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Abstract. Unlike the p = 2 case, the universal Steenrod algebra Q(p) at
odd primes does not have a fractal structure that preserves the length of
monomials. Nevertheless, when p is odd we detect inside Q(p) two dif-
ferent families of nested subalgebras each isomorphic (as length-graded
algebras) to the respective starting element of the sequence.
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1. Introduction

Let p be any prime. The so-called universal Steenrod algebra Q(p) is an
F,-algebra extensively studied by the authors (see, for instance, [2]-[12]).
On its first appearance, it has been described as the algebra of cohomology
operations in the category of Hu.-ring spectra (see [16]). Invariant-theoretic
descriptions of Q(p) can be found in [11] and [15]. When p is an odd prime,
the augmentation ideal of Q(p) is the free Fp-algebra over the set

Sp={2k|(e,k)e{0,1} xZ} (1.1)
subject to the set of relations
Rp={R(ek,n), S(e,k,n)|(ek,n)e{0,1} xZxNg}, (1.2)
where
- -1)(n-7)-1
R(G, kvn) = Ze,pk—l—nZO,k+Z(_1)J((p )( . j) )Ze,pk'—l—jZO,k—THja (13)
720 J
and
. -1 (n-7)-1
S(E, kvn) = Ze,pk-n?l,k + Z(_l)jJrl((p )(] ]) )Ze,pk—jzl,k—nJrj
720

. (1.4)
+(1-¢) Z(_l)j+1((p B 1E(n _]))zl,pk—jzo,k—n+j'

320
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Such relations are known as generalized Adem relations. In (1.3) and (1.4),
as throughout the paper, binomial coefficients (Z) are understood to be 0 if
a<0,b<0orac<b.

The algebra Q(p) is related to many Steenrod-like operations. For in-
stance to those acting on the cohomology of a graded cocommutative Hopf
algebra ([6], [14]), or the Dyer-Lashof operations on the homology of infinite
loop spaces ([1] and [17]). Details of such connections, at least for p = 2,
can be found in [5]. In particular, the ordinary Steenrod algebra A(p) is a
quotient of Q(p). At odd primes, the algebra epimorphism is determined by

BEPE if k>0,
: Ze 1.5
¢ 2ek — {O otherwise. (15)

The kernel of the map ¢ turns out to be the principal ideal generated by
20,0 — 1.

All monic monomials in Q(p), with the exception of zx = 1 have the

form

21 = Zey ia Zenyin” Zemim > (1.6)
where the string I = (e1,41;€2,192; .- -;€m,im ) is the label of the monomial zy.
By length of a monomial z; of type (1.6) we just mean the integer m, while
the length of any p € F, ¢ Q(p) is defined to be 0. Since Relations (1.3)
and (1.4) are homogeneous with respect to length, the algebra Q(p) can be
regarded as a graded object.

A monomial and its label are said to be admissible if ¢; > pi;.1 + €41 for
any j=1,...,m—1. We also consider zyz =1 €F, c Q(p) admissible. The set
B of all monic admissible monomials forms an F,-linear basis for Q(p) (see
[11]).

Through two different approaches, in [8] and [10] it has been shown
that Q(2) has a fractal structure given by a sequence of nested subalgras
Qs, each isomorphic to Q. The interest in searching for fractal structures
inside algebras of (co-)homology operations initially arouse in [18], where
such structures were used as a tool to establish the nilpotence height of some
elements in A(p). Results in the same vein are in [13].

Recently, in [7] the authors proved that no length-preserving strict
monomorphisms turn out to exist in Q(p) when p is odd. Hence no de-
scending chain of isomorphic subalgebras starting with Q(p) exists for p > 2.
Results in [7] did not exclude the existence of fractal structures for proper
subalgebras of Q(p). As a matter of fact, the subalgebras Q° and Q! gen-
erated by the zp’s and the 21 ;’s respectively (together with 1) turn out to
have self-similar shapes, as stated in our Theorem 1.1, our main result.

Theorem 1.1. Let p be any odd prime. For any € € {0,1} there is a chain of
nested subalgebras of Q(p)

Q520720952+ 2Q¢0Q5 1 0...

each isomomorphic to Qf = Q° as length-graded algebras.
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Theorem 1.1 relies on the existence of two suitable algebra monomor-

phisms

¢:0"—Q" and v:Q'—Q" (1.7)
Indeed, we just set QJ = ¢*(Q°) and Q! = ¢*(Q"), the restrictions ¢|go and
¥|g1 being the desired isomorphism between Qf and Qg,; (e €{0,1}).

