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Abstract The work presents the qualitative analysis of the free boundary value prob-
lem related to the detachment process in multispecies biofilms. In the framework
of continuum approach to one-dimensional mathematical modelling of multispecies
biofilm growth, we consider the system of nonlinear hyperbolic partial differential
equations governing the microbial species growth, the differential equation for the
biomass velocity, the differential equation that governs the free boundary evolution
and also accounts for detachment, and the elliptic system for substrate dynamics.
The characteristics are used to convert the original moving boundary equation into a
suitable differential equation useful to solve the mathematical problem. We also pro-
vide another form of the same equation that could be used in numerical applications.
Several properties of the solutions to the free boundary problem are shown, such as
positiveness of the functions that describe the microbial concentrations and estimates
on the characteristic functions. Uniqueness and existence of solutions are proved by
introducing a suitable system of Volterra integral equations and using the fixed point
theorem.
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1 Introduction

The first biofilm was discovered in 1600s by the Dutch scientist Anton Van Leeu-
wenhoek, when he observed with his microscope a microbial community in the the
plaque scraped from his teeth. The modern definition of bacterial biofilm was given
recently by Costerton in 1999 and states: structured community of bacterial cells
enclosed in a self-produced polymeric matrix and adherent to an inert or living surface
[1].

Biofilms are found in extremely varied environments, both natural and artificial, and
in diverse hydrodynamic conditions. They are usually characterized by the presence
of multiple species, which experience different living conditions due to the estab-
lishment of substrate gradients and specific micro-environments. Biofilms are widely
used in industrial and engineering applications: biofuels and electricity production,
bioremediation, water purification and wastewater treatment. However, they have also
negative occurrences as they can be considered a leading cause of chronic infections,
biocorrosion and biofouling.

Literature on mathematical modelling of biofilms presents continuum or discrete
approach [2–6]. For engineering practice, 1D continuum models have been widely
used to describe biofilm dynamics, in particular for engineering design of biofilm
reactors for wastewater treatment plants, see [7] for a review.

We consider multispecies biofilm growth in the framework of 1D continuum
approach. Mathematical modelling leads to discuss free boundary value problems,
where the biofilm thickness L(t) is the moving boundary. The evolution of the free
boundary of course depends on biomass velocity u by which the biomass is dis-
placed respect to the growth direction. In addition, it depends on detachment and
attachment biomass flux from bulk liquid, denoted by σd and σa , respectively. The
function σd depends on L2 de facto as outlined in [8]. Therefore, the detachment is
relevant for mature biofilms and negligible in the first phase of biofilm formation.
The detachment represents the primary process that limits biofilm accumulation. The
detachment problem was first discussed in [8], where the analysis was mainly carried
out on single-species biofilm and then partially applied to multispecies biofilms.

In this work we discuss the detachment free boundary value problem for multi-
species biofilms constituted by any number of microbial species. The main results are
properties of solutions and existence and uniqueness theorem. We consider a method-
ology based on the characteristics that was successfully used in previous works for
the free boundary problem related to the initial phase of biofilm formation when the
detachment is negligible, [9], and then generalized to the free boundary problemwhere
σd = σa = 0, [10].

We first focus our analysis on the essential mathematical problem and consider the
system of nonlinear hyperbolic partial differential equations that governs multispecies
biofilm growth and neglect the semi-linear parabolic partial differential equations that
govern the substrate evolution within the biofilm. This assumption allows us to not
further complicate the system with equations that do not alter the hyperbolic feature
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of the free boundary problem. We then use the previous results to discuss the general
situation of nonlinear coupled hyperbolic parabolic free boundary problem. We show
the positiveness of the functions related to the microbial species and provide estimates
on the characteristic functions that are useful to go back from the characteristic coor-
dinates to the physical ones. Moreover, it is proved that the sum of volume fractions
is saved on time. This result is also important in numerical simulations since it could
be used to check the error at each time step.

