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Abstract. Unlike the p = 2 case, the universal Steenrod algebra Q(p) at
odd primes does not have a fractal structure that preserves the length of
monomials. Nevertheless, when p is odd we detect inside Q(p) two dif-
ferent families of nested subalgebras each isomorphic (as length-graded
algebras) to the respective starting element of the sequence.
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1. Introduction

Let p be any prime. The so-called universal Steenrod algebra Q(p) is an
Fp-algebra extensively studied by the authors (see, for instance, [2]-[12]).
On its first appearance, it has been described as the algebra of cohomology
operations in the category of H∞-ring spectra (see [16]). Invariant-theoretic
descriptions of Q(p) can be found in [11] and [15]. When p is an odd prime,
the augmentation ideal of Q(p) is the free Fp-algebra over the set

Sp = { zε,k ∣ (ε, k) ∈ {0,1} ×Z} (1.1)

subject to the set of relations

Rp = {R(ε, k, n), S(ε, k, n) ∣ (ε, k, n) ∈ {0,1} ×Z ×N0 }, (1.2)

where

R(ε, k, n) = zε,pk−1−nz0,k+∑
j≥0
(−1)j(

(p − 1)(n − j) − 1

j
)zε,pk−1−jz0,k−n+j , (1.3)

and

S(ε, k, n) = zε,pk−nz1,k +∑
j≥0
(−1)j+1

(
(p − 1)(n − j) − 1

j
)zε,pk−jz1,k−n+j

+ (1 − ε)∑
j≥0
(−1)j+1

(
(p − 1)(n − j)

j
)z1,pk−jz0,k−n+j .

(1.4)
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Such relations are known as generalized Adem relations. In (1.3) and (1.4),
as throughout the paper, binomial coefficients (a

b
) are understood to be 0 if

a < 0, b < 0 or a < b.
The algebra Q(p) is related to many Steenrod-like operations. For in-

stance to those acting on the cohomology of a graded cocommutative Hopf
algebra ([6], [14]), or the Dyer-Lashof operations on the homology of infinite
loop spaces ([1] and [17]). Details of such connections, at least for p = 2,
can be found in [5]. In particular, the ordinary Steenrod algebra A(p) is a
quotient of Q(p). At odd primes, the algebra epimorphism is determined by

ζ ∶ zε,k z→

⎧⎪⎪
⎨
⎪⎪⎩

βεP k if k ≥ 0,

0 otherwise.
(1.5)

The kernel of the map ζ turns out to be the principal ideal generated by
z0,0 − 1.

All monic monomials in Q(p), with the exception of z∅ = 1 have the
form

zI = zε1,i1zε2,i2⋯zεm,im , (1.6)

where the string I = (ε1, i1; ε2, i2; . . . ; εm, im) is the label of the monomial zI .
By length of a monomial zI of type (1.6) we just mean the integer m, while
the length of any ρ ∈ Fp ⊂ Q(p) is defined to be 0. Since Relations (1.3)
and (1.4) are homogeneous with respect to length, the algebra Q(p) can be
regarded as a graded object.

A monomial and its label are said to be admissible if ij ≥ pij+1+ εj+1 for
any j = 1, . . . ,m − 1. We also consider z∅ = 1 ∈ Fp ⊂ Q(p) admissible. The set
B of all monic admissible monomials forms an Fp-linear basis for Q(p) (see
[11]).

Through two different approaches, in [8] and [10] it has been shown
that Q(2) has a fractal structure given by a sequence of nested subalgras
Qs, each isomorphic to Q. The interest in searching for fractal structures
inside algebras of (co-)homology operations initially arouse in [18], where
such structures were used as a tool to establish the nilpotence height of some
elements in A(p). Results in the same vein are in [13].

Recently, in [7] the authors proved that no length-preserving strict
monomorphisms turn out to exist in Q(p) when p is odd. Hence no de-
scending chain of isomorphic subalgebras starting with Q(p) exists for p > 2.
Results in [7] did not exclude the existence of fractal structures for proper
subalgebras of Q(p). As a matter of fact, the subalgebras Q0 and Q1 gen-
erated by the z0,h’s and the z1,k’s respectively (together with 1) turn out to
have self-similar shapes, as stated in our Theorem 1.1, our main result.

