Searching for Fractal Structures in the Universal Steenrod Algebra at Odd Primes

Maurizio Brunetti and Adriana Ciampella

Abstract

Unlike the $p=2$ case, the universal Steenrod algebra $\mathcal{Q}(p)$ at odd primes does not have a fractal structure that preserves the length of monomials. Nevertheless, when p is odd we detect inside $\mathcal{Q}(p)$ two different families of nested subalgebras each isomorphic (as length-graded algebras) to the respective starting element of the sequence.

Mathematics Subject Classification (2010). 13A50, 55S10.
Keywords. Universal Steenrod algebra, Cohomology operations.

1. Introduction

Let p be any prime. The so-called universal Steenrod algebra $\mathcal{Q}(p)$ is an \mathbb{F}_{p}-algebra extensively studied by the authors (see, for instance, [2]-[12]). On its first appearance, it has been described as the algebra of cohomology operations in the category of H_{∞}-ring spectra (see [16]). Invariant-theoretic descriptions of $\mathcal{Q}(p)$ can be found in [11] and [15]. When p is an odd prime, the augmentation ideal of $\mathcal{Q}(p)$ is the free \mathbb{F}_{p}-algebra over the set

$$
\begin{equation*}
\mathcal{S}_{p}=\left\{z_{\epsilon, k} \mid(\epsilon, k) \in\{0,1\} \times \mathbb{Z}\right\} \tag{1.1}
\end{equation*}
$$

subject to the set of relations

$$
\begin{equation*}
\mathcal{R}_{p}=\left\{R(\epsilon, k, n), S(\epsilon, k, n) \mid(\epsilon, k, n) \in\{0,1\} \times \mathbb{Z} \times \mathbb{N}_{0}\right\}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
R(\epsilon, k, n)=z_{\epsilon, p k-1-n} z_{0, k}+\sum_{j \geq 0}(-1)^{j}\binom{(p-1)(n-j)-1}{j} z_{\epsilon, p k-1-j} z_{0, k-n+j} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{align*}
S(\epsilon, k, n) & =z_{\epsilon, p k-n} z_{1, k}+\sum_{j \geq 0}(-1)^{j+1}\binom{(p-1)(n-j)-1}{j} z_{\epsilon, p k-j} z_{1, k-n+j} \\
& +(1-\epsilon) \sum_{j \geq 0}(-1)^{j+1}\binom{(p-1)(n-j)}{j} z_{1, p k-j} z_{0, k-n+j} . \tag{1.4}
\end{align*}
$$

Such relations are known as generalized Adem relations. In (1.3) and (1.4), as throughout the paper, binomial coefficients $\binom{a}{b}$ are understood to be 0 if $a<0, b<0$ or $a<b$.

The algebra $\mathcal{Q}(p)$ is related to many Steenrod-like operations. For instance to those acting on the cohomology of a graded cocommutative Hopf algebra ([6], [14]), or the Dyer-Lashof operations on the homology of infinite loop spaces ([1] and [17]). Details of such connections, at least for $p=2$, can be found in [5]. In particular, the ordinary Steenrod algebra $\mathcal{A}(p)$ is a quotient of $\mathcal{Q}(p)$. At odd primes, the algebra epimorphism is determined by

$$
\zeta: z_{\epsilon, k} \longmapsto \begin{cases}\beta^{\epsilon} P^{k} & \text { if } k \geq 0 \tag{1.5}\\ 0 & \text { otherwise }\end{cases}
$$

The kernel of the map ζ turns out to be the principal ideal generated by $z_{0,0}-1$.

All monic monomials in $\mathcal{Q}(p)$, with the exception of $z_{\varnothing}=1$ have the form

$$
\begin{equation*}
z_{I}=z_{\epsilon_{1}, i_{1}} z_{\epsilon_{2}, i_{2}} \cdots z_{\epsilon_{m}, i_{m}} \tag{1.6}
\end{equation*}
$$

where the string $I=\left(\epsilon_{1}, i_{1} ; \epsilon_{2}, i_{2} ; \ldots ; \epsilon_{m}, i_{m}\right)$ is the label of the monomial z_{I}. By length of a monomial z_{I} of type (1.6) we just mean the integer m, while the length of any $\rho \in \mathbb{F}_{p} \subset \mathcal{Q}(p)$ is defined to be 0 . Since Relations (1.3) and (1.4) are homogeneous with respect to length, the algebra $\mathcal{Q}(p)$ can be regarded as a graded object.

A monomial and its label are said to be admissible if $i_{j} \geq p i_{j+1}+\epsilon_{j+1}$ for any $j=1, \ldots, m-1$. We also consider $z_{\varnothing}=1 \in \mathbb{F}_{p} \subset \mathcal{Q}(p)$ admissible. The set \mathcal{B} of all monic admissible monomials forms an \mathbb{F}_{p}-linear basis for $\mathcal{Q}(p)$ (see [11]).

Through two different approaches, in [8] and [10] it has been shown that $\mathcal{Q}(2)$ has a fractal structure given by a sequence of nested subalgras \mathcal{Q}_{s}, each isomorphic to \mathcal{Q}. The interest in searching for fractal structures inside algebras of (co-)homology operations initially arouse in [18], where such structures were used as a tool to establish the nilpotence height of some elements in $\mathcal{A}(p)$. Results in the same vein are in [13].

