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a b s t r a c t

The cumulative entropy is an information measure which is alternative to the differential
entropy. Indeed, the cumulative entropy of a random lifetime X can be expressed as the
expectation of its mean inactivity time evaluated at X . In this paper we propose a new
generalized cumulative entropy based on Tsallis entropy (CTE) and its dynamic version
(DCTE). We study some properties and characterization results for this measure.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The concept of entropy was introduced by Claude Shannon (1948, see [1]) as a measure of the uncertainty associated
with a discrete random variable. Formally, for a random variable X with possible values {x1, . . . , xn} and probability mass
function p(·), the Shannon entropy is given by

H(X) = −E[log p(X)] = −

n∑
i=1

p(xi)log2 p(xi). (1)

A suitable extension of the Shannon entropy to the absolutely continuous case is the so-called differential entropy, and it is
given by

H(X) = −E[log f (X)] = −

∫
+∞

−∞

f (x) log f (x) dx, (2)
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where f (·) is the probability density function (pdf) of an absolutely continuous random variable X and log is the natural
logarithm. However, although the analogy between definitions (1) and (2), the differential entropy is an inaccurate extension
of the Shannon discrete entropy. Indeed, the latter is not invariant under changes of variables and can even become negative.
Various alternatives for the entropy of a continuous distribution have been proposed in the literature, for instance weighted
entropy and its residual and past version (see, Belis and Guiaşu, [2] and Di Crescenzo and Longobardi [3]). The cumulative
residual entropy is defined as (see Rao et al. [4])

E(X) = −

∫
+∞

−∞

F̄ (x) log F̄ (x) dx, (3)

where F̄ (·) is the cumulative residual distribution, or survival function, of a random variable X . Some applications of (3)
are given in Asadi and Zohrevand [5]. An information measure similar to (3) is the cumulative entropy, defined as (see, Di
Crescenzo and Longobardi [6])

CE(X) = −

∫
+∞

−∞

F (x) log F (x) dx, (4)

where F (·) is the cumulative distribution function (cdf) of a randomvariable X . However, since the argument of the logarithm
is a probability, we have 0 ≤ CE(X) ≤ +∞, whereas H(X) may be negative in the absolutely continuous case. Moreover,
CE(X) = 0 if and only if X is a constant. From (3) and (4) it follows that the cumulative entropy and the cumulative residual
entropy are related by the following relation (see, Di Crescenzo and Longobardi, [7]):

E(X) + CE(X) =

∫
+∞

−∞

h(x) dx,

where h(x) = −[F (x) log F (x) + F̄ (x) log F̄ (x)] is the partition entropy of X evaluated at x (see Bowden, [8]). We point out
that if Y = aX + b, with a ∈ R, a ̸= 0 and b ∈ R, then CE(Y ) = |a|CE(X) if a > 0 and CE(Y ) = |a|E(X) if a < 0.
Other features of CE(X), such as properties of its two-dimensional version, and a normalized cumulative entropy defined as
NCE(X) = CE(X)/E(X) for 0 < E(X) < +∞, have been discussed by Di Crescenzo and Longobardi [6,9,10] and [11]. All
these measures of information can be generalized in order to compare two random variables; in the literature, measures of
discrimination have been defined by Kerridge [12], Kullback and Leibler [13]. For further results about the cumulative and
dynamic version of these concepts see Ahmadi et al. [14] and Kundu et al. [15].

If X describes the random lifetime of a biological system, such as an organism or a cell, then Xt = [X − t | X > t] describes
the residual lifetime of the systemat age t . Hence, if the systemhas survived up to time t , the uncertainty about the remaining
lifetime is measured by means of the differential entropy of Xt . A direct approach to measure uncertainty in the residual
lifetime distribution has been initiated by Ebrahimi [16]. Let us denote the mean residual life by m(t), i.e. m(t) = E(Xt ). The
random variable X(t) = [X | X ≤ t] describes the past lifetime of the system at age t , with mean past lifetime µ(t) = E[X(t)].
Di Crescenzo and Longobardi [17] defined the uncertainty of X(t) and called past entropy. In reliability theory, the duration of
the time between an inspection time t and the failure time X , given that at time t the system has been found failed, is called
inactivity time and is represented by the random variable [t − X | X ≤ t], t > 0, with mean inactivity time

µ̃(t) = E[t − X | X ≤ t] =
1

F (t)

∫ t

0
F (x) dx. (5)

For further results about these concepts in reliability theory see [16,18,19] and [20].
The reversed hazard rate function τ (t) of a continuous non-negative random variable X is an important biometric

functions, and is defined as the ratio of the density of X to the distribution function of X:

τ (t) :=
f (t)
F (t)

.

