⊂ R × �. We use the alternatives of
Lemma 3.2.
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We begin with alternative (A1). In particular, there exists k ∈ N such that Q ∩ 1
2 Qk �= ∅,

8R ≤ rk and Q ⊂ 3
4 Qk .

Then wα
λ = ∑

j∈Ak
ρ jw

α
j on Qk and therefore

αNQ(∂tw
α
λ ) = αNQ(∂t (w

α
λ − wα

k )) = αNQ

(
∂t

( ∑
j∈Ak

ρ j (w
α
j − wα

k )
))

=
∑
j∈Ak

αNQ
(
∂t (ρ j (w

α
j − wα

k ))
)
.

We estimate

αNQ
(
∂t (ρ j (w

α
j − wα

k ))
) = α sup

ξ∈FQ

(
R |Q|−1|〈∂t (ρ j (w

α
j − wα

k )), ξ 〉|
)

≤ α sup
ξ∈FQ

(
R ‖∂tρ j‖∞|wα

j − wα
k |‖ξ‖∞

)

≤ c αR |wα
j − wα

k |(αr2
j )

−1

≤ c
|wα

j − wα
k |

r j
,

where we used 8R ≤ rk ≤ 2r j in the last step. This and Lemma 3.1 imply αNQ(∂tw
α
λ ) ≤ c λ.

We turn to alternative (A2). In particular, for all j ∈ N with Q ∩ 3
4 Q j �= ∅, there

holds r j ≤ 16r and |Q j | ≤ 8d+2|Q j ∩ Q|. Moreover, 137Q ∩ (Rd+1 \ Oα
λ ) �= ∅. Using

wα
λ = w − ∑

j ρ j (w − wα
j ) we estimate

NQ(∂tw
α
λ ) ≤ NQ(∂tw) +

∑
j : Q∩ 3

4 Q j �=∅
NQ(∂t (ρ j (w − wα

j )).

Recall that 137Q ⊂ R×�. So 137Q∩(Rd+1\Oα
λ ) �= ∅ implies αNQ(∂tw) ≤ c αMQ(G) ≤

c λ using also Remark 2.6. On the other hand using r j ≤ 16R, Lemma 3.1 and |Q j | ≤
8d+2|Q j ∩ Q| we estimate

NQ(∂tw
α
λ ) ≤ c λ +

∑
j :Q∩ 3

4 Q j �=∅
α NQ

(
∂t (ρ j (w − wα

j )
)

= c λ + α
∑

j :Q∩ 3
4 Q j �=∅

sup
ξ∈FQ

(
R |Q|−1|〈ρ j (w − wα

j ), ∂tξ〉|
)
.

Now for j with Q ∩ 3
4 Q j �= ∅ and ξ j := 〈ξ 〉Q j we have

αR

|Q| |〈ρ j (w − wα
j ), ∂tξ〉| ≤ αR

|Q| |〈w − wα
j , ∂t

(
ρ j (ξ − ξ j )

)〉|
+ αR

|Q| |〈w − wα
j , (∂tρ j )(ξ − ξ j )〉|

=: I + I I.
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We will now estimate ‖ρ j (ξ − ξ j )‖FQ j
. Using ‖ξ‖∞ + R‖∇ξ‖∞ + αR2‖∂tξ‖∞ ≤ 1, we

get by parabolic Poincaré’s inequality

‖ξ − ξi‖L∞(Q j )
≤ c ri‖∇ξ‖L∞(Q j )

+ c αr2
i ‖∂tξ‖L∞(Q j )

≤ c
ri
R

+ c
r2
i

R2 ≤ c
ri
R

,

‖ρ j (ξ − ξ j )‖∞ ≤ ‖ξ − ξi‖L∞(Q j )
≤ c

ri
R

,

‖∇(ρ j (ξ − ξ j ))‖∞ ≤ ‖ξ − ξi‖L∞(Q j )
+ ri‖∇ξ‖L∞(Q j )

≤ c
ri
R

,

‖∂t (ρ j (ξ − ξ j ))‖∞ ≤ ‖ξ − ξi‖L∞(Q j )
+ αr2

i ‖∂tξ‖L∞(Q j )
≤ c

ri
R

+ c
r2
i

R2 ≤ c
ri
R

.

