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Abstract
Background: Soft nanosystems are electronic nanodevices, such as suspended carbon nanotubes or molecular junctions, whose

transport properties are modulated by soft internal degrees of freedom, for example slow vibrational modes. Effects of the

electron–vibration coupling on the charge and heat transport of soft nanoscopic systems are theoretically investigated in the pres-

ence of time-dependent perturbations, such as a forcing antenna or pumping terms between the leads and the nanosystem. A well-

established approach valid for non-equilibrium adiabatic regimes is generalized to the case where external time-dependent perturba-

tions are present. Then, a number of relevant applications of the method are reviewed for systems composed by a quantum dot (or

molecule) described by a single electronic level coupled to a vibrational mode.

Results: Before introducing time-dependent perturbations, the range of validity of the adiabatic approach is discussed showing that

a very good agreement with the results of an exact quantum calculation is obtained in the limit of low level occupation. Then, we

show that the interplay between the low frequency vibrational modes and the electronic degrees of freedom affects the thermo-

electric properties within the linear response regime finding out that the phonon thermal conductance provides an important contri-

bution to the figure of merit at room temperature. Our work has been stimulated by recent experimental results on carbon nanotube

electromechanical devices working in the semiclassical regime (resonator frequencies in the megahertz range compared to an elec-

tronic hopping frequency of the order of tens of gigahertz) with extremely high quality factors. The nonlinear vibrational regime in-

duced by the external antenna in such systems has been discussed within the non-perturbative adiabatic approach reproducing quan-

titatively the characteristic asymmetric shape of the current–frequency curves. Within the same set-up, we have proved that the

antenna is able to pump sufficient charge close to the mechanical resonance making single-parameter adiabatic charge pumping
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feasible in carbon nanotube resonators. The pumping mechanism that we observe is different from that acting in the two parameter

pumping and, instead, it is based on an important dynamic adjustment of the mechanical motion of the nanotube to the external

drive in the weakly nonlinear regime. Finally, stochastic forces induced by quantum and thermal fluctuations due to the electron

charging of the quantum dot are shown to affect in a significant way a Thouless charge pump realized with an elastically deform-

able quantum dot. In this case, the pumping mechanism is also shown to be magnified when the frequency of the external drive is

resonant with the proper frequency of the deformable quantum dot. In this regime, the pumping current is not strongly reduced by

the temperature, giving a measurable effect.

Conclusion: Aim of this review has been to discuss common features of different soft nanosystems under external drive. The most

interesting effects induced by time-dependent perturbations are obtained when the external forcing is nearly resonant with the slow

vibrational modes. Indeed, not only the external forcing can enhance the electronic response, but it also induces nonlinear regimes

where the interplay between electronic and vibrational degrees of freedom plays a major role.
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Introduction
In some nanoelectronic devices, internal soft degrees of free-

dom, such as slow vibrational modes, cannot be neglected since

they actively modulate the transport properties. Indeed, the elec-

tron–vibration coupling significantly affects the charge and heat

transport of nanoscopic devices such as molecules connected to

external leads [1-4], and nanoelectromechanical systems [5-8].

Due to the small dimensions of the molecular bridge, the

hopping of an electron from the lead onto the molecule can sig-

nificantly alter its nuclear configuration. As a main conse-

quence, intriguing nonlinear phenomena, such as hysteresis,

switching, and negative differential conductance have been ob-

served in molecular junctions. In conducting molecules, either

the center of mass oscillations [9], or thermally induced

acoustic phonons [10] can be the source of coupling between

electronic and vibrational degrees of freedom.

Nanoelectromechanical systems (NEMS) are devices similar to

molecular junctions. Typically, they consist of a nanobeam

resonator that is coupled to an electronic quantum dot junction.

Famous examples of NEMS are suspended carbon nanotube

(CNT) resonators, which are anchored to two metallic leads

under bias voltage. In this case, the quantum dot is embedded in

the CNT itself. In [11,12] the motion of the CNT is actuated by

a nearby antenna, which means that, when the external antenna

frequency matches the natural frequency of the CNT beam, one

can measure the CNT oscillation frequency from the electronic

current response of the device. This is possible due to the

extremely high quality factors (Q > 105) observed when the

resonator frequencies fall in the megahertz range compared with

an electronic hopping frequency from the leads of the order of

tens of gigahertz. Recently, it has been found that phenomena

such as switching, hysteresis, as well as multistability can be

observed in NEMS [13]. NEMS have been proposed as high

sensitive position and mass sensors [14-20].

Recently, research at the nanoscale has focused not only on

charge but also on heat transport [21-24]. In particular, thermo-

power and thermal conductances have been measured and theo-

retically calculated in molecular junctions [25-29]. The role of

vibrational degrees of freedom and their coupling with elec-

trons have a fundamental importance on heat transport and

dissipation. Moreover, the effect of time perturbations not only

on the charge dynamics but also on the energy transport is

becoming a new field of study where both electronic and vibra-

tional degrees of freedom are involved [30-35].

It has been shown that periodic time-dependent perturbations

can lead to pumping effects depending on the frequency of the

external drive. In this context, different setups have been

studied. Recent experiments have shown the possibility of real-

izing single-parameter charge pumping [36-39] on devices simi-

lar to those described above. However, the characteristic

frequencies of the external drive are much larger than the elec-

tronic tunneling rate. In fact, in these conditions, an effective

phase-shift can be produced due to electron–electron interac-

tions, which is intrinsically generated by a non-adiabatic

blockade of tunneling [40]. However, it has been pointed out

that higher frequencies are necessary to observe pumping

currents of the same order of magnitude of those observed when

a two-parameter pumping mechanism is present [41-45].

Another particularly interesting experiment has been carried out

in [46], where charge conductance has been obtained at zero

bias voltage, by applying a small power to the antenna at a fre-

quency close to that of the internal slow resonator. Therefore, it

is of great importance to address theoretically the single-param-

eter charge pumping in the regime where the driving frequen-

cies are smaller than the electronic tunneling rates of the device

and close to the frequency of the internal vibrational mode.

Indeed, in the absence of an internal degree of freedom, it has

been theoretically demonstrated that single-parameter charge
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pumping through a quantum dot in the this regime is poor [47]

even if the electronic correlations are important [48,49].

The relative magnitude of the characteristic vibrational frequen-

cy of the molecule or nanobeam and the hopping rate of elec-

trons from the leads represents an important quantity in under-

standing the physics of molecular junctions and NEMS. In this

review, we analyze the adiabatic regime, realized when the

internal vibrational modes have frequencies smaller than the

hopping rate. Within this regime, one can observe phenomena

such as switching, multistability and hysteresis in molecular

junctions or NEMS, and study the physics of NEMS subjected

to periodic perturbations such those described above. When the

transient dynamics is considered, and the uniqueness and the

approach to the steady state is concerned, analytical and numer-

ical approaches have given controversial results. This is because

of the length of the time scales required to reach a steady state

(if a steady state is reached at all) [50-54]. A strong debate has

developed in the literature regarding the existence of multista-

bility in these systems [52-54] by studying models similar to

those investigated in this review. Although we do not address

this issue here, in our approach multistability is not found.