Recently, in [7] the authors proved that no length-preserving strict monomorphisms turn out to exist in $\mathcal{Q}(p)$ when p is odd. Hence no descending chain of isomorphic subalgebras starting with $\mathcal{Q}(p)$ exists for $p>2$. Results in [7] did not exclude the existence of fractal structures for proper subalgebras of $\mathcal{Q}(p)$. As a matter of fact, the subalgebras \mathcal{Q}^{0} and \mathcal{Q}^{1} generated by the $z_{0, h}$'s and the $z_{1, k}$'s respectively (together with 1) turn out to have self-similar shapes, as stated in our Theorem 1.1, our main result.

Theorem 1.1. Let p be any odd prime. For any $\epsilon \in\{0,1\}$ there is a chain of nested subalgebras of $\mathcal{Q}(p)$

$$
\mathcal{Q}_{0}^{\epsilon} \supset \mathcal{Q}_{1}^{\epsilon} \supset \mathcal{Q}_{2}^{\epsilon} \supset \ldots \supset \mathcal{Q}_{s}^{e} \supset \mathcal{Q}_{s+1}^{\epsilon} \supset \ldots
$$

each isomomorphic to $\mathcal{Q}_{0}^{\epsilon}=\mathcal{Q}^{\epsilon}$ as length-graded algebras.

Theorem 1.1 relies on the existence of two suitable algebra monomorphisms

$$
\begin{equation*}
\phi: \mathcal{Q}^{0} \longrightarrow \mathcal{Q}^{0} \quad \text { and } \quad \psi: \mathcal{Q}^{1} \longrightarrow \mathcal{Q}^{1} \tag{1.7}
\end{equation*}
$$

Indeed, we just set $\mathcal{Q}_{s}^{0}=\phi^{s}\left(\mathcal{Q}^{0}\right)$ and $\mathcal{Q}_{s}^{1}=\phi^{s}\left(\mathcal{Q}^{1}\right)$, the restrictions $\left.\phi\right|_{\mathcal{Q}_{s}^{0}}$ and $\left.\psi\right|_{\mathcal{Q}_{s}^{1}}$ being the desired isomorphism between $\mathcal{Q}_{s}^{\epsilon}$ and $\mathcal{Q}_{s+1}^{\epsilon}(\epsilon \in\{0,1\})$.

For sake of completeness we point out that the algebra $\mathcal{Q}(p)$ can also be filtered by the internal degree of its elements, defined on monomials as follows:

$$
\left|\rho z_{I}\right|= \begin{cases}\sum_{h}\left(2 i_{h}(p-1)+\epsilon_{i_{h}}\right), & \text { if } I=\left(\epsilon_{1}, i_{1} ; \epsilon_{2}, i_{2} ; \ldots ; \epsilon_{m}, i_{m}\right) \tag{1.8}\\ 0 & \text { if } I=\varnothing\end{cases}
$$

In spite of its geometric importance, the internal degree will not play any role here.

We finally recall that the algebra $\mathcal{Q}(p)$ is not of finite type: for $k \geq 0$ the pairwise distinct monomials $z_{0, k} z_{0,-k}$ all have internal degree 0 and length 2 , moreover they all belong to the basis \mathcal{B} of monic admissible monomials.

2. A first descending chain of subalgebras

We first need to establish some congruential identities. Let \mathbb{N}_{0} denote the set of all non-negative integers. Fixed any prime p, we write

$$
\begin{equation*}
\sum_{i \geq 0} \gamma_{i}(m) p^{i} \quad\left(0 \leq \gamma_{i}(m)<p\right) \tag{2.1}
\end{equation*}
$$

to denote the p-adic expansion of a fixed $m \in \mathbb{N}_{0}$. The following well-known Lemma is a standard device to compute $\bmod p$ binomial coefficients.

Lemma 2.1 (Lucas' Theorem). For any $(a, b) \in \mathbb{N}_{0} \times \mathbb{N}_{0}$, the following congruential identity holds.

$$
\begin{equation*}
\binom{a}{b} \equiv \prod_{i \geq 0}\binom{\gamma_{i}(a)}{\gamma_{i}(b)} \quad(\bmod p) \tag{2.2}
\end{equation*}
$$

Proof. See [13, p. 260] or [19, I 2.6]. Equation 2.2 follows the usual conventions: $\binom{0}{0}=1$, and $\binom{l}{r}=0$ if $0 \leq l<r$.

Congruence (2.2) immediately yields

$$
\begin{equation*}
\binom{p^{r} a}{p^{r} b} \equiv\binom{a}{b} \quad(\bmod p) \quad \text { for every } r \geq 0 \tag{2.3}
\end{equation*}
$$

since, in both cases, we find on the right side of (2.2) the same products of binomial coefficients, apart from r extra factors all equal to $\binom{0}{0}=1$.

Corollary 2.2. For any $(\ell, t, h) \in \mathbb{N}_{0} \times \mathbb{N}_{0} \times\{1, \ldots, p\}$, the following congruential identity holds.

$$
\begin{equation*}
\binom{p \ell-h}{p t} \equiv\binom{\ell-1}{t} \quad(\bmod p) \tag{2.4}
\end{equation*}
$$

Proof. Since $p \ell-h=(p-h)+p(\ell-1)$, we have $\gamma_{0}(p \ell-h)=p-h$. Note also that $\gamma_{0}(p t)=0$. According to Lemma 2.1, we get

$$
\begin{equation*}
\binom{p \ell-h}{p t} \equiv\binom{p-h}{0}\binom{p(\ell-1)}{p t} \quad(\bmod p) . \tag{2.5}
\end{equation*}
$$

We now use Congruence 2.3 for $r=1$, and the fact that $\binom{k}{0}=1$ for all $k \in \mathbb{N}_{0}$.