Let us add that, as for most 1D biofilm models, the above mentioned problem has
been extensively studied in special situations through numerical simulations, e.g. [11–
13]. Therefore, the qualitative analysis discussed in this work, apart from its intrinsic
interest, also provides a solid base to numerical findings.

In Sect. 2 the free boundary problem is presented, the variables defined, the main
assumptions are discussed, the initial and boundary conditions are introduced. In
Sect. 3 the equation for the moving boundary is derived. The characteristics are used
to convert the original moving boundary equation into a suitable differential equation
useful to prove the existence and uniqueness theorem. We also provide another form
of the same equation that could be used in numerical applications. In addition, it is
shown that the present problem can include the one discussed in [10] as special case.
Section 4 is devoted to properties of the solutions to the free boundary value problem.
The main theorem is proved in Sect. 5. The number n of species into the biofilm
is assumed to be arbitrary. The hypotheses on the initial data are quite general and
in agreement with the biology. The original differential equations are converted to
Volterra integral equations. Uniqueness and existence of solutions are achieved by the
fixed point theorem in the class of continuous functions. Section 6 is devoted to the
general complete problem. By using the results of Sect. 5, the equations for substrate
dynamics are converted to integral equations and discussed. Conclusion is the last
brief section.

2 Mathematical model for the detachment process

Let us refer to 1D continuum approach for multispecies biofilm formation and growth,
[2,3,7]. Denote by z the one-dimensional biofilm growth direction and assume that
biofilm support, substratum, is placed at z = 0. Consider a biofilm constituted by n
species and let Xi (z, t) be the concentration of microorganisms i . The biofilm growth
is governed by the following system of nonlinear partial differential equations for the
microbial concentrations

∂Xi

∂t
+ ∂

∂z
(uXi ) = ρi rM,i , i = 1, ..., n, 0 ≤ z ≤ L(t), t > 0, (2.1)

where u(z, t) is the biomass velocity, ρi the constant density of themicrobial species i ,
and L(t) the biofilm thicknesswhich is the free boundary of themathematical problem.
The function u(z, t) satisfies the following equation

∂u

∂z
=

n∑

i=1

rM,i , 0 < z ≤ L(t), t ≥ 0. (2.2)
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The function L(t) satisfies the following equation

L̇(t) = u(L(t), t) − σd(L(t)), t > 0, (2.3)

where σd(L(t)) is the detachment biomass flux from biofilm to bulk liquid. The most
used expression for σd is the following, [8],

σd(L) = σ0L
2, σ0 = constant. (2.4)

Therefore, the detachment biological process is relevant for mature biofilms, when L
is large.

The term rM,i in Eq. (2.1) represents the specific growth rate of species i . The
following expression is generally assumed for rM,i , [2,3,7],

rM,i =
n∑

j=1

μi j X j , (2.5)

where the specific growth rate functionsμi j depend on the substrates Sh , h = 1, ...,m,
diffusing into the biofilm.Thedependence on Sh ismore frequently nonlinear, although
linear dependence is admissible, according to special kinetics. However, nonlinear
dependence is assumed in this work. Also, more complex expressions for rM,i are
present in literature, for example, when the biological process of the invasion of new
species into an already constituted biofilm is modelled, [14,15].

In all these cases further equations should be introduced. For example, in the case
(2.5) the equations governing substrate dynamics should be introduced. However, by
considering Eq. (2.3) it is apparent that the free boundary depends on biomass velocity
u that in turns depends on the nonlinear hyperbolic system (2.1).All the other equations
are important when specific biological situations are considered and studied but they
do not change the hyperbolic feature of the free boundary problem. Therefore, we first
focus our analysis on the essential mathematical problem and assume

rM,i = rM,i (z, t,X), X = (X1, ..., Xn), i = 1, ..., n. (2.6)