The electron–vibration coupling within the Anderson–Holstein

model has received much theoretical attention both in the non-

adiabatic [55-61] and in the adiabatic regime. In this latter case,

which is the focus of our review, it has been studied in a fully

out-of-equilibrium response regime with different theoretical

tools, ranging from rate equations [62-66] to non-equilibrium

Green’s function formalisms [48,55,67-69].

The adiabatic approach, which has been applied by some of the

present authors in other contexts [70], is based on the time-scale

separation between the slow dot vibrational degrees of freedom

and the fast electronic time scales involved in the thermal or

charge transport. In [68,71,72], the case of a single vibrational

mode within the Anderson–Holstein model has been studied

with the Feynman–Vernon action functional formalism in the

adiabatic regime. We stress that, within the adiabatic approach,

the coupling between electrons and vibrational degrees of free-

dom can be arbitrarily large. On the other hand, the approach

followed in [72] is valid for electronic and vibrational time

scales of the same order of magnitude, but it is fundamentally

correct only in the regime of weak electron–vibration and vibra-

tion–vibration coupling (negligible anharmonicity). The focus

of this review will be on non-perturbative electron–vibration

and vibration–vibration coupling regimes.

We point out that the adiabatic approach discussed in this

review is somewhat different from methods based on the Ehren-

fest dynamics [73,74]. Indeed, from the point of view of the

electronic system, the adiabatic approach and the Ehrenfest dy-

namics are at the same level of approximation: The electron dy-

namics is treated considering the vibrational degrees of free-

dom classical and infinitely slow. However, from the point of

view of the vibrational dynamics, the Ehrenfest approach is

poorer than adiabatic approach. Actually, the Ehrenfest ap-

proach is similar to a mean-field approximation where not the

correct force but the spatial derivative of the mean value of the

electronic Hamiltonian is derived. Moreover, in the Ehrenfest

approach, no dissipative and fluctuating terms are evaluated for

the vibrational dynamics. These terms in the adiabatic approach

are extremely important: They satisfy the fluctuation–dissipa-

tion relation at the equilibrium, and they include the semiclas-

sical corrections fundamental to treat the out-of-equilibrium

regime. Of course, the Ehrenfest dynamics can be combined in

a simpler way with ab initio calculations [75] of the electronic

and/or vibrational systems. But this is not the focus of our

review, which is based on model Hamiltonians for both elec-

tronic and vibrational degrees of freedom.

In the absence of an external periodic perturbation and in the

limit of small vibrational frequency with respect to electronic

hopping, a generalized Langevin equation for the displacement

coordinate of the vibrational mode can be derived. In [76], we

have shown that the same Langevin equation can be obtained if

one performs a semiclassical approximation on the model

Hamiltonian and carries out an adiabatic approximation directly

in the electronic Green’s function on the Keldysh contour. The

semiclassical approach naturally includes the effect of a noise

term that stems form the quantum charge fluctuations induced

by the fast time scales of the electronic system. The friction and

the noise strengths depend by construction on the displacement

of the oscillator from the equilibrium position. Our semiclas-

sical approximation, even if less general than the influence

functional approach, allows us to disentangle exactly the quan-

tum effects of the dynamics of the oscillator in the Langevin

equation and is valid for an arbitrary strength of electron–vibra-

tion coupling [76,77].

In this review, the adiabatic approach for the local vibrational

degrees of freedom in soft nanoscopic systems has been gener-

alized to the case where external time-dependent periodic

perturbations, such as the effects of a forcing antenna and

pumping terms between the leads and the nanoscopic system,

are present. In the absence of temporal perturbations, we have

also included the presence of phononic baths, which is impor-

tant when thermal transport through the nanosystem is

addressed. Even if the approach can be applied to multilevel

electronic systems with an arbitrary number of vibrational

degrees of freedom, in this review, we have mostly discussed

the results corresponding to the prototype system composed of a
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quantum dot or a molecule described by a single electronic level

coupled to a single vibrational mode.

Before introducing temporal perturbations, we have thoroughly

studied the range of validity of the approach, focusing first on

the case of zero bias voltage at any temperature, then on the

case of zero temperature at finite bias voltages. The thermo-

electric properties have then been analyzed within the linear

response regime focusing on the phonon thermal contribution

 to the figure of merit ZT at room temperature. Parameters

appropriate for junctions based on C60 molecules connected be-

tween different metallic leads have been considered for the

thermoelectric transport. We have finally generalized the treat-

ment of the heat transport to the case where also electron–elec-

tron interaction on the dot is present (within the Coulomb

blockade regime) and generalized the adiabatic approach to this

case.

Then, we have analyzed the properties of the single dot in the

presence of time-dependent periodic perturbations, and in par-

ticular of an external forcing antenna. We have included the

effect of the forcing antenna in our adiabatic scheme showing

that the resulting Langevin equation for the vibrational mode is

modified by a periodic forcing term. Moreover, the generalized

force term, the friction and the noise strengths become func-

tions that depend on the oscillator displacement and acquire an

explicit periodic dependence on time.

We have treated distinct systems in our unified approach. In

particular we have studied the electronic transport properties at

finite bias of a NEMS device consisting of a vibrating

suspended CNT actuated by an external antenna. In this setup,

we show that a single-parameter charge pumping is possible.

In particular, when the frequency of the antenna is close to that

of the oscillating nanotube, the amplification of the mechanical

response generates an intrinsic imbalance in the response of the

current within a single pumping cycle, giving a net non-zero

contribution. Interestingly, we have found theoretically that, in

the nonlinear regime, the pumping current has a non-zero

response also to harmonics higher than one and their behaviour

has been compared with the features of the first harmonic.

Finally, we have investigated the behaviour of a two-parameter

quantum dot device (Thouless pump) in the presence of an

internal vibrational degree of freedom. The characteristics of the

pumping current have been studied as a function of the elec-

tron–vibration coupling, temperature, and driving frequency.

We have assumed that both the frequency of the driving forces

and the intrinsic oscillation frequency of the quantum dot vibra-

tion are adiabatic. We have found theoretically that the pumping

current can be amplified by the internal vibration of the quan-

tum dot. As found above, this is possible only when the fre-

quency of the driving forces are close to resonance with the

vibration of the dot. We have shown that the amplification is

robust against temperature, leading to the prediction that, differ-

ent from expectation, slowly oscillating quantum dots could

have pumping effects measurable up to high temperatures.