In particular, ‖ρ j (ξ − ξ j )‖FQ j
≤ c riR . This and Lemma 2.12 imply

I = αR

|Q| |〈w − wα
j , ∂t

(
ρ j (ξ − ξ j )

)〉|
= αR

|Q| |〈w, ∂t
(
ρ j (ξ − ξ j )

)〉|
≤ c

αR

|Q|
|Qi |
ri

NQ j (∂tw)‖ρ j (ξ − ξ j )‖FQ j

≤ c
αR

|Q|
|Qi |
ri

λ

α

ri
R

= c λ
|Qi |
|Q| .

Moreover, also by Lemma 2.12

I I = αR

|Q| |〈w − wα
j , (∂tρ j )(ξ − ξ j )〉|

≤ αR

|Q| |Q j |−
∫
Q j

|w − wα
j | dz

c

αr2
j

‖ξ − ξ j‖L∞(Q j )

≤ αR

|Q| |Q j | r jλ c

αr2
j

r j
R

= c
|Q j |
|Q| λ.

Summarized we have

α NQ(∂tw
α
λ ) ≤ c λ +

∑
j :Q∩ 3

4 Q j �=∅
c

|Q j |
|Q| λ ≤ c λ +

∑
j :Q∩ 3

4 Q j �=∅
c

|Q j ∩ Q|
|Q| λ ≤ c λ,

This proves the claim. ��
Lemma 3.5 There holds

Mα,�,1(wα
λ ) ≤ c λ.

Proof Due to Theorem 2.8, Lemma 3.3 and Lemma 3.4 we have

M�,1
Q (wα

λ ) ≤ c MQ(∇wα
λ ) + c α NQ(∂tw

α
λ ) ≤ c λ.

for every α-parabolic cylinder Q. ��
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Corollary 3.6 wα
λ is Lipschitz continuous with respect to dα , i.e.

|wα
λ (t, x) − wα

λ (s, y)| ≤ c λ max

{ |t − s| 1
2

α
1
2

, |x − y|
}

Proof It follows from Mα,�,1(wα
λ ) ≤ c λ and [12] that wα

λ is Lipschitz continuous with
respect to dα . ��

Lemma 3.7 Let J = (t−, t+). For all η ∈ W 1,∞
0 (−∞, t+) the expression 〈∂tw,wα

λη〉 is
well defined and can be calculated as

〈∂tw,wα
λη〉 = 1

2

∫

Q

(|wα
λ |2 − 2w · wα

λ )∂tη dz +
∫

Oα
λ

(∂tw
α
λ )(wα

λ − w)η dz. (3.1)

Proof Let 0 < h < T . For a function f defined in space and time denote the Steklov average
of f by

fh(x, t) := 1

h

t+h∫

t

f (x, s) ds.

Then we have ∂t fh(x, t) = h−1( f (x, t + h) − f (x, t)). We calculate

(I )h := 〈∂tw, ((wα
λ )hη)−h〉 = −

∫

Q

wh · ∂t
(
(wα

λ )hη
)
dz

=
∫

Q

(wα
λ − w)h · ∂t ((w

α
λ )hη) dz −

∫

Q

(wα
λ )h · ∂t ((w

α
λ )hη) dz

=
∫

Q

(wα
λ − w)h · (

∂t (w
α
λ )h

)
η dz +

∫

Q

(wα
λ − w)h · (wα

λ )h∂tη dz

−
∫

Q

1
2 |(wα

λ )h |2∂tη dz =
∫

Q

(wα
λ − w)h · (

∂t (w
α
λ )h

)
η dz + 1

2

∫

Q

(|(wα
λ )h)|2

− 2wh · (wα
λ )h

)
∂tη dz =: (I I )h + (I I I )h .