Then, the general situation where rM,i also depends on substrates

rM,i = rM,i (z, t,X,S), S = (S1, ..., Sm), i = 1, ..., n, (2.7)

will be easily discussed in Sect. 6.
Now, the initial and boundary conditions for system (2.1)–(2.3) are presented. They

are quite general and state

Xi (z, 0) = ϕi (z) ≥ 0, 0 ≤ z ≤ L(0), i = 1, ..., n, (2.8)

L(0) = L0 > 0, (2.9)

u(0, t) = 0, t > 0. (2.10)
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The completely arbitrary functions ϕi in (2.8) describe the initial status of the biofilm.
According to the biological problem they must be assigned nonnegative. The positive
constant L0 in (2.9) denotes the initial biofilm thickness. The condition in (2.10)
indicates that there is no biomass flux at the support.

Finally, Eqs. (2.1)–(2.3) are briefly commented and references are provided for
detail [2,10]. System (2.1) derives from local mass balance. It was first presented in
[2]. System (2.1) is generally used to describe the dynamics of not only the active
microbial species but of all the particulate components, including inert biomass and
extracellular polymeric substances (EPS), which constitute the biofilm. An equivalent
alternative system can be used if the volume fraction fi (z, t) of microbial species i is
considered. Indeed, it is

Xi (z, t) = ρi fi (z, t), i = 1, ..., n, 0 ≤ z ≤ L(t), t > 0, (2.11)

and system (2.1) can be rewritten as

∂ fi
∂t

+ ∂

∂z
(u fi ) = rM,i , i = 1, ..., n, 0 ≤ z ≤ L(t), t > 0. (2.12)

Equation (2.2) is obtained from (2.12) by summing on i and using
∑n

i=1 fi = 1. It
regulates the expansion velocity of the microbial mass. Equation (2.3) describes the
free boundary evolution. It derives from global mass balance by taking into account
the detachment flux, [10].

3 Moving boundary

In this section a suitable equation for the moving boundary is deduced. Consider
system (2.1) and the characteristic-like lines z = c(z0, t) defined by

∂c

∂t
(z0, t) = u(c(z0, t), t), c(z0, 0) = z0, z0 ∈ [0, L0], t > 0. (3.1)

From the definition above it follows that the characteristic for z0 = 0 is

z = c(0, t) = 0. (3.2)

Indeed, from definition (3.1)

∂c

∂t
(0, t) = u(c(0, t), t), c(0, 0) = 0.

Since u(0, t) = 0, as stated in (2.10), it follows (3.2).
Consider Eq. (2.2)

∂u

∂z
(z, t) = g(z, t,X(z, t)), 0 < z ≤ L(t), t ≥ 0, (3.3)
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where the following definition has been used for brevity

g(z, t,X) =
n∑

i=1

rM,i . (3.4)

From (3.3) it follows

∂u(c(z0, t), t)

∂z0
= g(c(z0, t), t, x(z0, t))

∂c

∂z0
(z0, t), (3.5)

where
x(z0, t) = X(c(z0, t), t). (3.6)

Integrating (3.5) yields

u(c(z0, t), t) =
∫ z0

0
g(c(ζ0, t), t, x(ζ0, t))

∂c

∂ζ0
(ζ0, t)dζ0, (3.7)

where Eqs. (2.10) and (3.2) have been used. Substitute (3.7) in Eq. (3.1)1 and integrate
with respect to time with initial condition (3.1)2

c(z0, t) = z0 +
∫ t

0
dτ

∫ z0

0
g(c(ζ0, τ ), τ, x(ζ0, τ ))

∂c

∂ζ0
(ζ0, τ )dζ0. (3.8)

Hence,
∂c(z0, t)

∂z0
= 1 +

∫ t

0
g(c(z0, τ ), τ, x(z0, τ ))

∂c

∂z0
(z0, τ )dτ. (3.9)

If we introduce the following position

U (z0, t) = u(c(z0, t), t), (3.10)

then Eqs. (3.7)–(3.9) can be written as

U (z0, t) =
∫ z0

0
g(c(ζ0, t), t, x(ζ0, t))