For sake of completeness we point out that the algebra Q(p) can also
be filtered by the internal degree of its elements, defined on monomials as
follows:

Zh(2ih(p - 1) + Eih), if I = (el,il; 62,i2; . ;Gm,’im)

lp21] = {O e (19)

if I =@.
In spite of its geometric importance, the internal degree will not play any
role here.

We finally recall that the algebra Q(p) is not of finite type: for k > 0 the
pairwise distinct monomials zg 120,—1 all have internal degree 0 and length 2,
moreover they all belong to the basis B of monic admissible monomials.

2. A first descending chain of subalgebras

We first need to establish some congruential identities. Let Ny denote the set
of all non-negative integers. Fixed any prime p, we write

S im)p’ (0<7(m) <) 1)
>0
to denote the p-adic expansion of a fixed m € Ny. The following well-known
Lemma is a standard device to compute mod p binomial coefficients.

Lemma 2.1 (Lucas’ Theorem). For any (a,b) € Ng x Ny, the following con-
gruential identity holds.

(‘;) _ HQO(%(C‘)) (mod p). (2.2)

7i(b)
Proof. See [13, p. 260] or [19, I 2.6]. Equation 2.2 follows the usual conven-
tions: (8) =1, and (i) =0if0<l<r. O
Congruence (2.2) immediately yields
(p a) = (a) (mod p) for every r >0, (2.3)
prb b

since, in both cases, we find on the right side of (2.2) the same products of
binomial coefficients, apart from r extra factors all equal to (8) =1

Corollary 2.2. For any ({,t,h) €e NoxNgx{1,...,p}, the following congruential

identity holds.
(pg - h) - (f - 1) (mod p). (2.4)
pt t
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Proof. Since pl—h = (p-h)+p(¢-1), we have vo(pf - h) = p— h. Note also
that vo(pt) = 0. According to Lemma 2.1, we get

{—h -h {-1

(p ) = (p )(p( )) (mod p). (2.5)
pt 0 pt
We now use Congruence 2.3 for » = 1, and the fact that (g) =1 for all
ke Ny. O
In order to make notation less cumbersome, we set
. p-1)(k-75)-1

A(kJ):(( )(j ) ) (2.6)

Corollary 2.3. Let (n,j) a couple of positive integers. Whenever j # 0 (mod p),
the binomial coefficient A(pn,j) is divisible by p.

Proof. If a fixed positive integer j is not divisible by p, then there exists a
unique couple (I,h) e Nx {1,...,p-1} such that j = pl — h. Hence, setting

T=(p-)n-0)+h-1,

we get

= RO e

by Lemma 2.1 and Equation (2.3). Since p— h —1 < p — h, the first factor on
the right side of Equation (2.7) is zero, so the result follows. ]

Lemma 2.4. Let (s,n,j) a triple of positive integers. Whenever j # 0 (mod p*),
the binomial coefficient A(p°n,j) is divisible by p.

Proof. We proceed by induction on s. The s =1 case is essentially Corollary
2.3.

Suppose now s > 1. The hypothesis on j is equivalent to the existence
of a suitable (b,7) e Nx {1,...,p° — 1} such that j = p°b - i. Likewise, we can
write i = pl —r, for a certain (I,7) € {1,...,p° 2} x{0,...,p—1}.

We now distinguish two cases. If r = 0, the binomial coefficient A(p®n, j)

has the form (pi;h) where

C=(p-D)(p* n-pto+1), h=1, and t=p b1
By Corollary 2.2, we get
A(p°n,j) = A(p*'n,p* 'b-1) (mod p),

and the latter is divisible by p by the inductive hypothesis.
Assume now 1 <r < p-1. In this case,

. r—1+pT’
AGn) = )
(") r+p(pstb-1)
where T = (p - 1)(p*'n - p*~1b+1) — r. Therefore, by Lemma 2.1 we get

A(p°n,j) = (r ; 1) . ( r ) (mod p). (2.9)

pslb-1

(2.8)
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The right side of Equation 2.9 vanishes, since r — 1 < r, and the proof is
over. O

Lemmas and Corollaries proved so far will be helpful to reduce, in some
particular cases, the number of potentially non-zero binomial coefficients in
(1.3) and in (1.4). For instance, for any (h,n) € Z x Ny, relations of type
R(e,p°h — as,p®n), where

Qg = (s>1),
p-1
only involve generators in the set
726,«5‘) = {Ze,psm—as |m € Z} (210)

as stated in the following Proposition.