The review is organized as follows. In section 1 the general

model is presented. In section 2 the adiabatic approach is dis-

cussed. In section 3, the range of validity of the adiabatic ap-

proach is analyzed and, in section 4, the method is applied to

the case of thermoelectric transport. In section 5, the results of

the adiabatic approach in the Coulomb blockade regime are in-

vestigated. In section 6, the effects of time dependent perturba-

tions are thoroughly studied.

Review
1 Model
In this section, we present a general Hamiltonian for a multi-

level quantum dot or molecule including the local coupling to

vibrational degrees of freedom and connected to two leads in

the presence of a finite bias voltage and temperature gradient.

Contrary to previous reviews on the subject [78], we include the

effect of time-dependent perturbations, such as an external

antenna and pumping terms between the nanosystem and the

leads.

The total Hamiltonian of the system is

(1)

where  is the electronic Hamiltonian,  describes

the vibrational degrees of freedom in both the leads and the dot,

and  describes the interaction between the electronic and

vibrational modes on the dot.

The electronic Hamiltonian  is given by

(2)

the different terms of which are introduced in the following.

The dot Hamiltonian is

(3)

where cm,σ ( ) is the standard electron annihilation

(creation) operator for electrons on the dot levels with spin σ =

↑, ↓, where the indices m,l can assume positive integer values
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with a maximum M indicating the total number of electronic

levels in the quantum dot. The matrix  is assumed to be

diagonal in spin space, while U represents the Coulomb repul-

sion between the electronic levels. We assume that only the di-

agonal part of the matrix  is non-zero and contains an

assigned time dependence coming from the effects induced by

an external antenna

where Vext is the amplitude of the external antenna potential,

ωext is the driving frequency, VG is the static gate potential, e is

the electron charge, and εm,σ are the bare energies of the quan-

tum dot levels. It is important to notice here that in this review

we will consider two possible ways in which the electromag-

netic field generated by an external antenna couples to the dot

degrees of freedom: One is described in Equation 3, where the

external field excites directly the electronic dot levels (see

section 6.2 and [79]); the second case will be introduced in the

Hamiltonian in Equation 6 and involves the coupling of the

field with the mechanical displacement of the dot (see section

6.1 and [77]).

The Hamiltonian of the leads is given by

(4)

where the operators  create (annihilate) electrons

with momentum k, spin σ, and energy  in the

left (α = L) or right (α = R) leads. The difference of the

electronic chemical potentials in the leads provides the

bias voltage Vbias applied to the junction: μL = μ + eVbias/2,

μR = μ − eVbias/2, with μ being the average chemical

potential. The left and right leads will be considered as thermo-

stats in equilibrium at the temperatures TL = T + ΔT/2 and TR =

T − ΔT/2, with T being the average temperature. Therefore, the

left and right electron leads are characterized by the free Fermi

distribution functions fL(ω) and fR(ω), respectively.

The coupling between the dot and the leads is described by

(5)

where the tunneling amplitude between the molecular dot and a

state k in the lead α has in general a time-dependent amplitude

. For the sake of simplicity, we will suppose that the den-

sity of states ρk,α for the leads is flat within the wide-band

approximation: , , with 

being periodic functions describing the strength of the pumping

external parameters. Therefore, the time-dependent full hybridi-

zation width matrix of the molecular orbitals is  =

 = , with the Planck con-

stant  and the tunneling rate . In this

review, we consider the generic asymmetric configuration:

, where bold letters indicate matrices.

The vibrational degrees of freedom in the system are described

by the Hamiltonian

(6)

where ms is the effective mass associated with the s-th vibra-

tional mode of the nanosystem,  is

the harmonic potential (with ks being the spring constants, and

 being the oscillator frequencies), Uext is the

force of the external antenna,  is the driving frequency and

 is the displacement field of the vibrational modes of the

quantum dot.

In Equation 6, the operators  create (annihilate)

phonons with momentum q and frequency ωq,α in the lead α.

The left and right phonon leads will be considered as thermo-

stats in equilibrium at the temperatures TL and TR, respectively,

which we assume to be the same as those of the electron leads.

In the following we will include also the presence of the phonon

bath in the leads when we derive the equations relevant for the

adiabatic approach. Their effect will be considered in section 4

where the thermoelectric properties of a molecular junction will

be analyzed. In Equation 6, the coupling between the displace-

ment  and a phonon q in the lead α is given by the elastic con-

stant Cq,α. In order to characterize this interaction, one intro-

duces the spectral density J(ω):

(7)

with M being the mass of the lead atoms and  the frequen-

cy-dependent memory-friction kernel of the oscillator [80]. In

the regime  for all the modes,  can be approxi-

mated as real and independent of frequency, providing the

damping rate . [80] If not specified, we consider the

symmetric configuration: γL = γR = γ/2.
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Figure 1: Scheme of the device studied in this work. The left lead (LL) and the right lead (RL) are kept at different chemical potentials μL =
μ + eVbias/2, μR = μ − eVbias/2, and different temperatures TL = T + ΔT/2, TR = T − ΔT/2. The pumping signals are applied using the gates ,
while the back gate (Gate) induces a shift of VG to the quantum dot energy levels  in the presence of a local Coulomb repulsion U and cou-
pling λs with N vibrational modes. The electronic channel in the leads is indicated by , while the phonon one by the energies .

In this review, we assume that the electronic and vibrational

degrees of freedom in the metallic leads are not interacting

[2,81], in the sense that the electron–phonon coupling active in

the leads gives rise to effects on the nanoscale which are negli-

gible when compared with those due to the interaction between

intra-dot or intra-molecular electronic and vibrational degrees

of freedom. Therefore, the electron–vibration coupling is

assumed effective only on the quantum dot. This coupling is

assumed to be linear in the vibrational displacements and

proportional to the molecule electron occupations

(8)

where s = (1,..,N) with N being the total number of vibrational

modes, l = (1,..,M),  is the displacement operator of the s

vibrational mode,  is the electronic occupation

operator, and λs,l is a matrix representing the electron–vibra-

tional coupling. A schematic representation of the device is

presented in Figure 1.

2 Adiabatic approach
In this review, we consider the electronic system coupled to

very slow vibrational modes and temporal perturbations:

, , , for

each s, α and all pairs of (m,n). In this limit, we can treat the

mechanical degrees of freedom as classical, acting as slow clas-

sical fields on the fast electronic dynamics. Therefore, the elec-

tronic dynamics is equivalent to a time-dependent multi-level

problem with energy matrix  → ,

where xs are now classical displacements.