∂c

∂ζ0
(ζ0, t)dζ0, (3.11)

c(z0, t) = z0 +
∫ t

0
U (z0, τ )dτ, (3.12)

∂c(z0, t)

∂z0
= 1 +

∫ t

0

∂U (z0, τ )

∂z0
dτ, (3.13)

respectively.
Denote by

w = w(t), (3.14)
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the initial point of the characteristic that assumes the value L(t) at the time t ,

L(t) = c(w(t), t). (3.15)

Using (3.15) in moving boundary Eq. (2.3) yields

ċ(w(t), t) = L̇(t) = u(c(w(t), t), t) − σd(c(w(t), t))

= U (w(t), t) − σd(c(w(t), t)). (3.16)

Note that the function w plays the same role as z0 for the characteristic passing trough
L at time t and it is w(0) = L0. Therefore, if we apply the general definition (3.12)
for z0 = w(t), we get

c(w(t), t) = w(t) +
∫ t

0
U (w(t), τ )dτ. (3.17)

Hence, after differentiating with respect to t ,

ċ(w(t), t) = ẇ(t) +U (w(t), t) +
∫ t

0
ẇ(t)

∂U (w(t), τ )

∂z0
dτ. (3.18)

From (3.16) and (3.18) we get

ẇ(t)+U (w(t), t)+
∫ t

0
ẇ(t)

∂U (w(t), τ )

∂z0
dτ = U (w(t), t)−σd(c(w(t), t)). (3.19)

Hence, the desired differential equation for w(t)

ẇ(t)
∂c

∂z0
(w(t), t) = −σd(c(w(t), t)), t > 0. (3.20)

An integral equation for w(t) is easily obtained by integrating with respect to time
with initial condition w(0) = L0

w(t) = L0 −
∫ t

0
σd(c(w(τ), τ ))dτ +

∫ t

0
U (w(τ), τ )dτ −

∫ t

0
U (w(t), τ )dτ, t > 0.

(3.21)
Some comments are necessary on Eqs. (3.20) and (3.21). After determining the

characteristics, besides the other functions involved, they allow us to find the free
boundary. Equation (3.20) can be solved with respect ẇ(t) since ∂c/∂z0 is ≥ 1,
as proved in Sect. 4. Equation (3.20) is very useful in the numerical approach to the
problem. Equation (3.21) will be used in the existence and uniqueness theorem proved
in Sect. 5.

We conclude the present section with a remark on the special solution of Eq. (3.21)
connected with the problem discussed in [9] where the detachment was neglected and

σd = 0. (3.22)
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Remark 3.1 Under assumption (3.22) the Eq. (2.3) for the free boundary writes

L̇(t) = u(L(t), t), L(0) = L0. (3.23)

By comparing the last equation with Eq. (3.1) that defines the characteristic lines, we
immediately realize that the free boundary is the same as the characteristic line starting
from L0. In other words, for the special case (3.22) the function w(t) is identically
equal to L0

w(t) = L0. (3.24)

Therefore, Eq. (3.21) should admit the solution (3.24) under assumption (3.22). This
is true. Indeed, in such a case Eq. (3.21) writes

w(t) = L0 +
∫ t

0
U (w(τ), τ )dτ −

∫ t

0
U (w(t), τ )dτ,

with solution given by (3.24). Uniqueness and existence theorem for Eq. (3.21) will
be proved in Sect. 5.

4 Properties of solutions to the free boundary problem

In this section we anticipate some properties of solutions to the free boundary value
problem stated in Sect. 2. A uniqueness and existence theorem will be provided in
the next section. The hypotheses of theorem are assumed to be fulfilled in proving the
properties so that the solution to the free boundary problem exists.