The derivative of the mean inactivity time of X can be expressed in term of the reversed hazard rate (if existing):

µ̃′(t) = 1 − τX (t)µ̃(t), t > 0 : F (t) > 0. (6)

For further properties of reversed hazard rate function, see [20–23].
Throughout this paper, the terms ‘‘increasing’’ and ‘‘decreasing’’ are used in non-strict sense. The rest of the paper is

organized as follows: in Section 2 we define cumulative Tsallis entropy and study its properties. In Section 3, we propose a
dynamic cumulative Tsallis entropy and in Section 4 we give some conclusions.

2. Cumulative Tsallis entropy

Tsallis entropy was introduced by Tsallis [24] in 1988 and it is a generalization of Boltzmann–Gibbs statistics. For a non-
negative continuous random variable X with pdf f (x), Tsallis entropy of order α is defined by

Tα(X) =
1

α − 1

(
1 −

∫
+∞

0
f α(x)dx

)
; α ̸= 1, α > 0. (7)
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Clearly as α → 1 then Tα(X) reduces to Shannon entropy H(X), given in (2). Several researchers have used Tsallis entropy
in many physical applications, such as developing the statistical mechanics of large scale astrophysical system, image
processing and signal processing. Recently, Kumar [25] studied Tsallis entropy for k-record statistics from some continuous
probabilitymodels, Baratpour and Khammar [26] proposed some applications of this entropy to order statistics and provided
relations with some stochastic orders, Zhang [27] obtained some quantitative characterizations of the uniform continuity
and stability properties of the Tsallis entropies.

Based on (7), Sati and Gupta [28] proposed a cumulative residual Tsallis entropy of order α (CRTE), which is given by

ηα(X) =
1

α − 1

(
1 −

∫
+∞

0
(F̄ (x))αdx

)
; α ̸= 1, α > 0. (8)

The Tsallis entropy in (7) can also be expressed as

Tα(X) =
1

α − 1

∫
+∞

0
(f (x) − f α(x)) dx; α ̸= 1, α > 0. (9)

By (9), Rajesh and Sunoj [29] introduced an alternate measure of CRTE of order α as

ξα(X) =
1

α − 1

∫
+∞

0

(
F̄ (x) − (F̄ (x))α

)
dx; α ̸= 1, α > 0. (10)

Our interest in Tsallis entropy is motivated by the fact that this measure is suitable to give more information about the
intrinsic structure (in particular the intrinsic fluctuations) of a physical systems through the parameter α that characterizes
this entropy (see, for instance, Wilk and Wlodarczyk [30] and Forte and Sastri [31]).

Then, motivated by (7)–(10), we propose the cumulative Tsallis entropy (CTE) based on definition of CE(X) as

Cξα(X) =
1

α − 1

(∫
+∞

0
(F (x) − Fα(x)) dx

)
; α ̸= 1, α > 0. (11)

It is easy to show that, when α → 1, Cξα(X) reduces to CE(X).
From (5), we have

µ̃X (x)F (x) =

∫ x

0
F (u)du, (12)

then, using the integration by part, we have the next result which shows the relation between the proposed CTE in (11) and
mean inactivity time in (5).

Lemma 1. Let X be a non-negative continuous random variable with cdf F (x), then

Cξα(X) = E
[
µ̃X (X)(F (X))α−1] , (13)

where µ̃X (x) is the mean inactivity time given in (5).

So, from Lemma 1, if α ≥ 1(0 < α ≤ 1), then Cξα(X) ≤ (≥)E [µ̃X (X)] .

Theorem1. Cξα(X) = 0 if, and only if, X is degenerate, while Cξα(X) > 0 for any non-negative and absolutely continuous random
variable X.

Proof. Let 0 < α < 1. In this case F (x) ≤ Fα(x), thus Cξα(X) ≥ 0. If α > 1, then from F (x) ≥ Fα(x) we have Cξα(X) ≥ 0. If X
is degenerate, then Cξα(X) = 0. Conversely, if Cξα(X) = 0, then∫

+∞

0
(F (x) − Fα(x)) dx = 0,

because α ̸= 1. The integrand function is non-negative for all x or is non-positive for all x, according to the value of α. Thus
we can state that F (x)(1 − Fα−1(x)) = 0. For this reason, F (x) = 0 or F (x) = 1, that is X is degenerate. □

In the next result, we discuss the effect of increasing transformation on CTE.