Proposition 2.5. Let (¢,k,n,s) a fized 4-tuple in {0,1} x Z x Ng x N. The
polynomial R(e,p°k — as,p®n) in (1.3) is actually equal to

j .
Ze,ps (pk-1-n)—a, 20,psk—as + Z(_l) A(?’l,]) Ze,ps (pk-1-7)—as 20,ps (k—n+j)—as -
J

Proof. By definition (see (1.3)), R(e,p°k — as, p®n) is equal to

l s
Ze,p(psk-as)-1-psn?0,psk—as + Z(_l) A(p n, l) Ze,p(psk—as)-1-120,p5k—as—psn+l-
l

According to Lemma 2.4, the only possible non-zero coefficients in the sum
above occur when [ = 0 (mod p®). Thus, after setting | = p°j, we write
R(e,p°k — a5, p°n) as

Ze,p(p*k-as)-1-p*n20,p*k-a, +

* Z(_l)pujA(Psnapsj)zap(psk—as)—1—p5j20,p5k—as—p3n+psj- (2.11)
J

In such polynomial we can replace z¢ p(psk-a.)-1-psn A Ze p(psh-a,)-1-ps; DY

Zep*(ph-1-n)-a, AN Zeps(ph-1-j)-a,
respectively, since pas + 1 = p° + as. Finally, applying Equation (2.4) as many
times as necessary, and recalling that we are supposing p odd, we get
(-1)P 7 A(p*n,p*j) = (-1) A(n, ) (mod p). (212)
O

As a consequence of Proposition 2.5, the admissible expression of any
non-admissible monomial with label (¢, p*h1—as; 0, p*ho—a; .. .50, p° hy—ars)
involves only generators in T, ).

That’s the reason why, for any non-negative integer s, there is a well-
defined F)-algebra QY generated by the set {1}uT(o,s) and subject to relations

R(0,p°h —as,p°n) =0 VneNg.
Thus Qf and QY are the subalgebras of Q(p) generated by the sets
{1} @] {ZO,h | he Z} and {1} @] {ZO,ph—l |h € Z}
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respectively. The former has been simply denoted by QY in Section 1. The
arithmetic identity

P h— g =p°(ph - 1) - a, (2.13)
implies that Q2 > QY

s+1°

Lemma 2.6. A monomial of type

2T = Ze,pshy—0s 20,p° ho—us """ 20, b —crs (2.14)
is admissible if and only if h; > phiy for anyi=1,...,m-1.
Proof. Admissibility for a monomial of type (2.14) is tantamount to the con-
dition
p’hi —as >p(p°hiy1 —as) Vie{l,...,m-1}.
Inequalities above are equivalent to

'S_

hi > phis1 - d

Vie{l,...,m-1},
and the ceiling of the real number on the right side is precisely ph;.1. o

Proposition 2.7. An F,-linear basis for QY is given by the set Bgo of its monic
admissible monomials.

Proof. In [11] it is explained the procedure to express any monomial in Q(p)
as a sum of admissible monomials. As Proposition 2.5 shows, the generalized
Adem relations required to complete such procedure starting from a mono-
mial in QY only involve generators actually available in the set at hands. O

So far, we have established the existence of the following descending
chain of algebra inclusions:

0 0 0 0 0 0
Q :QODQlDQQD"'DQSDQS+ID...,

On the free F-algebra F,({1} U7, y) we now define a monomorphism
® acting on the generators as follows

P(1)=1 and D(20,1) = 20,pk-1- (2.15)
We set ®° = Ip,(s,) and % =P o o5 for s> 1.
Proposition 2.8. For each s >0,
D (20,4, 20,1,y ) = 20,piy—cis® 20, pinm—cres (2.16)

and
®°(R(0,k,n)) = R(0,p°k — a5, p°n). (2.17)

Proof. Equations (2.16) and (2.17) are trivially true for s = 0. For s > 1 use
an inductive argument taking into account (2.13) and Proposition 2.5. O
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Proposition 2.9. Let 7 : F,({1} U T(0,0)) = Q° be the quotient map.There
exists an algebra monomorphism ¢ such that the diagram

Fp<{1} U 7-(070)> 2. Fp<{1} U 7-(070)>

x x (2.18)

commutes.
Proof. By Equation (2.17), it follows in particular that
D(R(0,k,n)) = R(0,pk - 1,pn).
Therefore there exists a well-defined algebra map
Dt 20,4, 20,45 20,0, € Q0 — 20,pi1~120,pin—1"""Z0,piym-1 € Q°.
Such map is injective since the set Bgo — an [F)-linear basis for QY according
to Proposition 2.7 — is mapped onto admissibles by Lemma 2.6. o

Corollary 2.10. The algebra Q° is isomorphic to its subalgebra QY.