Consider system (2.1) rewritten by using definition (3.4)

∂Xi

∂t
+ u

∂Xi

∂z
= ρi rM,i − Xi g, i = 1, ..., n, 0 ≤ z ≤ L(t), t > 0. (4.1)

Consider the characteristics (3.1) and obtain

ẋi (z0, t) = Fi (c(z0, t), t, x(z0, t)), i = 1, ..., n, z0 ∈ [0, L0], t > 0, (4.2)

where x(z0, t) was introduced in (3.6) and

Fi (c(z0, t), t, x(z0, t)) = ρi rM,i − xi g. (4.3)

The initial condition for x(z0, t) is easily derived from (2.8)

xi (z0, 0) = Xi (c(z0, 0), 0) = Xi (z0, 0) = ϕi (z0), i = 1, ..., n, z0 ∈ [0, L0]. (4.4)

Integrating (4.2) leads to the following system of integral equations

xi (z0, t) = ϕi (z0) +
∫ t

0
Fi (c(z0, τ ), τ, x(z0, τ ))dτ, i = 1, ..., n, z0 ∈ [0, L0],

(4.5)
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which incorporate the initial conditions (4.4). The integral version for Eq. (2.2) was
already provided in (3.11). It is rewritten for convenience

U (z0, t) =
∫ z0

0
g(c(ζ0, t), t, x(ζ0, t))

∂c

∂ζ0
(ζ0, t)dζ0, z0 ∈ [0, L0], t > 0, (4.6)

noting that the boundary condition (2.10) is included. Also the following three equa-
tions are rewritten for convenience

c(z0, t) = z0 +
∫ t

0
dτ

∫ z0

0
g(c(ζ0, τ ), τ, x(ζ0, τ ))

∂c

∂ζ0
(ζ0, τ )dζ0, z0 ∈ [0, L0], t > 0,

(4.7)
∂c(z0, t)

∂z0
= 1 +

∫ t

0
g(c(z0, τ ), τ, x(z0, τ ))

∂c

∂z0
(z0, τ )dτ, z0 ∈ [0, L0], t > 0,

(4.8)

w(t) = L0 −
∫ t

0
σd(c(w(τ), τ ))dτ +

∫ t

0
U (w(τ), τ )dτ −

∫ t

0
U (w(t), τ )dτ, t > 0.

(4.9)

System (4.5)–(4.9) has a unique solution in the functional class of continuous
functions defined on

Ω{(z0, t) : z0 ∈ [0, L0], t ∈ [0, T ], L0, T > 0}, (4.10)

as proved in Sect. 5, Theorem 1. This result is assumed in the following where several
properties of solutions to system (4.5)–(4.9) are provided. Some properties require the
function g in (3.4) must be positive

g(z, t,X) ≥ 0. (4.11)

We outline that assumption (4.11) is satisfied in most biological processes related to
biofilm growth, e.g. [2,7].

Property 1 Suppose that hypotheses of Theorem 1 are satisfied. Then, under assump-
tion (4.11) it results

∂c(z0, t)

∂z0
≥ 1, z0 ∈ [0, L0], t ∈]0, T ]. (4.12)

Proof Inequality (4.12) follows from integral equation (4.8).

Property 2 Under the same hypotheses as Property 1 it results

U (z0, t) ≥ 0, z0 ∈ [0, L0], t ∈]0, T ]. (4.13)

Proof Estimate (4.13) follows from integral Eq. (4.6) and Property 1.
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Property 3 Under the same hypotheses as Property 1 it results

c(z0, t) ≥ 0, z0 ∈ [0, L0], t ∈]0, T ]. (4.14)

Proof Estimate (4.14) follows from integral Eq. (4.7) and Property 1.

Property 4 Under the same hypotheses as Theorem 1 it results

n∑

i=1

fi (z0, 0) = 1 ⇒
n∑

i=1

fi (z0, t) = 1. (4.15)

Proof Let us rewrite integral Eq. (4.5) in terms of volume fractions defined in (2.11)

fi (z0, t) = ϕi (z0)/ρi +
∫ t

0
(rM,i − fi g)dτ, i = 1, ..., n. (4.16)

Using the position

f (z0, t) =
n∑

i=1

fi (z0, t)

and summing on i yields

f (z0, t) = 1 +
∫ t

0
g(1 − f )dτ, (4.17)

since
n∑

i=1

ϕi (z0)/ρi =
n∑

i=1

fi (z0, 0) = 1. (4.18)

Equation (4.17) admits the solution f (z0, t) = 1 proving (4.15).