Lemma 2. Let X be a non-negative continuous random variable with cdf F and take Y = φ(X), where φ(.) is a strictly increasing
differentiable function. Then

Cξα(Y ) =
1

α − 1

∫
∞

max{0,φ−1(0)}
(F (x) − Fα(x)) φ′(x)dx.

Remark 1. If φ(u) = au + b, a > 0 and b ≥ 0, then

Cξα(Y ) = aCξα(X).
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Theorem 2. Let X be a non-negative absolutely continuous random variable with density function f (x), if α ≥ 1(0 < α ≤ 1)
then Cξα(X) ≤ (≥)CE(X).

Proof. If α > 1 (0 < α < 1) we can write

Cξα(X) =
1

α − 1

[∫
+∞

0
(F (x) − Fα(x)) dx

]
=

1
α − 1

[∫
+∞

0
F (x)

(
1 − Fα−1(x)

)
dx
]

≤ (≥)
1

α − 1

[
−

∫
+∞

0
F (x)

(
log Fα−1(x)

)
dx
]

= CE(X),

where the inequality is obtained by using the fact that for u > 0, 1 − u ≤ − log u. □

It should be mentioned that Theorem 2 also follows by Lemma 1, because Di Crescenzo and Longobardi [6] have proved
that CE(X) = E(µ̃(X)).

Example 1. If X is uniformly distributed on (0, c) with c > 0, then CE(X) =
c
4 and Cξα(X) =

c
2(α+1) . So, for α > 1,

Cξα(X) ≤ CE(X) and for 0 < α < 1, Cξα(X) ≥ CE(X) which confirms Theorem 2.

Let us recall that X≤stY (in the usual stochastic order) if and only if F̄ (t) ≤ Ḡ(t), for all t ∈ R. For more details, see Shaked
and Shanthikumar [32].

Lemma 3. Let X and Y be two non-negative continuous random variables with cdfs F and G and finite mean E(X) and E(Y ),
respectively. If X≤stY , then

|Cξα(X) − Cξα(Y )| ≤ E(Y ) − E(X), for 1 < α ∈ N.

Proof. Suppose α ∈ N and α > 1, then from (11) we can write

Cξα(X) − Cξα(Y ) =
1

α − 1

∫
∞

0
{[F (t) − Fα(t)] − [G(t) − Gα(t)]}dt

=
1

α − 1

∫
∞

0
[F (t) − G(t)]

[
1 −

α∑
i=1

F i−1(t)Gα−i(t)

]
dt.

By assumption X≤stY , then we reach the following inequality

−

∫
∞

0
[F (t) − G(t)]dt ≤ Cξα(X) − Cξα(Y )

≤
1

α − 1

∫
∞

0
[F (t) − G(t)]dt. (14)

Since X and Y are non-negative random variables, then (14) completes the proof. □

In the next example, we show that X≤stY does not imply Cξα(X) < Cξα(Y ), in general.

Example 2. Let X and Y be two random variables with cdfs F (x) = x, 0 < x < 1 and G(y) = y2, 0 < y < 1, respectively.
From (11), we have

Cξα(X) − Cξα(Y ) =
1

2(α + 1)
−

2
3(2α + 1)

=
2α − 1

6(α + 1)(2α + 1)
.

So, Cξα(X) < (>)Cξα(Y ) whenever α < (>) 12 while clearly, X≤stY .

Lemma 4. Let X1, . . . , Xn be i.i.d non-negative continuous random variables with common cdf F . Then, for 1 < α ∈ N:
(i) Cξα(Xn:n) ≤ nE(X);
(ii) Cξα(Xn:n) ≤ nCξα(X);
(iii) Cξα(X1:n) ≤ E(X),
where X1:n = min{X1, . . ., Xn} and Xn:n = max{X1, . . ., Xn}.
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Proof. From (11) we have

Cξα(Xn:n) =
1

α − 1

∫
+∞

0
[F n(x) − F nα(x)]dx

=
1

α − 1

∫
+∞

0
[F (x) − Fα(x)][F n−1(x) + Fα(x)F n−2(x) + · · · + F (n−1)α(x)]dx

≤
n

α − 1

∫
+∞

0
[F (x) − Fα(x)]dx

≤
n

α − 1

∫
+∞

0
[F (x) − (1 − αF̄ )(x)]dx

=
n

α − 1

∫
+∞

0
[(α − 1)F̄ (x)]dx

≤ n
∫

+∞

0
F̄ (x)dx

= nE(X),

for non-negative random variable X and where, in the fourth line, we use Bernoulli’s inequality.
Also, from first inequality, it is deduced that Cξα(Xn:n) ≤ nCξα(X) for 1 < α ∈ N.
Similarly by using Bernoulli’s inequality, for non-negative random variable X ,

Cξα(X1:n) =
1

α − 1

∫
+∞

0
{[1 − F̄ n(x)] − [1 − F̄ n(x)]α}dx

≤

∫
+∞

0
F̄ n(x)dx

≤ E(X).