All of these expressions are well defined. It has been shown in [17] formula (3.33) that

(I I )h →
∫

Q

(wα
λ − w)

(
∂tw

α
λ

)
η dz,

(I I I )h → 1

2

∫

Q

(|wα
λ |2 − 2w · wα

λ

)
∂tη dz.

for h → 0. Let us point out that wα
λ −w is only non-zero on Oα

λ . On this set wα
λ is locallyC∞,

so ∂tw
α
λ is a classical time derivative on this set. This shows that the limit (I )h is also well

defined and can be calculated by 3.1. ��

This was the last piece to get Theorem 2.3.
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Proof of Theorem 2.3 The definition of Lipschitz truncation wα
λ is given in (2.15) and prop-

erty (a) follows by the definition. Property (b) is proven in Lemma 3.3, property (c) is proven
in Lemma 2.15, property (d) is proven in Lemma 3.4, property (e) is proven in Corollary 3.6,
property (f) follows by Lemma 3.7. ��

4 The φ-caloric approximation

In this Section we will concentrate to prove the φ-caloric approximation result i.e. Theorem
1.2 in the general case of ϕ-growth.

Let us start defining A,V : R
m×n → R

m×n in the following way:

A(Q) = φ′(|Q|) Q
|Q| , (4.1a)

V(Q) = ψ ′(|Q|) Q
|Q| . (4.1b)

Another important set of tools are the shifted N-functions {φa}a≥0. We define for t ≥ 0

φa(t) :=
∫ t

0
ϕ′
a(s) ds with φ′

a(t) := φ′(a + t)
t

a + t
. (4.2)

Note that φa(t) ∼ φ′
a(t) t . The families {φa}a≥0 and {(φa)

∗}a≥0 satisfy the �2-condition
uniformly in a ≥ 0. The connection between A, V (see [19]) is the following:

(
A(P) − A(Q)

) · (
P − Q

) ∼ ∣∣V(P) − V(Q)
∣∣2 ∼ φ|P|(|P − Q|),

uniformly in P,Q ∈ R
m×n . Moreover,

A(Q) · Q ∼ |V(Q)|2 ∼ φ(|Q|),
uniformly in Q ∈ R

m×n .
Now we begin to prove some Lemmas regarding the level sets of the maximal function.

Let w ∈ Lφ(J,W 1,φ
0 (�)) and G ∈ Lφ∗

(J × �) such that
{

∂tw = divG , on [−t0, 0) × �

w(−t0, ·) ≡ 0 .
(4.3)

We define for Q = [−t0, 0) × �

φ(γ ) := −
∫
Q

φ(|∇w|) dz + −
∫
Q

φ∗(|G|) dz. (4.4)

We then have the following lemma.

Lemma 4.1 For every m0 ∈ N there exists a λ ∈ [γ, 2m0γ ], such that for α = α(λ) := λ
φ′(λ)

|{Mα(∇wχQ) > λ}| + |{Mα(GχQ) > φ′(λ)}| ≤ c
φ(γ )

m0φ(λ)
|Q|

with c independent of m0 and γ .

Proof We will use the following maximal operator

M∗( f )(z) := sup
{I×B⊂Rm+1 : z∈I×B}

−
∫
I
−
∫
B
f dx dt.
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Certainly we have that Mα( f )(x) ≤ M∗( f )(x), for almost all x ∈ R
m+1. Therefore,

Oα
λ := {Mα(∇w) > λ} ∪ {αMα(G) > λ} ⊂ {M∗(∇w) > λ} ∪ {M∗(G) >

λ

α
}.