Property 5 Assume that hypotheses of Theorem 1 are satisfied and

Fi (c(z0, t), t, x(z0, t)) ≥ 0, z0 ∈ [0, L0], t ∈]0, T ], i = 1, ..., n1, (4.19)

ϕ(z0) + T max
(z0,t)

|Fi | ≥ 0, z0 ∈ [0, L0], t ∈]0, T ], i = n1 + 1, ..., n.

(4.20)

Then
xi (z0, t) ≥ 0, i = 1, ..., n. (4.21)

Proof Estimate (4.21) follows from integral Eq. (4.5) under the natural hypothesis of
positive initial microbial concentrations as stated in (2.8). Note that n1 denotes the
number of microbial species with increasing concentrations.
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Remark 4.1 From the mathematical point of view, the most important result is (4.12),
see Remark 5.1 at the end of Sect. 5. From the biological point of view, themain results
are (4.13), (4.15) and (4.21). In addition, the result (4.15) could be used to estimate
the error in numerical simulations.

5 Proof of uniqueness and existence theorem

In order to obtain more compact equations, let us introduce the following definitions

xn+1 = c, xn+2 = ∂c/∂z0, xn+3 = U, xn+4 = w,

and redefine the vector x as follows

x = (x1, ..., xn, xn+1, ..., xn+4). (5.1)

Therefore, Eq. (4.5) writes

xi (z0, t) = ϕi (z0)+
∫ t

0
Fi (τ, x(z0, τ ))d τ, i = 1, ..., n, z0 ∈ [0, L0], t > 0. (5.2)

Equation (4.7) writes

xn+1(z0, t) = z0 +
∫ t

0
dτ

∫ z0

0
Fn+1(τ, x(ζ0, τ ))dζ0, z0 ∈ [0, L0], t > 0, (5.3)

where

Fn+1 = g(c(ζ0, τ ), τ, x(ζ0, τ ))
∂c

∂ζ0
(ζ0, τ ).

Equation (4.8) writes

xn+2(z0, t) = 1 +
∫ t

0
Fn+2(τ, x(z0, τ ))dτ, z0 ∈ [0, L0], t > 0, (5.4)

where

Fn+2 = g(c(z0, τ ), τ, x(z0, τ ))
∂c

∂z0
(z0, τ ).

Equation (4.6) writes

xn+3(z0, t) =
∫ z0

0
Fn+3(t, x(ζ0, t))dζ0, z0 ∈ [0, L0], t > 0, (5.5)
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where

Fn+3 = g(c(ζ0, t), t, x(ζ0, t))
∂c

∂ζ0
(ζ0, t).

Equation (4.9) writes

xn+4(t) = L0 −
∫ t

0
Fn+4,1(τ, xn+4(τ ))dτ

+
∫ t

0
Fn+4,2(τ, xn+4(τ ))dτ −

∫ t

0
Fn+4,3(τ, xn+4(t))dτ, t > 0,

(5.6)

where

Fn+4,1(τ, xn+4(τ )) = σd(c(w(τ), τ )), (5.7)

Fn+4,2(τ, xn+4(τ )) = U (w(τ), τ ), Fn+4,3(τ, xn+4(t)) = U (w(t), τ ). (5.8)

Now, we can show the following theorem.