We point out that an extensive presentation of the adiabatic

approximation for vibrational degrees of freedom in a quantum

dot has already been presented in [78], but here we extend that

approach to the case where a thermal gradient, phonon leads

degrees of freedom, and time-dependent perturbations, such as

external antenna and pumping terms, are present. The Langevin

equation for the vibrational modes of the quantum dot (or mole-

cule), including all the mentioned extensions, can be cast as

follows

(9)

where the generalized force

(10)

contains the contribution  due to the effect of all electronic

degrees of freedom, and  is the force due to the cou-

pling to the α lead phonon degrees of freedom. It can be easily

shown that, in the regime investigated in this review, in Equa-

tion 10, one has , with γα = γ/2.

The electronic force, Fel(t) = tr[iλsG
<(t,t′)] (the trace “tr” is

taken over the dot levels), is defined in terms of the lesser dot

matrix Green’s function G<(t,t′), while the fluctuating forces

ξs(t) will be discussed later in this section.

For the sake of simplicity, we do not include explicitly the

effect of the Coulomb repulsion on the quantum dot Hamilto-

nian in deriving equations encoding the adiabatic approxima-

tion. In section 5, we will show that, in the particular case of a

single-level quantum dot with large repulsion U, the adiabatic

approach works exactly as in the non-interacting case with the

“caveat” of treating each Green’s function pole as a non-inter-

acting level [82].
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Our notation is such that G denotes full Green’s functions,

while  denotes the strictly adiabatic (or frozen) Green’s func-

tions that are evaluated for a fixed value of X ≡ xs(t) and t.

Starting from the Dyson equation

(11)

where  is the retarded Green’s function in the absence

of coupling to the leads, it is straightforward to show that the

adiabatic expansion (to first order in , 

and ) for the retarded Green’s function GR is given by

(12)

Above,  is the strictly adiabatic (frozen) retarded

Green’s function including the coupling with the leads

(13)

where  represents the matrix  and

 is the total self-energy due to the cou-

pling between the dot and the leads. The self-energies 

are defined as

(14)

Notice that the imaginary part of  is proportional to

. Employing the above equations, for the lesser

Green’s function G< one gets

(15)

with .

The electron-vibration-induced forces in the zero-th order adia-

batic limit, , are given by

(16)

The leading-order correction to the lesser Green’s function G<

gives two contributions to the electron-vibration induced forces:

a term proportional to the vibrational velocity and a pumping

velocity term acting as a driving force

(17)

The first term determines the tensor θ (obtained after integra-

tion by parts)

(18)

while the second term determines the vector B

(19)

The tensor θ can be split into symmetric and anti-symmetric

contributions [83], θ = θsym + θa, which define a dissipative

term θsym and an orbital, effective magnetic field θa in the space

of the vibrational modes. The latter interpretation is based on

the fact that the corresponding force takes a Lorentz-like form.

Using  and noting that  =

 = 0, we obtain the explicit expressions

(20)

(21)

Here we have introduced the notation  =

 for symmetric and anti-symmetric parts

of an arbitrary matrix C.

We can now discuss the stochastic forces ξs(t) in Equation 9 in

the adiabatic approximation. In the presence of coupling with

the phonon leads, the fluctuating forces are composed of three

independent terms
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(22)

where  represents quantum-electronic fluctuations while

 is due to the α phonon lead. The noise term 

expresses the effects of the quantum-electronic density fluctua-

tions  on the oscillator motion. By analogy with

fluid dynamics, it can be viewed as originating from the ther-

mal and non-equilibrium fluctuations of the electronic “fluid” in

which the vibrating quantum dot can be considered as

immersed. In the absence of electron–electron interactions, the

Wick theorem allows one to write the noise correlator as

(23)

where G>(t,t′) is the greater Green’s function with matrix ele-

ments

(24)

At this stage, it represents a colored-noise term in the Langevin

equations (Equation 9) that depends non-locally on the dynam-

ics of the vibrational modes and it is complicated to treat

numerically. In the adiabatic approximation, one first substi-

tutes the full Green’s function G by the adiabatic zero-order

Green’s function  and then observes that the electronic fluctu-

ations act on short time scales only. For this reason the total

forces ξs(t) are locally correlated in time and one has to only

retain the low-frequency limit of their stochastic variance. One

thus obtains a multiplicative white-noise term

(25)

where

(26)

The fluctuating forces coming from the fluctuations of the

phonon leads  have the following property

Combining the three terms, one gets the total fluctuating forces

ξs(t) such that

(27)

where the effective position-dependent noise term 

is

(28)

Once the forces in Equation 16 and Equation 17 and the noise

terms in Equation 25 are calculated, Equation 9 represents a set

of nonlinear Langevin equations in the unknown dynamics xs(t),

which are explicitly dependent on time. Even for the simple

case where only one vibrational degree of freedom is present,

the stochastic differential equation should be solved numeric-

ally. In [76], the present authors have applied a Runge–Kutta

algorithm adapted to the stochastic nature of the equation.

When an explicit time-dependence is present, such as in the

case where the charge pumping is studied [79,84], the periodic

nature of the temporal perturbations allows one to extend the

algorithm straightforwardly. Indeed, by sampling the occur-

rences of X,  in the phase space at times t separated by the

characteristic period of the perturbations, one can calculate the

oscillator distribution functions P(X,V,t) (where ) during

a single period, and, therefore, all the properties of the vibra-

tional modes. Using this function, one can determine the time

evolution of an electronic or vibrational observable O(X,V,t) as:

(29)

The electronic observables, such as charge and heat currents,

can be evaluated exploiting the slowness of the vibrational

degrees of freedom.

2.1 Electronic charge and heat currents
In this subsection, we discuss the adiabatic expansion for the

current passing through the quantum dot. An expression valid in

the absence of time-dependent perturbations it has already been

provided in [83], but here we re-present that derivation in the

presence of time-dependent perturbations. The definition of the

current through lead α is given by

(30)

where . Using the definitions of self-energy

and Green’s functions [81] the current can be expressed in

terms of the Green’s function of the dot and the self-energy of

the dot–leads coupling
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(31)

We can now apply the adiabatic expansion to the above expres-

sion employing the formulas for the Green’s functions GR

(Equation 12) and G< (Equation 15)

(32)

We split the current into an adiabatic contribution I0, two terms

proportional to the velocity  and the time derivative of the

pumping parameters uα(t) (describing the lead–dot self-energy

Σ(t): . The zero-th order adiabatic contribu-

tion is given by

(33)

where we have collected the strictly adiabatic terms from Equa-

tion 12 and Equation 15. Now we turn to the first-order correc-

tions, restricting our considerations to the wide-band limit. The

contribution to the current (Equation 32), which is linear in the

velocity of the vibrational modes, reads (after integration by

parts)

(34)

while the term  coming from the pumping perturbations is

(35)

Analogously to Equation 31, the electronic energy current

passing through the dot from the lead α = R,L is defined as

. In the case where the chemical potentials of

the leads are not time-dependent, one can easily show that all

the expressions derived for the electronic current Iα and its adia-

batic expansion are formally identical to those valid for the

energy current , with the only “caveat” that one has to

substitute the self-energies  with the functions 

defined as

(36)

In analogy with the terms in the deterministic and fluctuating

forces of the Langevin equations (Equation 9), the total energy

current J involving the oscillator is composed of three terms

[72]:

(37)

where  originates from the electron level and depends on

the electron–vibration coupling. It can be also expressed as

(38)

while  comes from the α phonon lead

(39)

where . These quantities have to be evaluated along the

dynamics. Once the stationary state is reached, the energy

conservation requires that the total energy current J vanishes.