This complete the proof. □

Consider a system consisting of n components with i.i.d lifetimes X1, . . . , Xn. Then, it is known that for series and parallel
systems, the lifetimes of the system are X1:n and Xn:n, respectively. Thus, Lemma 4 provides upper bounds for cumulative
Tsallis entropies of series and parallel systems based on the mean lifetime of their components.

Example 3. Let X1, . . . , Xn be i.i.d non-negative continuous random variables uniformly distributed on (0, 1). In this case we
have E(X) =

1
2 and

Cξα(Xn:n) =
1

α − 1

∫ 1

0
[xn − xnα]dx =

n
(n + 1)(nα + 1)

.

So, for 1 < α ∈ N and for n ≥ 1, Cξα(Xn:n) ≤
n
2 , which confirms (i).

As seen in Example 3, Cξα(X) =
1

2(α−1) , so it easy to prove that (ii) holds.
With an easy computation it is clear that also (iii) holds, involving Euler gamma function. For simplicity, if we have a

system consisting of only n = 2 components, we obtain:

Cξα(X1:2) =
1

α − 1

[
2
3

−
1
2
B
(
1 + α,

1
2

)]
,

where B
(
1 + α, 1

2

)
is the Euler beta function (for α > 0). So, for 1 < α ∈ N, Cξα(X1:2) ≤

1
2 , which confirms (iii) for n = 2.

Let X and Y be two non-negative continuous random variables with cdfs F and G, such that

G(t) = (F (t))θ , for all t ∈ SX , (15)

where SX is the support of X and θ > 0. The identity (15) is known as the proportional reversed hazard rate (PRHR) model.
Gupta et al. [22] studied this model from a reliability point of view and discussed the monotonicity of failure rates.

Lemma 5. Let X and Y be two non-negative continuous random variables with cdfs F and G, where F and G satisfy the PRHR
model. Then

(α − 1)Cξα(Y ) = (αθ − 1)Cξαθ (X) − (θ − 1)Cξθ (X).

It is obvious that if X and Y have the same distribution then Cξα(X) = Cξα(Y ), the question that arises is:, ‘‘What about
the converse?’’. Suppose X has uniform distribution in (0, b) with b > 0, i.e., F (x) = x/b, 0 < x < b and X and Y satisfy the
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PRHR model, then Cξα(X) =
b

2(α+1) and from Lemma 5, we have

(α − 1)Cξα(Y ) = (αθ − 1)
b

2(αθ + 1)
− (θ − 1)

b
2(θ + 1)

.

If θ =
1
α
, then Cξα(X) = Cξα(Y ). This means that Cξα(X) does not uniquely characterize the distribution of X .

3. Dynamic cumulative Tsallis entropy

Rajesh and Sunoj [29] proposed the dynamic cumulative residual Tsallis entropy as

ψα(X; t) =
1

α − 1

∫
+∞

t

[
FXt (x) − FαXt (x)

]
dx

=
1

α − 1

(
m(t) −

∫
+∞

0
F̄αXt (x)dx

)
,

where F̄Xt (x) is the survival function of Xt .
We propose the dynamic cumulative Tsallis entropy (DCTE) of a non-negative absolutely continuous random variable X as

Cψα(X; t) =
1

α − 1

∫
+∞

0

[
FX(t) (x) − FαX(t) (x)

]
dx

where X(t) = [X | X ≤ t] is the random variable that describes the past lifetime of system at age t and FX(t) is the distribution
function of X(t). From (5), Cψα(X; t) can be rewritten as

Cψα(X; t) =
1

α − 1

∫ t

0

[
F (x)
F (t)

−
Fα(x)
Fα(t)

]
dx

=
1

α − 1

(
µ̃(t) −

∫ t
0 Fα(x)dx
Fα(t)

)
, (16)

where µ̃(t) is defined in (5).

Theorem 3. Let X be a non-negative absolutely continuous random variable; then Cψα(X; t) is increasing (decreasing), if and
only if, for all t > 0

Cψα(X; t) ≤ (≥)
µ̃(t)
α
.