Now we have by the continuity of M∗ and since (φ′)−1 ∼ (φ∗)′, that for m0 ∈ N and
α(t) := t

φ′(t) ,

m0 min
m∈{0,..,m0}

φ(2mγ )
((|{Mα(∇wχQ) > 2mγ }| + |{Mα(GχQ) > φ′(2mγ )}|))

≤
m0∑
m=0

(
φ(2mγ )(|{Mα(∇wχQ) > 2mγ }| + |{Mα(GχQ) > φ′(2mγ )}|

)

≤
m0∑
m=0

(
φ(2mγ )|{M∗(∇wχQ) > 2mγ }| + |{M∗(GχQ) > φ′(2mγ )}|

)

≤
∫

φ(M∗(∇wχQ)) + φ((φ′)−1(M∗(GχQ))) dz

≤ c
∫

Q

φ(|∇w|) + φ∗(|G|) ≤ cφ(γ )|Q|.

This concludes the proof. ��

Let u ∈ Lφ(J,W 1,φ
0 (�)) be solution of

∂t u = divH

on Q = I × B = (t−, t+) × B with H ∈ Lφ∗
(J × �) and h be the weak solution of

∂t h − div(A(∇h)) = 0 in Q

with h = u on ∂pQ. The function h is called the φ-caloric comparison function of u in Q.
Define w := u − h. Then

∂tw − div(A(∇u) − A(∇h)) = ∂t u − div(A(∇u))

= div(H − A(∇u)) = div(G)

and w = 0 on ∂pQ, where G = H − A(∇u).
Since w is a valid testfunction, we find by the standard methods, that

sup
t∈I

−
∫
B

|w|2
t+ − t−

dx + −
∫
Q

|V (∇u) − V (∇h)|2 dz ≤ c0−
∫
Q

φ(|∇u|) + φ∗(|G|) dz, (4.5)

where c0 is a fixed constant only depending on the characteristics of φ.
Now we are in a position to prove the φ-caloric approximation Theorem.

Theorem 4.2 Let σ ∈ (0, 1), q ∈ [1,∞) and θ ∈ (0, 1) fixed. Moreover, let Q̃ = Q or to
be more flexible let Q̃ be such that Q ⊂ Q̃ ⊂ 2Q. Then for ε > 0 there exists δ > 0 such
that the following holds: if u is “almost φ-caloric” in the sense that for all ξ ∈ C∞

0 (Q),
∣∣∣∣−
∫
Q

−u∂tξ + A(∇u)∇ξ dz

∣∣∣∣ ≤ δ

(
−
∫
Q̃

φ(|∇u|) dz + −
∫
Q̃

φ∗(|H |) dz + φ(‖∇ξ‖∞)

)
, (4.6)
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then

(
−
∫
I

(
−
∫
B

( |u − h|2
t+ − t−

)σ

dx

) q
σ

dt

) 1
q +

∣∣∣∣−
∫
Q

|V (∇u) − V (∇h)|2θ dz

∣∣∣∣
1
θ

≤ ε

(
−
∫
Q̃

φ(|∇u|) dz + −
∫
Q̃

φ∗(|H |) dz

)
.

Proof Let w := u − h and G = H − A(∇u). Then

∂tw = divG on Q

and w = 0 on ∂pQ. We define

φ(γ ) := −
∫
Q̃

φ(|∇u|) dz + −
∫
Q̃

φ∗(|H |) dz. (4.7)

By Lemma 4.1 and (4.5) we find for every m0 ∈ N a λ ∈ [γ, 2m0γ ], such that for α =
α(λ) := λ

φ′(λ)

|{Mα(∇wχQ) > λ}| + |{αMα(GχQ) > λ}| ≤ cφ(γ )

φ(λ)m0
|Q|. (4.8)

with c independent of m0, γ and λ.
Now, let wα

λ be the Lipschitz truncation of w as in Sect. 2, i.e.

Oα
λ := ({Mα(∇wχQ) > λ} ∪ {αMα(GχQ) > λ}) and supp(wα

λ ) ⊂ Oα
λ ∩ Q.