In the next section we discuss the validity of the adiabatic

approximation, that is based on the separation between the slow

vibrational and fast electronic timescales.

3 Range of validity of adiabatic approach:
single-level molecule
In this section, we investigate the range of validity of the adia-

batic approach together with the semiclassical treatment of the

vibrational degrees of freedom. To this aim, we consider, as in

the rest of the paper, the simple case where the nanoscopic

system is represented by a molecule modeled as a single elec-

tronic level (M = 1) locally interacting with a single vibrational

mode (N = 1, see Figure 1). This means that the focus is on a

molecular (or quantum dot) electronic orbital that is suffi-

ciently separated in energy from other orbitals. We have in

mind, for instance, the C60 molecule when the LUMO energy

differs from the HOMO energy for more than 1 eV. Even when

the degeneracy of the LUMO is removed by the contact with

Ag leads, the splitting gives rise to levels that are separated by
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an energy of the order of 0.5 eV [85]. Furthermore, the energy

of the molecular orbital can be tuned by varying the gate

voltage VG and unless otherwise stated we do not consider time-

dependent perturbations.

We will focus on the center-of-mass mode as the only relevant

vibrational mode for the molecule, which is expected to have

the lowest frequency for large molecules. In fact, in C60 mole-

cules, experimental results provide compelling evidence for a

coupling between electron dynamics and the center-of-mass

motion where  has been estimated to be of the order of

5 meV [9]. Furthermore, as reported in experimental measure-

ments [9], the effects of the electron–vibration interaction are

not negligible in junctions with C60 molecules. Within these

assumptions, in Equation 1, the interaction Hamiltonian 

reduces to the same interaction term of the single impurity

Anderson–Holstein model [2] and the dot–oscillator coupling

sets the characteristic polaron energy and length scales

(40)

Equation 9 reduces in this case to a single Langevin equation

[76,86]. Since the main objective of this section is to discuss the

range of validity of the adiabatic approach for the electronic

properties, we hereby report the expression for the displace-

ment-dependent electronic spectral function A(ω,x)

(41)

with . Within the adiabatic approach,

the actual electronic spectral function A(ω) is

(42)

where P(x) is the reduced position-distribution function of the

oscillator in the absence of time-dependent forces. Another im-

portant quantity is the average kinetic energy of the oscillator

(43)

which is calculated through the reduced velocity distribution

function P(v) of the oscillator in the absence of time-dependent

forces.

3.1 Equilibrium conditions at T ≠ 0
In this subsection, we consider equilibrium conditions with both

leads at temperature T. When the gate voltage is tuned in such a

way that the electronic level of the dot is far from the bias

window ( ), a very low electronic density is on the dot.

We emphasize that, in this limit, the electronic Green’s func-

tions of the model can be exactly calculated if, as assumed in

this revew, the wide band limit is used for the leads [87,88]. We

compare an approach that takes fully into account the quantum

nature of the oscillator, and it is valid also at very low tempera-

tures (T ≤ ω0), with the adiabatic approach. We stress that,

within the off-resonant regime, the oscillator dynamics is very

weakly perturbed by the effects of the electron–vibration cou-

pling, but it remains sensitive to the coupling to phonon leads.

The spectral function calculated within the exact approach in

the regime of low level occupation has been compared with that

obtained within the adiabatic approach. We focus on the elec-

tronic spectral function A(ω) since in the linear response regime

(low bias voltage, absence of time perturbations) all the trans-

port coefficients can be expressed as integrals of A(ω) (see next

subsections and the remaining sections of the present paper). It

is clear that a good agreement between the adiabatic approach

and the exact approach in the low density regime can be used as

a reliable test of the validity of the adiabatic scheme. The com-

parison between the two approaches represents a new and inter-

esting part of the review and it will allow us to assess that quan-

tities calculated within the adiabatic approach are very reliable

even in the regime of higher density.

In the upper panel of Figure 2, we consider the spectral func-

tions at T = 1.25 /kB, which is close to room temperature for

 ≈ 20 meV. Moreover, we consider the off-resonant regime

VG = 5 . The spectral weight up to 0 (position of the chemi-

cal potential) indicates that the level occupation n is small (less

than 0.1). The agreement between the spectral functions calcu-

lated within the two approaches is excellent. The peak posi-

tions for both approaches are at ω = VG and the widths of the

curves match perfectly. The role of γ is not relevant, since, in

any case, it is much smaller than Γ. Obviously, with decreasing

the temperature, the two approaches tend to differ. In the lower

panel of Figure 2, we have considered a very low temperature

(T = 0.05 /kB) where a worse agreement is expected. We

point out that the agreement between the two approaches is still

good. Actually, the exact approach at low molecule occupation

slightly favors a small transfer of spectral weight at high fre-

quency. In any case, the strong similarities in the spectral func-

tion will point out to analogous behaviours of electron transport

properties within the two approaches. In conclusion, we can say

that the semiclassical adiabatic approach correctly describes the

system down to quite low temperatures.



Beilstein J. Nanotechnol. 2016, 7, 439–464.

449

Figure 2: Analysis of the validity of the adiabatic approximation. Elec-
tronic spectral function as a function of the frequency (in units of Γ) for
adiabatic approach (solid line), fully quantum low-density approach
(dashed line for γ = 0, dash-dotted line for γ = 0.15), and free case
(dotted line) at temperature T = 1.25 /kB (upper panel) and tempera-
ture T = 0.05 /kB (lower panel). In all the plots, EP = 0.5 , VG =
5 , and ω0 = 0.25Γ.

In the linear response regime, without time perturbations, the

spectral function allows one to derive all the Green’s functions

using the fluctuation–dissipation theorem. Clearly, out of equi-

librium (finite bias and/or time perturbations) not only the

imaginary part of the retarded Green’s function is important,

but, as discussed in the previous section, also other Green’s

functions are relevant. In this review, we will analyze the

effects of non-equilibrium Green’s functions directly on the out-

of-equilibrium response functions (for example, currents and

pumping charges). It is well known that, in the out-of-equilib-

rium regime, the self-consistent adiabatic approach becomes

progressively more exact in comparison with the equilibrium

and linear response regime. For example, in the next subsection,

we will show that the bias voltage introduces an additional

effective temperature for the vibrational degrees of freedom,

therefore the semiclassical approach represents more and more

the physical situation.