In order to make notation less cumbersome, we set

$$
\begin{equation*}
A(k, j)=\binom{(p-1)(k-j)-1}{j} \tag{2.6}
\end{equation*}
$$

Corollary 2.3. Let (n, j) a couple of positive integers. Whenever $j \not \equiv 0(\bmod p)$, the binomial coefficient $A(p n, j)$ is divisible by p.

Proof. If a fixed positive integer j is not divisible by p, then there exists a unique couple $(l, h) \in \mathbb{N} \times\{1, \ldots, p-1\}$ such that $j=p l-h$. Hence, setting

$$
T=(p-1)(n-l)+h-1,
$$

we get

$$
\begin{equation*}
A(p n, j)=\binom{(p-h-1)+p T}{(p-h)+p(l-1)} \equiv\binom{p-h-1}{p-h} \cdot\binom{T}{l-1} \quad(\bmod p) \tag{2.7}
\end{equation*}
$$

by Lemma 2.1 and Equation (2.3). Since $p-h-1<p-h$, the first factor on the right side of Equation (2.7) is zero, so the result follows.

Lemma 2.4. Let (s, n, j) a triple of positive integers. Whenever $j \not \equiv 0\left(\bmod p^{s}\right)$, the binomial coefficient $A\left(p^{s} n, j\right)$ is divisible by p.
Proof. We proceed by induction on s. The $s=1$ case is essentially Corollary 2.3.

Suppose now $s>1$. The hypothesis on j is equivalent to the existence of a suitable $(b, i) \in \mathbb{N} \times\left\{1, \ldots, p^{s}-1\right\}$ such that $j=p^{s} b-i$. Likewise, we can write $i=p l-r$, for a certain $(l, r) \in\left\{1, \ldots, p^{s-2}\right\} \times\{0, \ldots, p-1\}$.

We now distinguish two cases. If $r=0$, the binomial coefficient $A\left(p^{s} n, j\right)$ has the form $\binom{p \ell-h}{p t}$ where

$$
\ell=(p-1)\left(p^{s-1} n-p^{s-1} b+l\right), \quad h=1, \quad \text { and } \quad t=p^{s-1} b-l .
$$

By Corollary 2.2, we get

$$
A\left(p^{s} n, j\right) \equiv A\left(p^{s-1} n, p^{s-1} b-l\right) \quad(\bmod p)
$$

and the latter is divisible by p by the inductive hypothesis.
Assume now $1 \leq r \leq p-1$. In this case,

$$
\begin{equation*}
A\left(p^{s} n, j\right)=\binom{r-1+p T^{\prime}}{r+p\left(p^{s-1} b-l\right)} \tag{2.8}
\end{equation*}
$$

where $T^{\prime}=(p-1)\left(p^{s-1} n-p^{s-1} b+l\right)-r$. Therefore, by Lemma 2.1 we get

$$
\begin{equation*}
A\left(p^{s} n, j\right) \equiv\binom{r-1}{r} \cdot\binom{T^{\prime}}{p^{s-1} b-l} \quad(\bmod p) \tag{2.9}
\end{equation*}
$$

The right side of Equation 2.9 vanishes, since $r-1<r$, and the proof is over.

Lemmas and Corollaries proved so far will be helpful to reduce, in some particular cases, the number of potentially non-zero binomial coefficients in (1.3) and in (1.4). For instance, for any $(h, n) \in \mathbb{Z} \times \mathbb{N}_{0}$, relations of type $R\left(\epsilon, p^{s} h-\alpha_{s}, p^{s} n\right)$, where

$$
\alpha_{s}=\frac{p^{s}-1}{p-1} \quad(s \geq 1)
$$

only involve generators in the set

$$
\begin{equation*}
\mathcal{T}_{(\epsilon, s)}=\left\{z_{\epsilon, p^{s} m-\alpha_{s}} \mid m \in \mathbb{Z}\right\} \tag{2.10}
\end{equation*}
$$

as stated in the following Proposition.
Proposition 2.5. Let (ϵ, k, n, s) a fixed 4-tuple in $\{0,1\} \times \mathbb{Z} \times \mathbb{N}_{0} \times \mathbb{N}$. The polynomial $R\left(\epsilon, p^{s} k-\alpha_{s}, p^{s} n\right)$ in (1.3) is actually equal to

$$
z_{\epsilon, p^{s}(p k-1-n)-\alpha_{s}} z_{0, p^{s} k-\alpha_{s}}+\sum_{j}(-1)^{j} A(n, j) z_{\epsilon, p^{s}(p k-1-j)-\alpha_{s}} z_{0, p^{s}(k-n+j)-\alpha_{s}} .
$$

Proof. By definition (see (1.3)), $R\left(\epsilon, p^{s} k-\alpha_{s}, p^{s} n\right)$ is equal to

$$
z_{\epsilon, p\left(p^{s} k-\alpha_{s}\right)-1-p^{s} n} z_{0, p^{s} k-\alpha_{s}}+\sum_{l}(-1)^{l} A\left(p^{s} n, l\right) z_{\epsilon, p\left(p^{s} k-\alpha_{s}\right)-1-l} z_{0, p^{s} k-\alpha_{s}-p^{s} n+l} .
$$