Theorem 1 Suppose that:

(i) xk(z0, t) ∈ C0([0, L0] × [0, T1]), L0 > 0, T1 > 0, k = 1, ..., n + 4;
(ii) ϕi (z0) ∈ C0([0, L0]), i = 1, ..., n;
(iii) |xi − ϕi | ≤ hi , i = 1, ..., n; |xn+1 − z0| ≤ hn+1; |xn+2 − 1| ≤ hn+2; |xn+3| ≤

hn+3; |xn+4 − L0| ≤ hn+3, where hk = constant > 0, k = 1, ..., n + 4;
(iv) F1, ...Fn+3, Fn+4,1, Fn+4,2, Fn+4,3 are bounded and Lipschitz continuous with

respect to xk, k = 1, ..., n + 4,

M j = max |Fj |, j = 1, ..., n + 3,

Mn+4,i = max |Fn+4,i |, i = 1, 2, 3, Mn+4 =
3∑

i=1

Mn+4,i ,

|Fj (τ, t, x) − Fj (τ, t, x̃)| ≤ λ j

n+4∑

k=1

|xk − x̃k |, j = 1, ..., n + 3,

|Fn+4,i (τ, t, x) − Fn+4,i (τ, t, x̃)| ≤ λn+4,i

n+4∑

k=1

|xk − x̃k |, i = 1, 2, 3,

when (z0, t) ∈ [0, L0] × [0, T1] and the functions xk satisfy the assumptions
(i)–(iii).
Then, integral system (5.2)–(5.6)has a unique solution xk ∈ C0([0, L0]×[0, T ]),
k = 1, ..., n + 4, where

T = min

{
T1,

h1
M1

, ...,
hn
Mn

,
hn+1

L0Mn+1
,
hn+2

Mn+2
,
hn+4

Mn+4

}
, Mn+3L0 ≤ hn+3.
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Proof Denote by Ω the space of continuous functions xi (z0, t), z0 ∈ [0, L0], t ∈
[0, T ]. Introduce the norm

||x|| =
n+4∑

k=1

max
Ω

exp(−γ1t − γ2z0)|xk |,

where γ1, γ2 are positive constants that will be fixed later on.
Consider the map y = Ax, yk = right hand side of Eqs. (5.2)–(5.6). Let us prove

that A maps Ω into itself. Indeed,

|yi − ϕi | ≤ MiT ≤ hi , i = 1, ..., n,

|yn+1 − z0| ≤ Mn+1T L0 ≤ hn+1,

|yn+2 − 1| ≤ Mn+2T ≤ hn+2,

|yn+3| ≤ Mn+3L0 ≤ hn+3,

|yn+4 − L0| ≤ Mn+4T ≤ hn+4.

Consider x̃ ∈ Ω and let ỹ = Ax̃. We easily obtain

|yi − ỹi | exp(−γ1t − γ2z0) ≤ (λi/γ1)||x − x̃||, i = 1, ..., n,

|yn+1 − ỹn+1| exp(−γ1t − γ2z0) ≤ λn+1/(γ1γ2)||x − x̃||,
|yn+2 − ỹn+2| exp(−γ1t − γ2z0) ≤ (λn+2/γ1)||x − x̃||,
|yn+3 − ỹn+3| exp(−γ1t − γ2z0) ≤ (λn+3/γ2)||x − x̃||,
|yn+4 − ỹn+4| exp(−γ1t − γ2z0) ≤ (λn+4,1/γ1)||x − x̃||

+(λn+4,2/γ1)||x − x̃|| + λn+4,3T ||x − x̃||.

Hence,

||y − ỹ|| ≤ Λ||x − x̃||,

where

Λ = ε + λn+4,3T,

and

ε = 1

γ1

n∑

i=1

λi + λn+1

γ1γ2
+ λn+2

γ1
+ λn+3

γ2
+ λn+4,1

γ1
+ λn+4,2

γ1
.

The positive constants γ1 and γ2 were not specified earlier. Therefore, they can be
chosen very large so that ε becomes very small. In addition, if T < (1 − ε)/λn+4,3,
then Λ < 1, proving the theorem. ��
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Remark 5.1 Let us note that the theorem provides the functions xi (z0, t), i = 1, ..., n,
andU (z0, t). On the other hand the original problem required the the functions Xi (z, t)
and u(z, t). This question is solved by Property 1, Sect. 4, where it is shown that the
function z = c(z0, t) can be inverted and gives z0 = c−1(z, t).