Proof. By Propositions 2.8 and 2.9, we can argue that ¢*(Q") = Q7. Hence
the map
6| oot Tm °—> Im ¢**1

gives the desired isomorphism. O

Corollary 2.10 proves Theorem 1.1 for € = 0.

3. A second descending chain of subalgebras

The aim of this Section is to provide a proof for the € = 1 case of Theorem
1.1. We choose to follow as close as possible the line of attack put forward in
Section 2.

Proposition 3.1. Let (k,n,s) a fized triple in ZxNoxN. In (1.4) the polyno-
mial S(1,p°k,p*n) is actually equal to

Z1,p° (pk—n)#1,p°k T Z(_l)jJrlA(naj) #1,p° (pk=3) #1,p° (k—n+j)-
j

Proof. By definition (see 1.4),
S(]-apskapsn) = Z21,ps (pk-n)?1,pk + Z(_l)HlA(pSn» Z)Zl,p5+1k—l21,p5k—p3n+l~
l

(3.1)
According to Lemma 2.4, the only possible non-zero coefficients in the sum
above are those with [ = 0 mod p®. Setting ! = p*®j, the polynomial (3.1)
becomes

pi+1 s S
21,ps+lk-psn?l,psk + Z(—l) A(p n,p j)Zl’szrlk,psj217psk_psn+psj.
J
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The result now follows from Equation (2.12). O

Proposition 3.1 implies that relations of type S(1, p*h,p°n) only involve
generators of type zj psm. therefore the admissible expression of any non-
admissible monomial with label (1,p°hq;1,p%hs;...;1,p%hy,) only involves
generators in the set

Tty = {1pom | m e Z). (3.2)

So it makes sense to define Qi as the Fp-algebra generated by the set {1} U
7'('1 5) and subject to relations

S(1,p°h,p°n) =0 VneNy.

Each Q! is actually a subalgebra of Q(p). We have inclusions Q! > Q!,;. In
Section 1, the algebra Q) has been simply denoted by Q.

Lemma 3.2. A monomial of type

Z1,phy Z1,p5ha " Z1,p%ho (3.3)
in QF ¢ Q(p) is admissible if and only if h; >phiy1 +1 Vie{l,... . m-1}.
Proof. By definition, the monomial (3.3) is admissible if and only if

p’h; 2 p(pPhi) +1 Vie{l,....m-1}.
Inequalities above are equivalent to
hinhi+1+Z% Vie{l,...,m-1},

and the ceiling of the real number on the right side is precisely ph;11 +1. O

Proposition 3.3. An F,-linear basis for QL is given by the set Bg: of its monic
admissible monomaals.

Proof. Follows verbatim the proof of Proposition 2.7, just replacing “Propo-
sition 2.5” by “Proposition 3.1” and Q2 by QL. O

We are now going to prove that the subalgebras in the descending chain
Q'=0Q50l50L5-5Ql QL 5.,

are all isomorphic. To this aim we consider the injective endomorphism ¥ on
the free IF)-algebra ({1} U T{ ) by setting

T(1)=1 and U(z11) = 21,pk- (3.4)

Proposition 3.4. Let m' : F,,({1} U T (1,0)) = Q' be the quotient map. There
exists an algebra monomorphism 1 such that the diagram

Fp({1} U T (1,0)) . Fp({1} uT (1,0))

commutes.
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Proof. Since W* (21,4, 21,4,,) = #1,pi, " #1,pin,» Oy Proposition 3.1 we argue
that

U¥(S(1,k,n)) =S(1,p°k,p°n). (3.6)
Therefore there exists a well-defined algebra map
Y2 24, € Q' — Z1,pir" Z1,piny, € o

Such map is injective since the set Bg1 — an F)-linear basis for Q" according
to Proposition 3.3 — is mapped onto admissibles by Lemma 3.2. m|

Corollary 3.5. The algebra Q! is isomorphic to its subalgebra Q..