According to Lemma 2.4, the only possible non-zero coefficients in the sum above occur when $l \equiv 0\left(\bmod p^{s}\right)$. Thus, after setting $l=p^{s} j$, we write $R\left(\epsilon, p^{s} k-\alpha_{s}, p^{s} n\right)$ as

$$
\begin{align*}
& z_{\epsilon, p\left(p^{s} k-\alpha_{s}\right)-1-p^{s} n} z_{0, p^{s} k-\alpha_{s}}+ \\
& \quad+\sum_{j}(-1)^{p^{s} j} A\left(p^{s} n, p^{s} j\right) z_{\epsilon, p\left(p^{s} k-\alpha_{s}\right)-1-p^{s} j} z_{0, p^{s} k-\alpha_{s}-p^{s} n+p^{s} j} . \tag{2.11}
\end{align*}
$$

In such polynomial we can replace $z_{\epsilon, p\left(p^{s} k-\alpha_{s}\right)-1-p^{s} n}$ and $z_{\epsilon, p\left(p^{s} k-\alpha_{s}\right)-1-p^{s} j}$ by

$$
z_{\epsilon, p^{s}(p k-1-n)-\alpha_{s}} \quad \text { and } \quad z_{\epsilon, p^{s}(p k-1-j)-\alpha_{s}}
$$

respectively, since $p \alpha_{s}+1=p^{s}+\alpha_{s}$. Finally, applying Equation (2.4) as many times as necessary, and recalling that we are supposing p odd, we get

$$
\begin{equation*}
(-1)^{p^{s} j} A\left(p^{s} n, p^{s} j\right) \equiv(-1)^{j} A(n, j) \quad(\bmod p) \tag{2.12}
\end{equation*}
$$

As a consequence of Proposition 2.5, the admissible expression of any non-admissible monomial with label ($\epsilon, p^{s} h_{1}-\alpha_{s} ; 0, p^{s} h_{2}-\alpha_{s} ; \ldots ; 0, p^{s} h_{m}-\alpha_{s}$) involves only generators in $\mathcal{T}_{(\epsilon, s)}$.

That's the reason why, for any non-negative integer s, there is a welldefined \mathbb{F}_{p}-algebra \mathcal{Q}_{s}^{0} generated by the set $\{1\} \cup \mathcal{T}_{(0, s)}$ and subject to relations

$$
R\left(0, p^{s} h-\alpha_{s}, p^{s} n\right)=0 \quad \forall n \in \mathbb{N}_{0}
$$

Thus \mathcal{Q}_{0}^{0} and \mathcal{Q}_{1}^{0} are the subalgebras of $\mathcal{Q}(p)$ generated by the sets

$$
\{1\} \cup\left\{z_{0, h} \mid h \in \mathbb{Z}\right\} \quad \text { and } \quad\{1\} \cup\left\{z_{0, p h-1} \mid h \in \mathbb{Z}\right\}
$$

respectively. The former has been simply denoted by \mathcal{Q}^{0} in Section 1. The arithmetic identity

$$
\begin{equation*}
p^{s+1} h-\alpha_{s+1}=p^{s}(p h-1)-\alpha_{s} \tag{2.13}
\end{equation*}
$$

implies that $\mathcal{Q}_{s}^{0} \supset \mathcal{Q}_{s+1}^{0}$.
Lemma 2.6. A monomial of type

$$
\begin{equation*}
z_{I}=z_{\epsilon, p^{s} h_{1}-\alpha_{s}} z_{0, p^{s} h_{2}-\alpha_{s}} \cdots z_{0, p^{s} h_{m}-\alpha_{s}} \tag{2.14}
\end{equation*}
$$

is admissible if and only if $h_{i} \geq p h_{i+1}$ for any $i=1, \ldots, m-1$.
Proof. Admissibility for a monomial of type (2.14) is tantamount to the condition

$$
p^{s} h_{i}-\alpha_{s} \geq p\left(p^{s} h_{i+1}-\alpha_{s}\right) \quad \forall i \in\{1, \ldots, m-1\}
$$

Inequalities above are equivalent to

$$
h_{i} \geq p h_{i+1}-\frac{p^{s}-1}{p^{s}} \quad \forall i \in\{1, \ldots, m-1\}
$$

and the ceiling of the real number on the right side is precisely $p h_{i+1}$.
Proposition 2.7. An \mathbb{F}_{p}-linear basis for \mathcal{Q}_{s}^{0} is given by the set $\mathcal{B}_{\mathcal{Q}_{s}^{0}}$ of its monic admissible monomials.

Proof. In [11] it is explained the procedure to express any monomial in $\mathcal{Q}(p)$ as a sum of admissible monomials. As Proposition 2.5 shows, the generalized Adem relations required to complete such procedure starting from a monomial in \mathcal{Q}_{s}^{0} only involve generators actually available in the set at hands.