Theorem 1.1. Let p be any odd prime. For any ε ∈ {0,1} there is a chain of
nested subalgebras of Q(p)

Q
ε
0 ⊃ Q

ε
1 ⊃ Q

ε
2 ⊃ ⋅ ⋅ ⋅ ⊃ Q

e
s ⊃ Q

ε
s+1 ⊃ . . .

each isomomorphic to Qε0 = Q
ε as length-graded algebras.
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Theorem 1.1 relies on the existence of two suitable algebra monomor-
phisms

φ ∶ Q0
Ð→Q

0 and ψ ∶ Q
1
Ð→Q

1. (1.7)

Indeed, we just set Q0
s = φ

s(Q0) and Q1
s = φ

s(Q1), the restrictions φ ∣Q0
s

and
ψ ∣Q1

s
being the desired isomorphism between Qεs and Qεs+1 (ε ∈ {0,1}).

For sake of completeness we point out that the algebra Q(p) can also
be filtered by the internal degree of its elements, defined on monomials as
follows:

∣ρzI ∣ =

⎧⎪⎪
⎨
⎪⎪⎩

∑h(2ih(p − 1) + εih), if I = (ε1, i1; ε2, i2; . . . ; εm, im)

0 if I = ∅.
(1.8)

In spite of its geometric importance, the internal degree will not play any
role here.

We finally recall that the algebra Q(p) is not of finite type: for k ≥ 0 the
pairwise distinct monomials z0,kz0,−k all have internal degree 0 and length 2,
moreover they all belong to the basis B of monic admissible monomials.

2. A first descending chain of subalgebras

We first need to establish some congruential identities. Let N0 denote the set
of all non-negative integers. Fixed any prime p, we write

∑
i≥0
γi(m)p

i (0 ≤ γi(m) < p) (2.1)

to denote the p-adic expansion of a fixed m ∈ N0. The following well-known
Lemma is a standard device to compute mod p binomial coefficients.

Lemma 2.1 (Lucas’ Theorem). For any (a, b) ∈ N0 × N0, the following con-
gruential identity holds.

(
a

b
) ≡∏i≥0(

γi(a)

γi(b)
) (mod p). (2.2)

Proof. See [13, p. 260] or [19, I 2.6]. Equation 2.2 follows the usual conven-

tions: (0
0
) = 1, and (l

r
) = 0 if 0 ≤ l < r. ◻

Congruence (2.2) immediately yields

(
pra

prb
) ≡ (

a

b
) (mod p) for every r ≥ 0, (2.3)

since, in both cases, we find on the right side of (2.2) the same products of

binomial coefficients, apart from r extra factors all equal to (0
0
) = 1.

Corollary 2.2. For any (`, t, h) ∈ N0×N0×{1, . . . , p}, the following congruential
identity holds.

(
p` − h

pt
) ≡ (

` − 1

t
) (mod p). (2.4)
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Proof. Since p` − h = (p − h) + p(` − 1), we have γ0(p` − h) = p − h. Note also
that γ0(pt) = 0. According to Lemma 2.1, we get

(
p` − h

pt
) ≡ (

p − h

0
)(
p(` − 1)

pt
) (mod p). (2.5)

We now use Congruence 2.3 for r = 1, and the fact that (k
0
) = 1 for all

k ∈ N0. ◻

In order to make notation less cumbersome, we set

A(k, j) = (
(p − 1)(k − j) − 1

j
). (2.6)

Corollary 2.3. Let (n, j) a couple of positive integers. Whenever j /≡ 0 (mod p),
the binomial coefficient A(pn, j) is divisible by p.

Proof. If a fixed positive integer j is not divisible by p, then there exists a
unique couple (l, h) ∈ N × {1, . . . , p − 1} such that j = pl − h. Hence, setting

T = (p − 1)(n − l) + h − 1,

we get

A(pn, j) = (
(p − h − 1) + pT

(p − h) + p(l − 1)
) ≡ (

p − h − 1

p − h
) ⋅ (

T

l − 1
) (mod p) (2.7)

by Lemma 2.1 and Equation (2.3). Since p − h − 1 < p − h, the first factor on
the right side of Equation (2.7) is zero, so the result follows. ◻

Lemma 2.4. Let (s, n, j) a triple of positive integers. Whenever j /≡ 0 (mod ps),
the binomial coefficient A(psn, j) is divisible by p.