Proof. From the identity (16), we can write

(α − 1)Cψα(X; t) = µ̃(t) −

∫ t
0 Fα(x)dx
Fα(t)

. (17)

Differentiating both side of (17) with respect to t , using (6), we have

(α − 1)Cψ ′

α(X; t) = τ (t)

[
−µ̃(t) + α

∫ t
0 Fα(x)dx
Fα(t)

]
. (18)

Substituting (17) in (18), we obtain

Cψ ′

α(X; t) = τ (t) [µ̃(t) − αCψα(X; t)] . (19)

By definition, τ (t) ≥ 0 for all t , and this complete the proof. □

Theorem 4. Let X be a non-negative absolutely continuous random variable, with mean inactivity time µ̃(t) then

Cψα(X; t) =
E(µ̃(X)Fα−1(X)|X ≤ t)

Fα−1(t)
.

Proof. Note that, differentiating both side of the identity (12) with respect to x, we have

d
dx
(µ̃(x)F (x)) = F (x). (20)
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From the identities (16) and (20), we have

Cψα(X; t) =
1

α − 1

[
µ̃(t) −

1
Fα(t)

∫ t

0
Fα(x)dx

]
=

1
α − 1

[
µ̃(t) −

1
Fα(t)

∫ t

0

d
dx
(µ̃(x)F (x)) Fα−1(x)dx

]

=

[
µ̃(t) −

1
Fα (t)

(
µ̃(t)Fα(t) − (α − 1)

∫ t
0 µ̃(x)F

α−1(x)f (x)dx
)]

α − 1

=

∫ t
0 µ̃(x)F

α−1(x)f (x)dx
Fα(t)

. □ (21)

A random variable X is said to be increasing (decreasing) in mean inactivity time (IMIT (DMIT)) if µ̃(·) is increasing
(decreasing) on (0,+∞). Using this definition we obtain the following result:

Corollary 1. Let X be a random variable with increasing (decreasing) mean inactivity time function µ̃(t), that is IMIT (DMIT).
Then

Cψα(X; t) ≤ (≥)
µ̃(t)
α
.

Proof. If X is IMIT (DMIT) then µ̃(x) ≤ (≥)µ̃(t) for x ≤ t . From (21), we have

Cψα(X; t) ≤ (≥)

∫ t
0 µ̃(t)F

α−1(x)f (x)dx
Fα(t)

=
µ̃(t)
Fα(t)

∫ t

0
Fα−1(x)f (x)dx =

µ̃(t)
α
. □

As in Lemma 2, we now discuss the effect of increasing transformation on the DCTE.

Lemma 6. Let Y = φ(X) an increasing differentiable function, then Tsallis entropy of order α for the random variable Y is given
by

Cψα(Y ; t) =
1

(α − 1)F (φ−1(t))

∫ φ−1(t)

max{0;φ−1(0)}
F (x)φ′(x)dx −

1
(α − 1)Fα(φ−1(t))

∫ φ−1(t)

max{0;φ−1(0)}
F (x)αφ′(x)dx. (22)

Remark 2. If Y = aX + b, with a > 0 and b ≥ 0, then

Cψα(Y ; t) = aCψα

(
X;

t − b
a

)
, t ≥ b.

We recall that the random variable Y is said to be larger than X in dispersion ordering denoted by Y≥dispX if and only if
Y = φ(X) where φ is a dilation function; i.e., the condition φ(x) − φ(x∗) ≥ x − x∗ holds for every x ≥ x∗.

Theorem 5. If Y≥disp(≤disp)X, then

Cψα(Y ; t) ≥ (≤)Cψα(X;φ−1(t)),

where φ is an increasing differentiable dilation function.

Proof. The dilation property implies that φ′(x) ≥ 1. Now using (22), we have

Cψα(Y ; t) =

∫ φ−1(t)
max{0;φ−1(0)} φ

′(x)
[
F (x)Fα−1(φ−1(t)) − Fα(x)

]
dx

(α − 1)Fα(φ−1(t))

≥
1

(α − 1)

∫ φ−1(t)

max{0;φ−1(0)}

[
F (x)

F (φ−1(t))
−

Fα(x)
Fα(φ−1(t))

]
dx

= Cψα(X;φ−1(t)). □

Let us give a new definition for a random variable X .