So far, we have established the existence of the following descending chain of algebra inclusions:

$$
\mathcal{Q}^{0}=\mathcal{Q}_{0}^{0} \supset \mathcal{Q}_{1}^{0} \supset \mathcal{Q}_{2}^{0} \supset \cdots \supset \mathcal{Q}_{s}^{0} \supset \mathcal{Q}_{s+1}^{0} \supset \ldots
$$

On the free \mathbb{F}_{p}-algebra $\mathbb{F}_{p}\left\langle\{1\} \cup \mathcal{T}_{(0,0)}\right\rangle$ we now define a monomorphism Φ acting on the generators as follows

$$
\begin{equation*}
\Phi(1)=1 \quad \text { and } \quad \Phi\left(z_{0, k}\right)=z_{0, p k-1} . \tag{2.15}
\end{equation*}
$$

We set $\Phi^{0}=1_{\mathbb{F}_{p}\left\langle\mathcal{S}_{p}\right\rangle}$ and $\Phi^{s}=\Phi \circ \Phi^{s-1}$ for $s \geq 1$.
Proposition 2.8. For each $s \geq 0$,

$$
\begin{equation*}
\Phi^{s}\left(z_{0, i_{1}} \cdots z_{0, i_{m}}\right)=z_{0, p^{s} i_{1}-\alpha_{s}} \cdots z_{0, p^{s} i_{m}-\alpha_{s}} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{s}(R(0, k, n))=R\left(0, p^{s} k-\alpha_{s}, p^{s} n\right) \tag{2.17}
\end{equation*}
$$

Proof. Equations (2.16) and (2.17) are trivially true for $s=0$. For $s \geq 1$ use an inductive argument taking into account (2.13) and Proposition 2.5.

Proposition 2.9. Let $\pi: \mathbb{F}_{p}\left\{\{1\} \cup \mathcal{T}_{(0,0)}\right\rangle \rightarrow \mathcal{Q}^{0}$ be the quotient map. There exists an algebra monomorphism ϕ such that the diagram

commutes.
Proof. By Equation (2.17), it follows in particular that

$$
\Phi(R(0, k, n))=R(0, p k-1, p n) .
$$

Therefore there exists a well-defined algebra map

$$
\phi: z_{0, i_{1}} z_{0, i_{2}} \cdots z_{0, i_{m}} \in \mathcal{Q}^{0} \longmapsto z_{0, p i_{1}-1} z_{0, p i_{2}-1} \cdots z_{0, p i_{m}-1} \in \mathcal{Q}^{0} .
$$

Such map is injective since the set $\mathcal{B}_{\mathcal{Q}_{s}^{0}}-$ an \mathbb{F}_{p}-linear basis for \mathcal{Q}^{0} according to Proposition 2.7 - is mapped onto admissibles by Lemma 2.6.

Corollary 2.10. The algebra \mathcal{Q}_{s}^{0} is isomorphic to its subalgebra \mathcal{Q}_{s+1}^{0}.
Proof. By Propositions 2.8 and 2.9, we can argue that $\phi^{s}\left(\mathcal{Q}^{0}\right)=\mathcal{Q}_{s}^{0}$. Hence the map

$$
\left.\phi\right|_{\mathcal{Q}_{s}^{0}}: \operatorname{Im} \phi^{s} \longrightarrow \operatorname{Im} \phi^{s+1}
$$

gives the desired isomorphism.
Corollary 2.10 proves Theorem 1.1 for $\epsilon=0$.

3. A second descending chain of subalgebras

The aim of this Section is to provide a proof for the $\epsilon=1$ case of Theorem 1.1. We choose to follow as close as possible the line of attack put forward in Section 2.

Proposition 3.1. Let (k, n, s) a fixed triple in $\mathbb{Z} \times \mathbb{N}_{0} \times \mathbb{N}$. In (1.4) the polynomial $S\left(1, p^{s} k, p^{s} n\right)$ is actually equal to

$$
z_{1, p^{s}(p k-n)} z_{1, p^{s} k}+\sum_{j}(-1)^{j+1} A(n, j) z_{1, p^{s}(p k-j)} z_{1, p^{s}(k-n+j)} .
$$

Proof. By definition (see 1.4),

$$
\begin{equation*}
S\left(1, p^{s} k, p^{s} n\right)=z_{1, p^{s}(p k-n)} z_{1, p^{s} k}+\sum_{l}(-1)^{l+1} A\left(p^{s} n, l\right) z_{1, p^{s+1} k-l} z_{1, p^{s} k-p^{s} n+l} \tag{3.1}
\end{equation*}
$$

According to Lemma 2.4, the only possible non-zero coefficients in the sum above are those with $l \equiv 0 \bmod p^{s}$. Setting $l=p^{s} j$, the polynomial (3.1) becomes

$$
z_{1, p^{s+1} k-p^{s} n} z_{1, p^{s} k}+\sum_{j}(-1)^{p^{s} j+1} A\left(p^{s} n, p^{s} j\right) z_{1, p^{s+1} k-p^{s} j} z_{1, p^{s} k-p^{s} n+p^{s} j}
$$

The result now follows from Equation (2.12).
Proposition 3.1 implies that relations of type $S\left(1, p^{s} h, p^{s} n\right)$ only involve generators of type $z_{1, p^{s} m}$. therefore the admissible expression of any nonadmissible monomial with label ($1, p^{s} h_{1} ; 1, p^{s} h_{2} ; \ldots ; 1, p^{s} h_{m}$) only involves generators in the set

$$
\begin{equation*}
\mathcal{T}_{(1, s)}^{\prime}=\left\{z_{1, p^{s} m} \mid m \in \mathbb{Z}\right\} . \tag{3.2}
\end{equation*}
$$

So it makes sense to define \mathcal{Q}_{s}^{1} as the \mathbb{F}_{p}-algebra generated by the set $\{1\} \cup$ $\mathcal{T}_{(1, s)}^{\prime}$ and subject to relations

$$
S\left(1, p^{s} h, p^{s} n\right)=0 \quad \forall n \in \mathbb{N}_{0} .
$$

Each \mathcal{Q}_{s}^{1} is actually a subalgebra of $\mathcal{Q}(p)$. We have inclusions $\mathcal{Q}_{s}^{1} \supset \mathcal{Q}_{s+1}^{1}$. In Section 1 , the algebra \mathcal{Q}_{0}^{1} has been simply denoted by \mathcal{Q}^{1}.