3.2 Non-equilibrium conditions at T = 0
In this subsection, we consider γ = 0 (no coupling to the lead-

phonon degrees of freedom) and no temperature gradient be-

tween the electronic leads, which are considered to be at zero

temperature TL = TR = T = 0. A careful analysis of this regime

has been provided by the present authors in [76]. Here, we

Figure 3: Analysis of the validity of the adiabatic approximation. Panel
(a): Dimensionless position distribution probability for eVbias/2EP = 0.1.
Inset of panel (a): Solution of the Langevin Equation (Equation 27) for
the same values of parameters as in the main plot. Panel (b): Average
kinetic energy  as function of the bias voltage for different inter-
action strengths EP. Adapted from [76].

review the main results of that analysis for the sake of

completeness. The first step of that analysis consists in obtain-

ing the displacement distribution probability, P(x), associated to

the dynamics of the nanosystem vibrational mode. It results

from the solution of a single Langevin equation with no forcing

term, see Equation 9 and [76]. In Figure 3a, P(x) is shown in the

strong-coupling regime  at equilibrium for zero tem-

perature. We highlight here that the bi-modality is provided by

the interaction between the electronic and vibrational degrees of

freedom which modifies the generalized force in Equation 10.

The actual dynamics of the position of the oscillator x(t) is

plotted in the inset of the same panel in Figure 3 and shows the

“jumps” between the two symmetric potential wells. The kinetic

energy of the oscillator provides a useful quantity for checking

the validity of the adiabatic approximation. In Figure 3b, it is

plotted as a function of the bias voltage applied to the junction.

As one increases the electron–oscillator interaction, one can see

that a non-monotonic region at intermediate bias voltages

appears. Interestingly, for small bias voltages, all the curves

show a linear behaviour (not shown), meaning that in this

regime the non-equilibrium electronic bath provides an

effective temperature proportional to the bias eVbias. As already

stated in [76], by using the kinetic energy of the oscillator one

can build a phase diagram of the model defining the range of

validity of the adiabatic approximation. By comparing the aver-
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Figure 4: Phase diagrams expressing the validity of the adiabatic
approximation. Panel (a): Phase diagram at fixed adiabatic ratio ω0/Γ =
0.05. The dashed (black) line indicates the QR–CAR crossover for VG
= 0 and VG = 1. The dotted and dashed dotted lines indicate the
CAR–CNAR crossover for VG = 0 and VG = 1, respectively. Panel (b):
Phase diagram at fixed gate voltage VG = 0 (asymmetric static poten-
tial) for different adiabatic ratios ω0/Γ = 0.01, 0.05, 0.1 and 0.25.
Adapted from [76].

age kinetic energy with the vibrational energy  and the

characteristic electronic energy , one can define a quantum

region (QR) ( ), a classical adiabatic region

(CAR) ( ), and finally a classical non-adia-

batic region in the phase diagram (CNAR) ( ). The

analysis is reported in Figure 4. We expect that the adiabatic

approximation is reliable in the intermediate classical adiabatic

region that occupies the majority of the area shown in

Figure 4a, where the phase diagram in the plane (VG, eVbias) is

shown. The quantum region is confined in a striped area on the

left of the plot corresponding to small values of the bias

voltages, as physically expected. The boundary between the

CAR and the CNAR regions is slightly dependent on the gate

voltage, showing that in the regime of low dot-density occupa-

tion the validity of the approach is stronger. The plot reported in

Figure 4b shows the phase diagram in the same plane as in

panel (a) for different values of the vibrational energy ,

showing that the boundary QR–CAR moves to larger values of

the bias voltage while the CAR–CNAR boundary is almost

unaffected. As a consistency check of the adopted approach we

observe that, if one increases the characteristic energy of the

vibrational mode, the area of validity of the semiclassical adia-

batic approximation shrinks.

4 Charge and heat transport
In this section we analyze the electronic transport properties of

our quantum dot (or molecule) in the regime of validity of the

adiabatic approach. In particular, we will focus on electronic

properties as electrical and thermal conductivities resulting

from the average over the dynamical fluctuations of the oscil-

lator motion. To this aim, we report the zero-th order adiabatic

expression for the electronic current I(0) (averaged over the dis-

tribution probability of the oscillator P(x,v))

(44)

and the conductance G

(45)

where A(ω) is the spectral function defined in Equation 42, with

 the free Fermi distribution cor-

responding to the chemical potential μ and the temperature T,

and β = 1/kBT.

We can now discuss briefly one of the main results for the cur-

rent–voltage characteristic given by the adiabatic approach at

zero temperature. In Figure 5, the I–Vbias characteristic for VG =

EP = 2 is shown comparing the adiabatic approach adopted in

this paper (squares), with the limit where the mass of the oscil-

lator is considered as infinitely large (static approximation) and

no dynamics is calculated (dashed line). Furthermore, we

report, as a full line (green on line), data provided by an inde-

pendent calculation in [69], which agree completely with our

calculations. As one can see, the results obtained in the adia-

batic limit completely wash out the hysteresis effects and

bi-stability that is obtained in the static approximation, showing

that the inclusion of the slow dynamics of the oscillator struc-

turally modifies the I–Vbias curve. A similar scenario is ob-

tained for the electronic conductance (not shown in Figure 5).

In this case, the dynamical correction due to the adiabatic ap-

proach gives a substantial broadening of the resonance peak that

is shifted by the polaronic effect [76].

We devote the rest of this section to the discussion of the ther-

moelectrical properties of a molecular junction in the linear-

response regime. Our focus will be manly on the role of the

electron–vibration coupling. To this aim, we introduce a tem-

perature gradient between the leads, and focus on the linear-

response regime around the average chemical potential μ and

the temperature T (ΔT → 0, Vbias → 0). We also introduce the

possibility of the interaction between the relevant vibrational
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Figure 5: Electronic transport properties within the range of validity of
the adiabatic approximation. Current (eΓ units) voltage (eVbias in units
of 2EP) characteristic of the device. Solid (green) curve is drawn from
[69], squares indicate the results of the semiclassical adiabatic ap-
proach adopted in this paper and dashed (blue) line indicates the
I–Vbias in the infinite mass static approximation. Adapted from [76].

mode of the molecule and the phonons in the leads. Indeed, if

this mode is elastically coupled with a neighbour atom of the

leads by a spring with constant k′, one gets for the dissipative

contribution of the leads in the dynamics of the mode

. As in the previous section, we consider

parameters appropriate for molecular junctions based on C60

molecules. Taking the mass m of the C60 molecule and the

atomic mass M of Ag, Au, and Pt (typical metallic leads),  is

of the order of 7.68, 7.74, and 2.98 meV, respectively. The

smallest value of coupling to phonon baths is due to the largest

Debye frequency ωD of platinum. In any case,  3–8 meV

for these metals, therefore ω0 is of the same order of γ.