Proof. By Equation (3.6) and Proposition 3.4, we can argue that ¢*(Q!) =
Q!. Thus, the desired isomorphism is given by

¥]gr: Im¢p®— Tmep**.

4. Further substructures

For each s € Ny, we define V; to be the Fp-vector subspace of Q(p) generated
by the set of monomials

Us = {Zl,p'*hrozs 20,p* ha—ors """ 20,pS hm—ae | T2 2, (hi,... b)) €Z™ }.

Equation 2.13 implies that V; 5 V1. None of the V;’s is a subalgebra
of Q(p), nevertheless, by Proposition 2.5 and the nature of relations (1.3)
it follows that V, can be endowed with a right Q%-module structure just by
considering multiplication in Q(p). By using once again Lemma 2.6 and the
argument along the proof of Proposition 2.7, we get

Proposition 4.1. An Fy-linear basis for Vs is given by the set By, of its monic
admissible monomials.

Proposition 4.2. The map between sets
21,41 20,i5""" 20,im € UD Y 21,piy~120,pia—1""" 20,pim-1 € Uo

can be extended to a well-defined injective Fp-linear map X : Vo—Vy. More-
over

Xe(Vo) = Vi € Vi, (4.1)

Proof. As in the proof of Proposition 2.8, Equation 2.13 and Proposition 2.5
show that the s-th power of the F,-linear map

A Ze1l,i1%ez,in Pem,im € ]FP<SP> Ze1,pi1-1%ez,pia-1""" Zepm pim-1 € FP(‘SP)

maps the polynomial R(e, k,n) € F,(S,) onto R(e,p*k —as,p*n). Hence there
are two maps A and A such that the diagram
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Fp(Sp) —— Fy(Sy)

Vot Wy

commutes, where 7" : F,,(Up) — Vp is the quotient map. Finally, taking into
account Equation 2.13, one checks that

A (21,62 20,27 20,in) = 21pois -0 20,pPin—are ™ 20, —ors (4.3)

Since Equation (4.3) implies (4.1), the proof is over. ]
We now introduce a category K whose objects are couples (M, R), with

R being any ring, and M any right R-module. A morphism between two

objects (M, R) and (N, S) is given by a couple (f,w) where f: M — N is a
group homomorphism and w: R - S is a ring homomorphism, furthermore

flmr) = f(m)w(r) V(m,r) € (M,R).

The category K is partially ordered by “inclusions”. More precisely we say
that

(M,R) < (M',R')
if M is a subgroup of M’ and R is a subring of R’.
Theorem 4.3. The objects in K of the descending chain
(V07 Qg) > (V17 Q(l)) D2 (VS7 Q(e)) > (‘/s+17 QS+1) R

are all isomorphic.

Proof. By Proposition 4.2 it follows that Al|y,: Vs— V5,1 is an isomorphism
between IF)-vector spaces. Thus, recalling Corollary 2.10, the desired isomor-
phism in K is given by

(>‘ Vs’¢|Qg) : (V57 QS) - (VS+17 Q(S)+1)'

5. A final remark

Theorem 1.1 in [7] says that no strict algebra monomorphism in Q(p) exists
when p is odd. Hence there is no chance to find algebra endomorhisms over
Q(p) extending the maps ¢ and ¢ defined in Sections 2 and 3 respectively.
Just to give an idea about the obstructions you come up with, consider the
F,-linear map

O : Fy(Sp) — Fp(Sp)
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defined on monomials as follows

6(261,1'1"' Z6m7im) = Zeq,pir" " Rem,pim

Neither the map © nor the map A introduced in Section 4 stabilizes the entire
set (1.2). Indeed, take for instance

R(0,0,0) = z0,-1200 and S(1,0,0) = z1,021,0-
The polynomial
@(R(Oa O,O)) = 20,-p~0,0 (51)
does not belong to the set R,,. In fact, the only polynomial in R, containing
(5.1) as a summand is

R(0,0,p=1) = 20, _1-(p-1)20,0 + 20,-120,-p+1-
Similarly, the polynomial
A(S(1,0,0)) =21, -121,1

does not belong to the set R, since it consists of a single admissible mono-
mial, whereas each element in R,, always contains a non-admissible monomial
among its summands.
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