Lemma 3.2. A monomial of type

$$
\begin{equation*}
z_{1, p^{s} h_{1}} z_{1, p^{s} h_{2}} \cdots z_{1, p^{s} h_{m}} \tag{3.3}
\end{equation*}
$$

in $\mathcal{Q}_{s}^{1} \subset \mathcal{Q}(p)$ is admissible if and only if $h_{i} \geq p h_{i+1}+1 \quad \forall i \in\{1, \ldots, m-1\}$. Proof. By definition, the monomial (3.3) is admissible if and only if

$$
p^{s} h_{i} \geq p\left(p^{s} h_{i+1}\right)+1 \quad \forall i \in\{1, \ldots, m-1\} .
$$

Inequalities above are equivalent to

$$
h_{i} \geq p h_{i+1}+\frac{1}{p^{s}} \quad \forall i \in\{1, \ldots, m-1\}
$$

and the ceiling of the real number on the right side is precisely $p h_{i+1}+1$.
Proposition 3.3. An \mathbb{F}_{p}-linear basis for \mathcal{Q}_{s}^{1} is given by the set $\mathcal{B}_{\mathcal{Q}_{s}^{1}}$ of its monic admissible monomials.

Proof. Follows verbatim the proof of Proposition 2.7, just replacing "Proposition 2.5 " by "Proposition 3.1 " and \mathcal{Q}_{s}^{0} by \mathcal{Q}_{s}^{1}.

We are now going to prove that the subalgebras in the descending chain

$$
\mathcal{Q}^{1}=\mathcal{Q}_{0}^{1} \supset \mathcal{Q}_{1}^{1} \supset \mathcal{Q}_{2}^{1} \supset \cdots \supset \mathcal{Q}_{s}^{1} \supset \mathcal{Q}_{s+1}^{1} \supset \ldots,
$$

are all isomorphic. To this aim we consider the injective endomorphism Ψ on the free \mathbb{F}_{p}-algebra $\mathbb{F}_{p}\left\langle\{1\} \cup \mathcal{T}_{1,0}^{\prime}\right\rangle$ by setting

$$
\begin{equation*}
\Psi(1)=1 \quad \text { and } \quad \Psi\left(z_{1, k}\right)=z_{1, p k} . \tag{3.4}
\end{equation*}
$$

Proposition 3.4. Let $\pi^{\prime}: \mathbb{F}_{p}\left\langle\{1\} \cup \mathcal{T}^{\prime}{ }_{(1,0)}\right\rangle \rightarrow \mathcal{Q}^{1}$ be the quotient map. There exists an algebra monomorphism ψ such that the diagram

$$
\begin{gather*}
\mathbb{F}_{p}\left\langle\{1\} \cup \mathcal{T}^{\prime}{ }_{(1,0)}\right\rangle \xrightarrow{\Psi} \mathbb{F}_{p}\left\langle\{1\} \cup \mathcal{T}^{\prime}{ }_{(1,0)}\right\rangle \\
\pi^{\prime} \left\lvert\, \begin{array}{l}
\pi \\
\\
\mathcal{Q}^{1} \ldots \ldots \ldots \ldots \ldots \ldots \cdots \cdot \mathcal{Q}^{1}
\end{array}\right. \tag{3.5}
\end{gather*}
$$

commutes.

Proof. Since $\Psi^{s}\left(z_{1, i_{1}} \cdots z_{1, i_{m}}\right)=z_{1, p^{s} i_{1}} \cdots z_{1, p^{s} i_{m}}$, by Proposition 3.1 we argue that

$$
\begin{equation*}
\Psi^{s}(S(1, k, n))=S\left(1, p^{s} k, p^{s} n\right) \tag{3.6}
\end{equation*}
$$

Therefore there exists a well-defined algebra map

$$
\psi: z_{1, i_{1}} \cdots z_{1, i_{m}} \in \mathcal{Q}^{1} \longmapsto z_{1, p i_{1}} \cdots z_{1, p i_{m}} \in \mathcal{Q}^{1}
$$

Such map is injective since the set $\mathcal{B}_{\mathcal{Q}_{s}^{1}}-$ an \mathbb{F}_{p}-linear basis for \mathcal{Q}^{1} according to Proposition 3.3 - is mapped onto admissibles by Lemma 3.2.

Corollary 3.5. The algebra \mathcal{Q}_{s}^{1} is isomorphic to its subalgebra \mathcal{Q}_{s+1}^{1}.
Proof. By Equation (3.6) and Proposition 3.4, we can argue that $\psi^{s}\left(\mathcal{Q}^{1}\right)=$ \mathcal{Q}_{s}^{1}. Thus, the desired isomorphism is given by

$$
\left.\psi\right|_{\mathcal{Q}_{s}^{1}}: \operatorname{Im} \psi^{s} \longrightarrow \operatorname{Im} \psi^{s+1}
$$