Within the general approach discussed in the previous sections,

we can calculate all the observable quantities relevant for

studying the thermoelectric properties. For example, the

Seebeck coefficient is given by S = −GS/G, where the charge

conductance G has been defined in Equation 45, and

(46)

with f(ω) the free Fermi distribution. Then, we will calculate the

electron thermal conductance , with

(47)

In order to estimate the thermal conductance, one can deter-

mine the vibrational energy currents directly from the deriva-

tive of the oscillator energy [89]. The oscillator is directly in

contact with phonon leads, but only indirectly with electron

leads due to the coupling between the oscillator and the elec-

tronic level on the molecule (see Figure 1). The phonon ther-

mal conductance  can be calculated within the linear-

response regime [90,91] around the temperature T as

(48)

The total thermal conductance is then given by the sum GK of

the electron and phonon thermal conductance:

(49)

Therefore, one can easily evaluate the total figure of merit ZT

(valid in the linear response regime):

(50)

When the coupling of the center of mass mode to the metallic

leads can be neglected (γ = 0), , so that ZT = ZTel,

which characterizes the electronic thermoelectric properties.

When γ is different from zero, the contribution of the thermal

phonon conductance  is not negligible in the determination

of the figure of merit ZT. Not only the electronic transport func-

tions but, as discussed below, also  are sensitive to the

effects of the electron–vibration coupling and tend to reduce the

value of ZT.

In this section, we assume  20 meV as energy unit. As a

consequence, Γ will be the frequency unit. We will also assume

ω0 = 0.25Γ and vary γ from 0.15Γ to 0.40Γ (simulating, as dis-

cussed above, the effects of different metallic leads). We will

measure times in units of 1/Γ, temperatures in units of /kB

(ambient temperature  in these units). Finally, we fix

the average chemical potential at μ = 0. Our analysis will

mainly focus on the transmission of phonon energy and on the

variation of the electronic level with respect to the chemical

potential of the leads. These variations can be controlled, in our

model, changing the gate potential VG from VG = 0, when the

electronic level coincides with the lead chemical potential

(resonant case), to a very different value  (off-resonant

case).

In order to investigate heat exchange with the molecule, the

leads phonon spectrum is assumed to be acoustic. For silver

(atomic number Z = 47), gold (Z = 79), and platinum (Z = 78)
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leads considered in experimental measurements [92], the Debye

frequency is such that  is of the order of 18.5, 15.1, and

20.7 meV, respectively [93]. Therefore,  15–20 meV for

these leads. In any case, as for any large molecule, the center of

mass mode is such that .

In Figure 6, we focus on the phonon thermal conductance .

At moderate values of the coupling between the molecular

oscillator and the lead phonon bath ( ), we find that,

for weak electron–vibration coupling EP (Figure 6a) or in the

off-resonant regime  (Figure 6b),  reaches its

lowest value that is close to 0.04kBΓ  16 pW/K. One obtains

this numerical value when electron–vibration effects are

neglected (in the off-resonant regime, the electron level density

is so low that the effective electron–vibration coupling is negli-

gible). This value corresponds only to the contribution given by

the phonon leads. We point out that this asymptotic value of

 is always larger than the values of  corresponding to

EP = 0. Therefore,  plays a primary role in determining the

total thermal conductance GK for weak electron–vibration cou-

pling. If one considers larger values of γ (for example γ 

0.4Γ),  plays an even more important role in GK.

Figure 6: Phonon thermal conductance in the linear response regime,
in the range of validity of the adiabatic approximation. Panel (a):
Phonon thermal conductance  (in units of kBΓ) as a function of
electron–vibration coupling EP (in units of ) for different values of
gate voltage VG (in units of ). Panel (b): Phonon thermal conduct-
ance  (in units of kBΓ) as a function of the gate voltage VG (in units
of ) for different values of electron–vibration coupling EP (in units of

). In all the panels, the oscillator damping rate γ = 0.15Γ, T =
1.25 /kB (close to room temperature), and ω0 = 0.25Γ. Adapted from
[86].

In Figure 6b, we show that  always gets larger with increas-

ing the electron–vibration coupling EP. Actually, the

electron–oscillator coupling gives rise to an additional damping

rate on the vibrational dynamics whose effect is to enhance the

thermal conductivity . In a certain sense, due to the elec-

tron–vibration coupling, the molecular vibrational degrees of

freedom are more effectively coupled to the lead phonons

favouring the heat exchange between them. In the quasi-

resonant regime (small VG), the increase of  can be also

favoured by the softening of oscillator frequency [77] due to the

enhanced effects of electron–vibration coupling.

As discussed above, the effects of the electron–vibration cou-

pling on the oscillator dynamics depends not only on the

strength of the coupling EP, but also on the occupation of the

electronic level. Actually, the behaviour of  is strongly de-

pendent on the value of gate voltage VG. As shown in Figure 6a,

in the quasi-resonant case (VG = 2), the increase of  as a

function of the electron–vibration coupling EP is marked. Actu-

ally, for EP = 2, the value of  is doubled. On the other hand,

in the off-resonant regime of low-level occupation, the dynam-

ics of the oscillator is poorly influenced by the electron–vibra-

tion effects, even if EP is not small. Finally, in Figure 6b, we

have analyzed the behaviour of  as a function of the gate

voltage VG for different values of EP. As expected,  shows

the largest deviations from the asymptotic value in the quasi-

resonant case. We point out that the peak value is practically

coincident with the value of EP, therefore,  is strongly sens-

itive to the renormalizations of the electron level induced by the

electron–vibration coupling. Indeed, the role of the phonon ther-

mal conductance  is important in inducing a suppression of

ZT, which will be discussed in the next section.

5 Coulomb-blockade regime
In molecular junctions and quantum dots, the strong Coulomb

repulsion usually reduces the electronic charge fluctuations and

suppresses the double occupation of the electronic levels. These

phenomena are known as Coulomb-blockade effects. In order to

include this effect in the adiabatic approach discussed in the

previous sections, we generalize it to the case in which the elec-

tronic level can be double occupied and a strong finite local

Coulomb repulsion U is added together with the electron–vibra-

tion interaction.

The starting point is the observation that, in the absence of elec-

tron–oscillator interaction, and in the limit where the coupling

of the dot to the leads is small  (first correction in

 upon the atomic limit, see section 12.11 of [81]), the

single-particle electronic spectral function on the dot is charac-

terized by two spectral peaks separated by an energy interval

equal to U. The peak at  −U describes the single occupied

electronic level, while the peak at  0 the doubly occupied

one.