6 Substrates

In this sectionwe generalize the free boundary problem stated in Sect. 2 by considering
the equations for substrates which diffuse into the biofilm. Therefore, we assume

rM,i = rM,i (z, t,X,S), S = (S1, ..., Sm), i = 1, ..., n. (6.1)

The diffusion of substrates from bulk liquid into the biofilm is governed by the
following parabolic equations

∂S j

∂t
− Dj

∂2S j

∂z2
= rS, j (z, t,X,S), 0 < z < L(t), j = 1, ...,m, t > 0, (6.2)

where Dj denotes the diffusion coefficient of substrate j and rS, j (z, t,X,S) is the
production rate of substrate j . This equation is usually considered at pseudo-steady
state conditions as the time-scale of substrate mass transport and reaction is orders of
magnitude shorter than that of biomass spreading [5]

− Dj
∂2S j

∂z2
= rS, j (z,X,S), 0 < z < L(t), j = 1, ...,m, t ≥ 0. (6.3)

The following boundary conditions will be associated to the equation above

∂S j

∂z
(0, t) = 0, S j (L(t), t) = S∗

j (t), j = 1, ...,m, t ≥ 0. (6.4)

The first boundary condition in (6.4) prescribes zero substrate flux at the support
z = 0. The second condition states that the substrate values on the moving boundary
z = L(t) are the same as the bulk liquid. The second condition strongly depends on
the biological problem and Robin conditions could be assigned as well. However, this
would not introduce further difficulties in the mathematical analysis.

Integrating (6.3) with boundary conditions (6.4) yields

S j (z, t) = D−1
j

∫ L

z
dη

∫ η

0
rS, j (ζ,X(ζ, t),S(ζ, t))dζ +S∗

j (t), 0 < z < L(t). (6.5)
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Integral Eq. (6.5) is equivalent to problem (6.3)–(6.4), since the boundary conditions
are included in (6.5). For z = c(z0, t), Eq. (6.5) is rewritten as

S j (c(z0, t), t) = D−1
j

∫ c(w,t)

c(z0,t)
dη

∫ η

0
rS, j (ζ,X(ζ, t),S(ζ, t))dζ

+S∗
j (t), 0 < z0 < L0, j = 1, ...,m, (6.6)

where definition (3.15) was used. Now, consider the change of variables

η = c(η0, t), ζ = c(ζ0, t), 0 < η0, ζ0 < L0, (6.7)

in (6.6) and obtain

s j (z0, t) = D−1
j

∫ w

z0

∂c

∂η0
(η0, t)dη0

∫ η0

0
rS, j (c(ζ0, t), x(ζ0, t), s(ζ0, t))

∂c

∂ζ0
(ζ0, t)dζ0

+S∗
j (t), 0 < z0 < L0, j = 1, ...,m, (6.8)

where notation (3.6) was used and in addition

s(z0, t) = S(c(z0, t), t). (6.9)

Note that integral Eq. (6.8) is similar to the integral equations considered in Sect. 5.
Therefore, under assumption (6.1), Eq. (6.8) can be associated to system (5.2)–(5.6)
and a general existence and uniqueness theorem can be proved as in Sect. 5 with small
modifications.

7 Conclusion

A free boundary value problem for the detachment process inmultispecies biofilmwas
discussed. The biological situation is related to mature biofilms where the detachment
is the only relevant flux between biofilm and bulk liquid. Interesting properties for
the solutions were derived. Uniqueness and existence theorem was proved. Of course
other relevant questions should be investigated, e. g. the generalization to problems
regarding more complex biological cases and stability problems, [16,17].

However, the most fascinating objective before us is the qualitative analysis of the
free boundary value problems for 2D and 3D biofilm growth models. We have some
hope that the methodology used in this work could help.

Acknowledgements This paper has been performed under the auspices of G.N.F.M. of INdAM.
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