We use the test function ξ = wα
λη, where η = max { t+−t

t+−t− , 0} ∈ [0, 1] on I = [t−, t+].
Note that in general ξ /∈ C∞

0 (Q). However, it follows by a simple convolution argument as
in (4.1) of [19], that the validity of (4.6) for all ξ ∈ C∞

0 (Q) implies its validity under the
assumption ‖∇ξ‖∞ < ∞. Thus, ξ is a valid test function.

Therefore, using the Theorem 2.3 (f) we find

(I1) + (I ) + (I I ) := −
∫
Q

|wα
λ |2
2

(−∂tη) dz − −
∫
Q
(w − wα

λ )∂t ((w
α
λ )η) dz

+ −
∫
Q
〈(A(∇u) − A(∇h)), (∇wα

λ ) η〉 dz

≤ δ

(
−
∫
Q̃

φ(|∇u|) dz ds + −
∫
Q̃

φ∗(|H |) dz + φ(‖η∇wα
λ‖∞)

)

≤ δ

(
−
∫
Q̃

φ(|∇u|) dz + −
∫
Q̃

φ∗(|H |) dz + cm0 φ(γ )

)
=: (I I I ).
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using ‖∇wα
λ‖∞ ≤ cλ ≤ c2m0γ . As −∂tη = 1

(t+−t−)
≥ 0, we have that (I1) > 0. We

estimate the other terms.

(I ) = −−
∫
Q
(w − wα

λ ) ∂tw
α
λη dz − −

∫
Q
(w − wα

λ )wα
λ∂tη dz

= −−
∫
Q
(w − wα

λ ) ∂tw
α
λη dz − 1

|Q|
∑
i

∫

Qi

(w − wα
i )ρi w

α
λ∂tη dz

= −−
∫
Q
(w − wα

λ ) ∂tw
α
λη dz − 1

|Q|
∑
i

∫

Qi

(w − wα
i )ρi

∑
j∈Ai

ρ jw
α
j ∂tη dz

= −−
∫
Q
(w − wα

λ ) ∂tw
α
λη dz − 1

|Q|
∑

{i :∃ j∈Ai :wα
j �=0}

∫

Qi

(w − wα
i )ρi

∑
j∈Ai

ρ jw
α
j ∂tη dz

= −(I2) − (I3).

Using the fact, that supp(ρ j ) ⊂ 3
4 Q

α
j , we estimate

(I2) ≤ −
∫
Q

χOα
λ
|w − wα

λ ||∂twα
λη| dz

= 1

|Q|
∫

χQ∩Oα
λ

∑
i

∣∣ρi (w − wα
i )

∣∣∣∣∑
j∈Ai

∂tρiw
α
i

∣∣ dz

= 1

|Q|
∑
i

∫

3
4 Qi

χQ∩Oα
λ

∣∣ρi (w − wα
i )

∣∣∣∣∑
j∈Ai

∂tρi (w
α
i − wα

j )
∣∣ dz

We estimate further using (P2), (P1), (W6), (W9), (W2) Lemma 3.1, Lemma 2.12 the fact
that Oα

λ is symmetric around t+ and (4.8).

(I2) ≤ c

α|Q|
∑
i

∑
j∈Ai

∫

3
4 Qi

|w − wα
i |

ri

|wα
j − wα

i |
r j

≤ c

α|Q|
∑
i

∑
j∈Ai

|Qi |−
∫

3
4 Qi

|w − wα
i |

ri
λ

≤ cλ2

α

|Oα
λ |

|Q| ≤ cφ(γ )

m0
.