4. Further substructures

For each $s \in \mathbb{N}_{0}$, we define V_{s} to be the \mathbb{F}_{p}-vector subspace of $\mathcal{Q}(p)$ generated by the set of monomials

$$
\mathcal{U}_{s}=\left\{z_{1, p^{s} h_{1}-\alpha_{s}} z_{0, p^{s} h_{2}-\alpha_{s}} \cdots z_{0, p^{s} h_{m}-\alpha_{s}} \mid m \geq 2,\left(h_{1}, \ldots, h_{m}\right) \in \mathbb{Z}^{m}\right\} .
$$

Equation 2.13 implies that $V_{s} \supset V_{s+1}$. None of the V_{s} 's is a subalgebra of $\mathcal{Q}(p)$, nevertheless, by Proposition 2.5 and the nature of relations (1.3) it follows that V_{s} can be endowed with a right \mathcal{Q}_{s}^{0}-module structure just by considering multiplication in $\mathcal{Q}(p)$. By using once again Lemma 2.6 and the argument along the proof of Proposition 2.7, we get

Proposition 4.1. An \mathbb{F}_{p}-linear basis for V_{s} is given by the set $\mathcal{B}_{V_{s}}$ of its monic admissible monomials.

Proposition 4.2. The map between sets

$$
z_{1, i_{1}} z_{0, i_{2}} \cdots z_{0, i_{m}} \in \mathcal{U}_{0} \longmapsto z_{1, p i_{1}-1} z_{0, p i_{2}-1} \cdots z_{0, p i_{m}-1} \in \mathcal{U}_{0}
$$

can be extended to a well-defined injective \mathbb{F}_{p}-linear map $\lambda: V_{0} \longrightarrow V_{0}$. Moreover

$$
\begin{equation*}
\lambda^{s}\left(V_{0}\right)=V_{s} \subset V_{0} . \tag{4.1}
\end{equation*}
$$

Proof. As in the proof of Proposition 2.8, Equation 2.13 and Proposition 2.5 show that the s-th power of the \mathbb{F}_{p}-linear map

$$
\Lambda: z_{\epsilon_{1} 1, i_{1}} z_{\epsilon_{2}, i_{2}} \cdots z_{\epsilon_{m}, i_{m}} \in \mathbb{F}_{p}\left\langle\mathcal{S}_{p}\right\rangle \longmapsto z_{\epsilon_{1}, p i_{1}-1} z_{\epsilon_{2}, p i_{2}-1} \cdots z_{\epsilon_{m}, p i_{m}-1} \in \mathbb{F}_{p}\left\langle\mathcal{S}_{p}\right\rangle
$$

maps the polynomial $R(\epsilon, k, n) \in \mathbb{F}_{p}\left\langle\mathcal{S}_{p}\right\rangle$ onto $R\left(\epsilon, p^{s} k-\alpha_{s}, p^{s} n\right)$. Hence there are two maps $\bar{\Lambda}$ and λ such that the diagram

commutes, where $\pi^{\prime \prime}: \mathbb{F}_{p}\left\langle\mathcal{U}_{0}\right\rangle \rightarrow V_{0}$ is the quotient map. Finally, taking into account Equation 2.13, one checks that

$$
\begin{equation*}
\lambda^{s}\left(z_{1, i_{1}} z_{0, i_{2}} \cdots z_{0, i_{m}}\right)=z_{1, p^{s} i_{1}-\alpha_{s}} z_{0, p^{s} i_{2}-\alpha_{s}} \cdots z_{0, p^{s} i_{m}-\alpha_{s}} . \tag{4.3}
\end{equation*}
$$

Since Equation (4.3) implies (4.1), the proof is over.
We now introduce a category \mathcal{K} whose objects are couples (M, R), with R being any ring, and M any right R-module. A morphism between two objects (M, R) and (N, S) is given by a couple (f, ω) where $f: M \rightarrow N$ is a group homomorphism and $\omega: R \rightarrow S$ is a ring homomorphism, furthermore

$$
f(m r)=f(m) \omega(r) \quad \forall(m, r) \in(M, R)
$$

The category \mathcal{K} is partially ordered by "inclusions". More precisely we say that

$$
(M, R) \subseteq\left(M^{\prime}, R^{\prime}\right)
$$

if M is a subgroup of M^{\prime} and R is a subring of R^{\prime}.
Theorem 4.3. The objects in \mathcal{K} of the descending chain

$$
\left(V_{0}, \mathcal{Q}_{0}^{0}\right) \supset\left(V_{1}, \mathcal{Q}_{1}^{0}\right) \supset \cdots \supset\left(V_{s}, \mathcal{Q}_{s}^{0}\right) \supset\left(V_{s+1}, \mathcal{Q}_{s+1}^{0}\right) \supset \ldots
$$

are all isomorphic.
Proof. By Proposition 4.2 it follows that $\left.\lambda\right|_{V_{s}}: V_{s} \longrightarrow V_{s+1}$ is an isomorphism between \mathbb{F}_{p}-vector spaces. Thus, recalling Corollary 2.10 , the desired isomorphism in \mathcal{K} is given by

$$
\left(\left.\lambda\right|_{V_{s}},\left.\phi\right|_{\mathcal{Q}_{s}^{0}}\right):\left(V_{s}, \mathcal{Q}_{s}^{0}\right) \longrightarrow\left(V_{s+1}, \mathcal{Q}_{s+1}^{0}\right)
$$