Definition 1. X is said to have increasing (decreasing) dynamic cumulative Tsallis entropy (IDCTE (DDCTE)) if Cψα(X; t) is
increasing (decreasing) in t ≥ 0.
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Remark 3. Combining Corollary 1 and Theorem 3 we obtain that:

X ∈ IMIT (DMIT ) ⇒ Cψα(X; t) ≤ (≥)
µ̃(t)
α

⇒ X ∈ IDCTE(DDCTE).

There is an identity for the dynamic cumulative residual Tsallis entropy and the dynamic cumulative Tsallis entropy.

Theorem 6. Let X be a random variable with support in [0, b] and symmetric with respect to b/2, that is F (x) = F̄ (b − x) for
0 ≤ x ≤ b. Then

Cψα(X; t) = ψα(X; b − t), 0 ≤ t ≤ b.

Proof. We have

Cψα(X; t) =
1

α − 1

∫ t

0

[
F (x)
F (t)

−
Fα(x)
Fα(t)

]
dx

=
1

α − 1

∫ t

0

[
F̄ (b − x)
F̄ (b − t)

−
F̄α(b − x)
F̄α(b − t)

]
dx

= −
1

α − 1

∫ b−t

b

[
F̄ (y)

F̄ (b − t)
−

F̄α(y)
F̄α(b − t)

]
dy

=
1

α − 1

∫ b

b−t

[
F̄ (y)

F̄ (b − t)
−

F̄α(y)
F̄α(b − t)

]
dy. □

Example 4. If X is uniformly distributed in [0, b], for 0 ≤ t ≤ bwe have

Cψα(X; t) =
t

2(α + 1)
and ψα(X; t) =

b − t
2(α + 1)

,

which is in agreement with Theorem 6.

Theorem 7. Let X be a random variable with support in [0, b], with b finite. For all t ∈ [0, b] and for α > 1 we have

(i) Cψα(X; t) =
c
α
µ̃(t) if and only if F (t) =

( t
b

) k
1−k , k =

c
α−c(α−1) ,

(ii) Cψα(X; t) =
c
α
µ(t) if and only if F (t) =

( t
b

) 1−k
k , k =

αc
α+c(α−1) ,

where c is a constant such that 0 < c < 1.

Proof. (i) Let Cψα(X; t) =
c
α
µ̃(t) for all t ∈ [0, b]. Differentiating both side with respect to t we have:

Cψ ′

α(X; t) =
c
α
µ̃′(t).

On the other hand, from (19) and from (6)

τ (t) [µ̃(t) − αCψα(X; t)] =
c
α

[1 − τ (t)µ̃(t)] .

Then using the assumption Cψα(X; t) =
c
α
µ̃(t), we obtain

τ (t)µ̃(t) = k, (23)

where k =
c

α−c(α−1) is a constant such that 0 < k < 1 for 0 < c < 1 and α > 1. Note that (6) gives

τ (t) =
1 − µ̃′(t)
µ̃(t)

,

then we have

µ̃′(t) = 1 − k.

This differential equation yields µ̃(t) − µ̃(0) = (1 − k)t , but from definition we note that µ̃(0) = 0, so µ̃(t) = (1 − k)t .
Finally, we obtain

τ (t) =
k

1 − k
1
t
.

This implies that

F (t) =

(
t
b

) k
(1−k)

, 0 ≤ t ≤ b.
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(ii) Let Cψα(X; t) =
c
α
µ(t) for all t ∈ [0, b]. By differentiating with respect to t we have

Cψ ′

α(X; t) =
c
α
µ′(t).

Recall that the mean inactivity time can be expressed as

µ̃(t) = t − µ(t), (24)

so that µ̃(t) − αCψα(X; t) =
c
α
µ̃(t). Using the assumption Cψα(X; t) =

c
α
µ(t) and (24) we obtain

µ̃(t) = kt,

where k =
αc

α+c(α−1) is a constant such that 0 < k < 1 for 0 < c < 1 and α > 1. So, we have τ (t) =
1−k
tk which implies that

F (t) =

(
t
b

) 1−k
k

, 0 ≤ t ≤ b.

The converse for both (i) and (ii) is quite straightforward. □

4. Conclusion

In this paper, an alternativemeasure of cumulative Tsallis entropy and its dynamic version have been introduced. Several
properties of the proposed measure have been studied. The relationships of the introduced measure with other measures in
Reliability Theory have been investigated. Characterization results of power distribution based on dynamic version of Tsallis
entropy have been provided. The obtained results can be useful for further exploring the concept of information measures.
We have provided some bounds for our entropies in the case of coherent systems and much more could be done also in
terms of copulas.
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