To estimate (I3) we making use of the fact that either wα
i = 0 or supp(ρi ) ⊂ 3

4 Q
α
i ⊂ Q and

then
∫
Qi

(w − wα
i )ρi∂tη dz = 0. Since

∑
i ρi = 1 we find

(I3) = 1

|Q|
∑

{i :∃ j∈Ai :wα
j �=0}

∫

Qi

(w − wα
i )ρi

∑
j∈Ai

ρ j (w
α
j − wα

i )∂tη dz.

Next, observe that there exists j ∈ Ai , such that wα
j �= 0 and hence 3

4 Q j ⊂ J × B. This

however implies that r2
j α ≤ 2(t+ − t−) and consequently by (W8) that r2

i α ≤ c(t+ − t−).
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Using this bound together with the argument that was used to estimate (I2) implies

|(I3)| ≤ c

t+ − t−
1

|Q|
∑

{i :∃ j∈Ai :wα
j �=0}

∫

Qi

|w − wα
i | dz

∑
j∈Ai

|wα
i − wα

j |

≤ c

α|Q|
∑
i

∫

Qi

|w − wα
i |

ri
dz

∑
j∈Ai

|wα
i − wα

j |
ri

≤ cλ2

α

|Oα
λ |

|Q| ≤ cφ(γ )

m0
.

Now we continue by estimating (I I ). Recall that |∇wα
λ | ≤ c λ and that wα

λ = w = u − h on
Q \ Oα

λ . This gives

(I I ) = −
∫
Q
〈A(∇u) − A(∇h),∇wα

λ η〉 dz

≥ c−
∫
Q

χQ\Oα
λ
|V (∇u) − V (∇h)|2η dz − c−

∫
Q

χOα
λ
(|A(∇u)| + |A(∇h)|)λ dz

=: (I I1) − (I I2).

Using Young’s inequality with δ̃, that can be chosen independent of m0, γ, λ and (4.8), we
find that

(I I2) = −
∫
Q

χOα
λ
(|A(∇u)| + |A(∇h)|)λ dz

≤ cδ̃φ(λ)
|Q ∩ Oα

λ |
|Q| + δ̃−

∫
Q

χOα
λ
φ(|∇u|) dz ≤ c

(cδ̃

m
+ δ̃

)
φ(γ ).

So far we have

(I I I ) = (I ) + (I I ) ≥ (I1) − (I2) − (I3) + (I I1) − (I I2)

which implies by that

(I I1) + (I1) ≤ (I I2) + |(I2) + (I3)| + (I I I )

≤
(
cm0δ + 3δ̃ + cδ̃

m0

)
φ(γ )

(4.9)

Observe, that for β ∈ (0, 1) we find

(
−
∫ t+

t−
η−β dt

) 1
β =

(
− −

∫ 0

t−−t+
(t+ − t−)β

sβ
ds

) 1
β = (t+ − t−)

β−1
β

( t+−t−∫

0

s−β ds

) 1
β

= (1 − β)
−1
β .

123



Parabolic Lipschitz truncation and caloric approximation Page 25 of 27 120

Now we fix θ ∈ (0, 1
2 ), such that β = 1

1−θ
∈ (0, 1). For θ closer to 1, we will later use an

interpolation with (4.5). For this fixed θ ∈ (0, 1
2 ) we get by the above that

(I V ) :=
(

−
∫
Q

|V (∇u) − V (∇h)|2θ dz

) 1
θ

=
(

−
∫
Q

χOα
λ
|V (∇u) − V (∇h)|2θ dz + −

∫
Q

χ(Oα
λ )c |V (∇u) − V (∇h)|2θ dz

) 1
θ

.

≤ c−
∫
Q

|V (∇u) − V (∇h)|2 dz

( |Q ∩ Oα
λ |

|Q|
) 1−θ

θ

+ c−
∫
Q

χ(Oα
λ )c |V (∇u) − V (∇h)|2η dz

(
−
∫
Q

χ(Oα
λ )cη

−θ
1−θ dz

) 1−θ
θ

≤ c−
∫
Q

|V (∇u) − V (∇h)|2 dz

( |Q ∩ Oα
λ |

|Q|
) 1−θ

θ + c
( 1 − θ

1 − 2θ

) 1−θ
θ

(I I1)

=: c(V ) + c(I I1).