Proof. We proceed by induction on s. The s = 1 case is essentially Corollary
2.3.

Suppose now s > 1. The hypothesis on j is equivalent to the existence
of a suitable (b, i) ∈ N × {1, . . . , ps − 1} such that j = psb − i. Likewise, we can
write i = pl − r, for a certain (l, r) ∈ {1, . . . , ps−2} × {0, . . . , p − 1}.

We now distinguish two cases. If r = 0, the binomial coefficient A(psn, j)

has the form (p`−h
pt
) where

` = (p − 1)(ps−1n − ps−1b + l), h = 1, and t = ps−1b − l.

By Corollary 2.2, we get

A(psn, j) ≡ A(ps−1n, ps−1b − l) (mod p),

and the latter is divisible by p by the inductive hypothesis.
Assume now 1 ≤ r ≤ p − 1. In this case,

A(psn, j) = (
r − 1 + pT ′

r + p(ps−1b − l)
) (2.8)

where T ′ = (p − 1)(ps−1n − ps−1b + l) − r. Therefore, by Lemma 2.1 we get

A(psn, j) ≡ (
r − 1

r
) ⋅ (

T ′

ps−1b − l
) (mod p). (2.9)
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The right side of Equation 2.9 vanishes, since r − 1 < r, and the proof is
over. ◻

Lemmas and Corollaries proved so far will be helpful to reduce, in some
particular cases, the number of potentially non-zero binomial coefficients in
(1.3) and in (1.4). For instance, for any (h,n) ∈ Z × N0, relations of type
R(ε, psh − αs, p

sn), where

αs =
ps − 1

p − 1
(s ≥ 1),

only involve generators in the set

T(ε,s) = {zε,psm−αs ∣m ∈ Z} (2.10)

as stated in the following Proposition.

Proposition 2.5. Let (ε, k, n, s) a fixed 4-tuple in {0,1} × Z × N0 × N. The
polynomial R(ε, psk − αs, p

sn) in (1.3) is actually equal to

zε,ps(pk−1−n)−αs
z0,psk−αs +∑

j

(−1)jA(n, j) zε,ps(pk−1−j)−αs
z0,ps(k−n+j)−αs

.

Proof. By definition (see (1.3)), R(ε, psk − αs, p
sn) is equal to

zε,p(psk−αs)−1−psnz0,psk−αs +∑
l

(−1)lA(psn, l) zε,p(psk−αs)−1−lz0,psk−αs−psn+l.

According to Lemma 2.4, the only possible non-zero coefficients in the sum
above occur when l ≡ 0 (mod ps). Thus, after setting l = psj, we write
R(ε, psk − αs, p

sn) as

zε,p(psk−αs)−1−psnz0,psk−αs +

+∑
j

(−1)p
sjA(psn, psj)zε,p(psk−αs)−1−psjz0,psk−αs−psn+psj . (2.11)

In such polynomial we can replace zε,p(psk−αs)−1−psn and zε,p(psk−αs)−1−psj by

zε,ps(pk−1−n)−αs
and zε,ps(pk−1−j)−αs

respectively, since pαs +1 = ps +αs. Finally, applying Equation (2.4) as many
times as necessary, and recalling that we are supposing p odd, we get

(−1)p
sjA(psn, psj) ≡ (−1)jA(n, j) (mod p). (2.12)

◻

As a consequence of Proposition 2.5, the admissible expression of any
non-admissible monomial with label (ε, psh1−αs; 0, psh2−αs; . . . ; 0, pshm−αs)
involves only generators in T(ε,s).

That’s the reason why, for any non-negative integer s, there is a well-
defined Fp-algebraQ0

s generated by the set {1}∪T(0,s) and subject to relations

R(0, psh − αs, p
sn) = 0 ∀n ∈ N0.

Thus Q0
0 and Q0

1 are the subalgebras of Q(p) generated by the sets

{1} ∪ {z0,h ∣h ∈ Z} and {1} ∪ {z0,ph−1 ∣h ∈ Z}
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respectively. The former has been simply denoted by Q0 in Section 1. The
arithmetic identity

ps+1h − αs+1 = p
s
(ph − 1) − αs, (2.13)

implies that Q0
s ⊃ Q

0
s+1.