5. A final remark

Theorem 1.1 in [7] says that no strict algebra monomorphism in $\mathcal{Q}(p)$ exists when p is odd. Hence there is no chance to find algebra endomorhisms over $\mathcal{Q}(p)$ extending the maps ϕ and ψ defined in Sections 2 and 3 respectively. Just to give an idea about the obstructions you come up with, consider the \mathbb{F}_{p}-linear map

$$
\Theta: \mathbb{F}_{p}\left\langle\mathcal{S}_{p}\right\rangle \longrightarrow \mathbb{F}_{p}\left\langle\mathcal{S}_{p}\right\rangle
$$

defined on monomials as follows

$$
\Theta\left(z_{\epsilon_{1}, i_{1}} \cdots z_{\epsilon_{m}, i_{m}}\right)=z_{\epsilon_{1}, p i_{1}} \cdots z_{\epsilon_{m}, p i_{m}} .
$$

Neither the map Θ nor the map Λ introduced in Section 4 stabilizes the entire set (1.2). Indeed, take for instance

$$
R(0,0,0)=z_{0,-1} z_{0,0} \quad \text { and } \quad S(1,0,0)=z_{1,0} z_{1,0} .
$$

The polynomial

$$
\begin{equation*}
\Theta(R(0,0,0))=z_{0,-p} z_{0,0} \tag{5.1}
\end{equation*}
$$

does not belong to the set \mathcal{R}_{p}. In fact, the only polynomial in \mathcal{R}_{p} containing (5.1) as a summand is

$$
R(0,0, p-1)=z_{0,-1-(p-1)} z_{0,0}+z_{0,-1} z_{0,-p+1} .
$$

Similarly, the polynomial

$$
\Lambda(S(1,0,0))=z_{1,-1} z_{1,-1}
$$

does not belong to the set \mathcal{R}_{p}, since it consists of a single admissible monomial, whereas each element in \mathcal{R}_{p} always contains a non-admissible monomial among its summands.

References

[1] S. Araki, T. Kudo, Topology of H_{n}-spaces and H-squaring operations, Mem. Fac. Sci. Kyusyu Univ. Ser. A 10 (1956), 85-120.
[2] M. Brunetti, A. Ciampella, L. A. Lomonaco, The Cohomology of the Universal Steenrod algebra, Manuscripta Math., 118 (2005), 271-282.
[3] M. Brunetti, A. Ciampella, L. A. Lomonaco, An Embedding for the E2term of the Adams Spectral Sequence at Odd Primes, Acta Mathematica Sinica, English Series 22 (2006), no. 6, 1657-1666.
[4] M. Brunetti, A. Ciampella, A Priddy-type koszulness criterion for nonlocally finite algebras, Colloquium Mathematicum 109 (2007), no. 2, 179192.
[5] M. Brunetti, A. Ciampella, L. A. Lomonaco, Homology and cohomology operations in terms of differential operators, Bull. London Math. Soc. 42 (2010), no. 1, 53-63.
[6] M. Brunetti, A. Ciampella, L. A. Lomonaco, An Example in the Singer Category of Algebras with Coproducts at Odd Primes, Vietnam J. Math. 44 (2016), no. 3, 463-476.
[7] M. Brunetti, A. Ciampella, L. A. Lomonaco, Length-preserving monomorphisms for some algebras of operations, Bol. Soc. Mat. Mex. 23 (2017), no. 1, 487-500.
[8] M. Brunetti, A. Ciampella, The Fractal Structure of the Universal Steenrod Algebra: an invariant-theoretic description, Appl. Math. Sci. Ruse, Vol. 8 no. 133 (2014), 6681-6687.
[9] M. Brunetti, L. A. Lomonaco, Chasing non-diagonal cycles in a certain system of algebras of operations, Ricerche Mat. 63 (Suppl. 1) (2014), 5768.
[10] A. Ciampella, On a fractal structure of the universal Steenrod algebra, Rend. Accad. Sci. Fis. Mat. Napoli, vol. 81, (4) (2014), 203-207.
[11] A. Ciampella, L. A. Lomonaco, The Universal Steenrod Algebra at Odd Primes, Communications in Algebra 32 (2004), no. 7, 2589-2607.
[12] A. Ciampella, L. A. Lomonaco, Homological computations in the universal Steenrod algebra, Fund. Math. 183 (2004), no. 3, 245-252.
[13] I. Karaca, Nilpotence relations in the mod p Steenrod algebra, J. Pure Appl. Algebra 171 (2002), no. 2-3, 257-264.
[14] A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962).
[15] Lomonaco L. A., Dickson invariants and the universal Steenrod algebra. Topology, Proc. 4th Meet., Sorrento/Italy 1988, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 24 (1990), 429-443.
[16] J. P. May, A General Approach to Steenrod Operations, Lecture Notes in Mathematics. 168, Berlin: Springer, 153-231 (1970).
[17] J. P. May, Homology operations on infinite loop spaces, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970), pp. 171-185. Amer. Math. Soc., Providence, R.I. (1971).
[18] K. G. Monks, Nilpotence in the Steenrod algebra, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 401-416 (Papers in honor of José Adem).
[19] N. E. Steenrod, Cohomology Operations, lectures written and revised by D. B. A. Epstein, Ann. of Math. Studies 50, Princeton Univ. Press, Princeton, NJ (1962).

Maurizio Brunetti
Dipartimento di Matematica e Applicazioni, Università di Napoli "Federico II", Piazzale Tecchio 80 I-80125 Napoli, Italy. e-mail: maurizio.brunetti@unina.it

Adriana Ciampella
Dipartimento di Matematica e Applicazioni, Università di Napoli "Federico II", Piazzale Tecchio 80 I-80125 Napoli, Italy. e-mail: adriana.ciampella@unina.it