Now, by Lemma 4.1 we get

(V ) ≤ c−
∫
Q

φ(|∇u|) + φ(|∇h|) dz

( |Q ∩ Oα
λ |

|Q|
) 1−θ

θ

.

≤
( cφ(γ )

φ(2m0γ )m0

) 1−θ
θ −

∫
Q

φ(|∇u|) + φ∗(|H |)

≤ cφ(γ )

2
m0(1−θ)

θ

(4.10)

For the estimate from below for (I1) we estimate similarly that

(V I ) := −
∫
I

(
−
∫
B

|w|√
t+ − t−

dx

)2

dt

≤ −
∫
Q

χ(Oα
λ )c

|wα
λ |2

t+ − t−
dz + −

∫
I

|({t} × B) ∩ Oα
λ |

|B| −
∫

{t}×B

|w|2
t+ − t−

dx dt

≤ c(I1) + |Q ∩ Oα
λ |

|Q| sup
I

−
∫
B

|w|2
t+ − t−

dx .

Now we use (4.5), (4.7) and Lemma 4.1 to find that

(V I ) ≤ c(I1) + c
φ(γ )

m0φ(2m0γ )
φ(γ ) ≤ φ(γ )

2m0

This implies together with Lemma 4.1, (4.9) and (4.10)

(V I ) + (I V ) ≤
(
cm0δ + 3δ̃ + cδ̃

m0
+ c

2
m0(1−θ)

θ

+ c

2m0

)
φ(γ ).

Let us fix the auxiliary constant ε̃ ∈ (0, 1). It shall be fixed at the very end of the proof. In the
following order we choose δ̃,m0 and δ. We choose δ̃ = ε̃

5 . Then we choose m0 large enough,

such that
c
δ̃

m0
+ c

2
m0(1−θ)

θ

+ c
2m0 ≤ ε̃

5 . Finally we fix δ small enough such that cm0δ ≤ ε̃
5 . These
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choices imply the following estimate for a fixed θ ∈ (0, 1
2 ) (for example θ = 1

4 )

−
∫
I

(
−
∫
B

|w|√
t+ − t−

dx

)2

dt +
(

−
∫
Q

|V (∇u) − V (∇h)|2θ dz

) 1
θ ≤ εφ(γ ).

Finally, by interpolation between the estimate above and estimate (4.5), we find the result.
For the sake of completion we include the interpolation between L2(L1) and the L∞(L2)

estimate. The interpolation between L2 and L2θ for the gradient terms is similar but more
straight forward, such that we omit the details. Let us fix f = |w|√

t+−t− . Then we find for

b ∈ (2,∞) and a ∈ (1, 2) by Hölder, Jensen’s inequality, (4.5) and (4.7) that

(
−
∫
I

(
−
∫
B

( |w|√
t+ − t−

)a
dx

) b
a

dt

) 2
b =

(
−
∫
I

(
−
∫
B

| f |2−a | f |2(a−1) dx

) b
a

dt

) 2
b

≤
(

−
∫
I

(
−
∫
B

| f | dx

) b(2−a)
a

(
−
∫
B

| f |2 dx

) b(a−1)
a

dt

) 2
b

≤
(

−
∫
I

(
−
∫
B

| f |2 dx

) b(a−1)
a + b(2−a)

2a −1(
−
∫
B

| f | dx

)2

dt

) 2
b

≤ sup
I

(
−
∫
B

| f |2 dx

) b−2
2

2
b
(

−
∫
I

(
−
∫
B

| f | dx

)2

dt

) 2
b ≤ c

b−2
b

0 ε̃
2
b φ(γ ).

Choosing a = 2σ and b = 2q the proof is completed by an appropriate choice of ε̃. ��
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