Lemma 2.6. A monomial of type

zI = zε,psh1−αsz0,psh2−αs⋯ z0,pshm−αs (2.14)

is admissible if and only if hi ≥ phi+1 for any i = 1, . . . ,m − 1.

Proof. Admissibility for a monomial of type (2.14) is tantamount to the con-
dition

pshi − αs ≥ p(p
shi+1 − αs) ∀i ∈ {1, . . . ,m − 1}.

Inequalities above are equivalent to

hi ≥ phi+1 −
ps − 1

ps
∀i ∈ {1, . . . ,m − 1},

and the ceiling of the real number on the right side is precisely phi+1. ◻

Proposition 2.7. An Fp-linear basis for Q0
s is given by the set BQ0

s
of its monic

admissible monomials.

Proof. In [11] it is explained the procedure to express any monomial in Q(p)
as a sum of admissible monomials. As Proposition 2.5 shows, the generalized
Adem relations required to complete such procedure starting from a mono-
mial in Q0

s only involve generators actually available in the set at hands. ◻

So far, we have established the existence of the following descending
chain of algebra inclusions:

Q
0
= Q

0
0 ⊃ Q

0
1 ⊃ Q

0
2 ⊃ ⋅ ⋅ ⋅ ⊃ Q

0
s ⊃ Q

0
s+1 ⊃ . . . ,

On the free Fp-algebra Fp⟨{1}∪ T(0,0)⟩ we now define a monomorphism
Φ acting on the generators as follows

Φ(1) = 1 and Φ(z0,k) = z0,pk−1. (2.15)

We set Φ0 = 1Fp⟨Sp⟩ and Φs = Φ ○Φs−1 for s ≥ 1.

Proposition 2.8. For each s ≥ 0,

Φs(z0,i1⋯ z0,im) = z0,psi1−αs⋯ z0,psim−αs , (2.16)

and

Φs(R(0, k, n)) = R(0, psk − αs, p
sn). (2.17)

Proof. Equations (2.16) and (2.17) are trivially true for s = 0. For s ≥ 1 use
an inductive argument taking into account (2.13) and Proposition 2.5. ◻
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Proposition 2.9. Let π ∶ Fp⟨{1} ∪ T(0,0)⟩ → Q0 be the quotient map.There
exists an algebra monomorphism φ such that the diagram

Fp⟨{1} ∪ T(0,0)⟩ Fp⟨{1} ∪ T(0,0)⟩

Q
0

Q
0

-Φ

?

π

?

π

p p p p p p p p p p p p p p p p p p p p p p-
φ

(2.18)

commutes.

Proof. By Equation (2.17), it follows in particular that

Φ(R(0, k, n)) = R(0, pk − 1, pn).

Therefore there exists a well-defined algebra map

φ ∶ z0,i1z0,i2⋯z0,im ∈ Q
0
z→ z0,pi1−1z0,pi2−1⋯z0,pim−1 ∈ Q

0.

Such map is injective since the set BQ0
s

– an Fp-linear basis for Q0 according
to Proposition 2.7 – is mapped onto admissibles by Lemma 2.6. ◻

Corollary 2.10. The algebra Q0
s is isomorphic to its subalgebra Q0

s+1.

Proof. By Propositions 2.8 and 2.9, we can argue that φs(Q0) = Q0
s. Hence

the map
φ ∣Q0

s
∶ ImφsÐ→ Imφs+1

gives the desired isomorphism. ◻

Corollary 2.10 proves Theorem 1.1 for ε = 0.

3. A second descending chain of subalgebras

The aim of this Section is to provide a proof for the ε = 1 case of Theorem
1.1. We choose to follow as close as possible the line of attack put forward in
Section 2.

Proposition 3.1. Let (k,n, s) a fixed triple in Z×N0 ×N. In (1.4) the polyno-
mial S(1, psk, psn) is actually equal to

z1,ps(pk−n)z1,psk +∑
j

(−1)j+1A(n, j) z1,ps(pk−j)z1,ps(k−n+j).

Proof. By definition (see 1.4),

S(1, psk, psn) = z1,ps(pk−n)z1,psk +∑
l

(−1)l+1A(psn, l)z1,ps+1k−lz1,psk−psn+l.

(3.1)
According to Lemma 2.4, the only possible non-zero coefficients in the sum
above are those with l ≡ 0 mod ps. Setting l = psj, the polynomial (3.1)
becomes

z1,ps+1k−psnz1,psk +∑
j

(−1)p
sj+1A(psn, psj)z1,ps+1k−psjz1,psk−psn+psj .
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The result now follows from Equation (2.12). ◻

Proposition 3.1 implies that relations of type S(1, psh, psn) only involve
generators of type z1,psm. therefore the admissible expression of any non-
admissible monomial with label (1, psh1; 1, psh2; . . . ; 1, pshm) only involves
generators in the set

T
′
(1,s) = {z1,psm ∣m ∈ Z}. (3.2)

So it makes sense to define Q1
s as the Fp-algebra generated by the set {1} ∪

T ′(1,s) and subject to relations

S(1, psh, psn) = 0 ∀n ∈ N0.

Each Q1
s is actually a subalgebra of Q(p). We have inclusions Q1

s ⊃ Q
1
s+1. In

Section 1, the algebra Q1
0 has been simply denoted by Q1.

Lemma 3.2. A monomial of type

z1,psh1z1,psh2⋯ z1,pshm (3.3)

in Q1
s ⊂ Q(p) is admissible if and only if hi ≥ phi+1 + 1 ∀i ∈ {1, . . . ,m − 1}.

Proof. By definition, the monomial (3.3) is admissible if and only if

pshi ≥ p(p
shi+1) + 1 ∀i ∈ {1, . . . ,m − 1}.

Inequalities above are equivalent to

hi ≥ phi+1 +
1

ps
∀i ∈ {1, . . . ,m − 1},

and the ceiling of the real number on the right side is precisely phi+1 + 1. ◻

Proposition 3.3. An Fp-linear basis for Q1
s is given by the set BQ1

s
of its monic

admissible monomials.

Proof. Follows verbatim the proof of Proposition 2.7, just replacing “Propo-
sition 2.5” by “Proposition 3.1” and Q0

s by Q1
s. ◻

We are now going to prove that the subalgebras in the descending chain

Q
1
= Q

1
0 ⊃ Q

1
1 ⊃ Q

1
2 ⊃ ⋅ ⋅ ⋅ ⊃ Q

1
s ⊃ Q

1
s+1 ⊃ . . . ,

are all isomorphic. To this aim we consider the injective endomorphism Ψ on
the free Fp-algebra Fp⟨{1} ∪ T ′1,0⟩ by setting

Ψ(1) = 1 and Ψ(z1,k) = z1,pk. (3.4)

Proposition 3.4. Let π′ ∶ Fp⟨{1} ∪ T ′(1,0)⟩ → Q1 be the quotient map.There
exists an algebra monomorphism ψ such that the diagram

Fp⟨{1} ∪ T ′(1,0)⟩ Fp⟨{1} ∪ T ′(1,0)⟩

Q
1

Q
1

-Ψ

?

π′

?

π

p p p p p p p p p p p p p p p p p p p p p p p p-
ψ

(3.5)

commutes.
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Proof. Since Ψs(z1,i1⋯ z1,im) = z1,psi1⋯ z1,psim , by Proposition 3.1 we argue
that

Ψs
(S(1, k, n)) = S(1, psk, psn). (3.6)

Therefore there exists a well-defined algebra map

ψ ∶ z1,i1⋯ z1,im ∈ Q
1
z→ z1,pi1⋯ z1,pim ∈ Q

1.

Such map is injective since the set BQ1
s

– an Fp-linear basis for Q1 according
to Proposition 3.3 – is mapped onto admissibles by Lemma 3.2. ◻

Corollary 3.5. The algebra Q1
s is isomorphic to its subalgebra Q1

s+1.

Proof. By Equation (3.6) and Proposition 3.4, we can argue that ψs(Q1) =

Q1
s. Thus, the desired isomorphism is given by

ψ ∣Q1
s
∶ ImψsÐ→ Imψs+1.

◻

4. Further substructures

For each s ∈ N0, we define Vs to be the Fp-vector subspace of Q(p) generated
by the set of monomials

Us = {z1,psh1−αsz0,psh2−αs⋯ z0,pshm−αs ∣m ≥ 2, (h1, . . . , hm) ∈ Zm }.

Equation 2.13 implies that Vs ⊃ Vs+1. None of the Vs’s is a subalgebra
of Q(p), nevertheless, by Proposition 2.5 and the nature of relations (1.3)
it follows that Vs can be endowed with a right Q0

s-module structure just by
considering multiplication in Q(p). By using once again Lemma 2.6 and the
argument along the proof of Proposition 2.7, we get

Proposition 4.1. An Fp-linear basis for Vs is given by the set BVs of its monic
admissible monomials.

Proposition 4.2. The map between sets

z1,i1z0,i2⋯ z0,im ∈ U0 z→ z1,pi1−1z0,pi2−1⋯ z0,pim−1 ∈ U0

can be extended to a well-defined injective Fp-linear map λ ∶ V0Ð→V0. More-
over

λs(V0) = Vs ⊂ V0. (4.1)

Proof. As in the proof of Proposition 2.8, Equation 2.13 and Proposition 2.5
show that the s-th power of the Fp-linear map

Λ ∶ zε11,i1zε2,i2⋯ zεm,im ∈ Fp⟨Sp⟩ z→ zε1,pi1−1zε2,pi2−1⋯ zεm,pim−1 ∈ Fp⟨Sp⟩

maps the polynomial R(ε, k, n) ∈ Fp⟨Sp⟩ onto R(ε, psk−αs, p
sn). Hence there

are two maps Λ̄ and λ such that the diagram
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Fp⟨Sp⟩ Fp⟨Sp⟩

Fp⟨U0⟩ Fp⟨U0⟩

V0 V0

Λ

π′′

Λ̄

π′′

λ

(4.2)

commutes, where π′′ ∶ Fp⟨U0⟩ → V0 is the quotient map. Finally, taking into
account Equation 2.13, one checks that

λs(z1,i1z0,i2⋯ z0,im) = z1,psi1−αsz0,psi2−αs⋯ z0,psim−αs . (4.3)

Since Equation (4.3) implies (4.1), the proof is over. ◻

We now introduce a category K whose objects are couples (M,R), with
R being any ring, and M any right R-module. A morphism between two
objects (M,R) and (N,S) is given by a couple (f,ω) where f ∶M → N is a
group homomorphism and ω ∶ R → S is a ring homomorphism, furthermore

f(mr) = f(m)ω(r) ∀(m,r) ∈ (M,R).

The category K is partially ordered by “inclusions”. More precisely we say
that

(M,R) ⊆ (M ′,R′
)

if M is a subgroup of M ′ and R is a subring of R′.

Theorem 4.3. The objects in K of the descending chain

(V0,Q
0
0) ⊃ (V1,Q

0
1) ⊃ ⋅ ⋅ ⋅ ⊃ (Vs,Q

0
s) ⊃ (Vs+1,Q

0
s+1) ⊃ . . .

are all isomorphic.

Proof. By Proposition 4.2 it follows that λ ∣Vs ∶ VsÐ→Vs+1 is an isomorphism
between Fp-vector spaces. Thus, recalling Corollary 2.10, the desired isomor-
phism in K is given by

(λ ∣Vs , φ ∣Q0
s
) ∶ (Vs,Q

0
s)Ð→ (Vs+1,Q

0
s+1).

◻

5. A final remark

Theorem 1.1 in [7] says that no strict algebra monomorphism in Q(p) exists
when p is odd. Hence there is no chance to find algebra endomorhisms over
Q(p) extending the maps φ and ψ defined in Sections 2 and 3 respectively.
Just to give an idea about the obstructions you come up with, consider the
Fp-linear map

Θ ∶ Fp⟨Sp⟩Ð→ Fp⟨Sp⟩
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defined on monomials as follows

Θ(zε1,i1⋯ zεm,im) = zε1,pi1⋯ zεm,pim .

Neither the map Θ nor the map Λ introduced in Section 4 stabilizes the entire
set (1.2). Indeed, take for instance

R(0,0,0) = z0,−1z0,0 and S(1,0,0) = z1,0z1,0.

The polynomial
Θ(R(0,0,0)) = z0,−pz0,0 (5.1)

does not belong to the set Rp. In fact, the only polynomial in Rp containing
(5.1) as a summand is

R(0,0, p − 1) = z0,−1−(p−1)z0,0 + z0,−1z0,−p+1.

Similarly, the polynomial

Λ(S(1,0,0)) = z1,−1z1,−1

does not belong to the set Rp, since it consists of a single admissible mono-
mial, whereas each element in Rp always contains a non-admissible monomial
among its summands.
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