In the previous sections, we have seen that, one of the main

effects of an adiabatic oscillator on the spectral peak at finite
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temperature is to give an extra broadening and a shift propor-

tional to the oscillator–oscillator coupling energy EP. We there-

fore expect that, in the presence of an adiabatic oscillator

 ≤ kBT one can perturb each spectral peak of

the quantum dot independently, obtaining (see details in [82]) at

the zero-th order of the adiabatic approach

(51)

where ρ(x) is the electronic-level density per spin. In our

computational scheme, ρ(x) should be self-consistently calcu-

lated for a fixed displacement x of the oscillator through the

following integral

with the lesser Green’s function G<(ω,x) = (i/2)[fL(ω) +

fR(ω)]A(ω,x). The above approximation is valid if the

electron–oscillator interaction is not too large, such that

 and the peaks of the spectral function can be still

resolved [82].

This section is intended to report a summary of the results

presented in [82]. In this work, it has been shown that, in order

to study the heat transport through a quantum dot junction at

finite U, the above approximation for the electronic Green’s

function is a reliable starting point for the adiabatic approach.

The effect of the phonon leads has also been included in the

adiabatic expansion and it has been shown that the oscillator dy-

namics is described by a Langevin equation with the same

structure of that derived in section 2. Before discussing the nu-

merical results, it is useful to analyze the properties of the elec-

tron–oscillator damping rate θ′(x) = θ(x)/m, with θ(x) defined in

Equation 18 (explicitly calculated in [82]) and appearing expli-

citly in the Langevin equation of the oscillator. The amplitude

of the peaks of θ′(x), although increasing as a function of the

electron–oscillator coupling EP, is always smaller than the

damping contribution (the realistic value γ = 0.15 is assumed in

the second part of this section) coming from the coupling with

the phononic leads. Therefore, regardless of its shape, which

also depends on the dot occupation and obviously on the

Coulomb repulsion U, θ(x) constitutes a small perturbation of

the spatially constant damping rate induced by the coupling to

the phononic leads.

In the following, unless otherwise stated, we consider a

Coulomb repulsion equal to U = 20 (being the largest energy

scale in the problem) and a value T = 1.25 mimicking a regime

close to room-temperature conditions. In order to better distin-

guish thermal electronic effects from those related to the direct

link between the vibrational molecular modes and the lead

phonon bath, we first discuss briefly the thermoelectric elec-

tronic properties when γ = 0. In Figure 7a,b and in Figure 8, we

study electronic properties of the quantum dot junction as a

function of the electron–vibration coupling EP and the gate

voltage VG. The dashed-dotted-dotted (blue) line indicate results

obtained for U = 0 and no electron–oscillator coupling EP = 0.

In Figure 7c the magenta dashed-dotted-dotted line indicates

 for EP = 1.0 and U = 0.0.

Figure 7: Thermal transport properties in the linear response regime,
in the range of validity of the adiabatic approximation and including the
electron–electron interaction. Panel (a): Electron thermal conductance

 in units of 2kBΓ as a function of the gate voltage VG (in units of )
for different values of electron–vibration coupling EP (in units of ).
Panel (b): Same as in panel (a) for the electron conductance G in units
of 2e2/h. Panel (c): Phonon thermal conductance  (in units of kBΓ)
with the oscillator damping rate γ = 0.15Γ. Adapted and reproduced
with permission from [82], copyright 2015 IOP Publishing.

We start discussing the main characteristics of the electronic

conductance G (Figure 7b) in linear response. Notice that, the

height of the peak at VG  0 of the free case is much higher

than the peak at non-zero electron–oscillator coupling. This

effect is expected since the electron–electron interaction usually

suppresses the electronic conduction. The height of the second

peak at VG  −20 has the same height of the first peak and can

be estimated to be of the order of 10−1e2/h (e2/h is about

3.87 × 10−5 S). Away from the main peaks, G has values close

to the experimental data estimation for a C60 junction [92]. The

double peak shape of the G-vs-VG curve follows closely the be-

haviour of the A(ω,x). Finally, observe that the main effects of
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Figure 8: Thermal transport properties in the linear response regime,
within the range of validity of the adiabatic approximation and includ-
ing the electron–electron interaction. Panel (a): Seebeck coefficient S
in units of kB/e for different values of electron–vibration coupling EP (in
units of ). Panel (b): Dimensionless thermoelectric figure of merit
ZTel for the electronic system only. Panel (c) shows the total thermo-
electric figure of merit. Adapted and reproduced with permission from
[82], copyright 2015 IOP Publishing.

the electron–oscillator interaction are a reduction of the

amplitude of the peaks, an increase of their broadening, and a

shift their position towards negative energy.

We now investigate the properties of the Seebeck coefficient S

of the junction in Figure 8a. Notice that S has a peculiar oscil-

latory behaviour as a function of VG, with positive peaks and

negative dips. The height of the peaks (same as that of the dips

in absolute value) is about 2kB/e (kB/e is about 86 μeV/K).

Notice that the Seebeck coefficient S is negligible around the

position where the electronic conductance exhibits the main

peaks, that is at VG  0 and VG  −20. This property is a result

of the strong electron–electron interaction U [94]. Interestingly,

for large positive values of VG, S is small and negative (n-type

behaviour). In particular, for VG = 20, S can be estimated to be

−0.45kB/e  −38.5 μV/K, close in magnitude of the experimen-

tal data provided for a C60 junction in [92].

Another important property to mention in the comparison of S

and G is that, away from the points VG  −20 and VG  0,

while G reduces its amplitude, S increases its amplitude in abso-

lute value. Moreover, even in this case, the main effect of the

electron–oscillator interaction is to reduce the amplitude of the

response function, for all the values of VG investigated. The

shift of the peaks of G and of the zeroes of S is governed by EP

(n = 0.5 for VG = EP). We point out that, at fixed gate voltage,

while the conductance G (Figure 7b) shows a variation of less

than 10%, the Seebeck coefficient shows a larger sensitivity

(between 10% and 20%) to the change of the coupling EP (see

Figure 8a). This occurs for energies close to the minimum and

the maximum. For larger values of VG, there is an inversion in

the behaviour of S with increasing the coupling EP.

In Figure 7a, we also study the electronic thermal conductance

 as a function of VG. The principal characteristic to mention

is that, by increasing the electron–oscillator coupling EP, the

height of the two peaks (again, similarly to the conductance G,

notice the two-peak structure [94] of ) at VG  0 and VG 

−20 increases. This is due to the opening of extra channels of

conduction due the larger broadening of the spectral peaks.

Indeed, for EP = 1,  takes values of 0.05kBΓ  20 pW/K,

which are close to those estimated experimentally in hydro-

carbon molecules (50 pW/K) [95]. Notice that the height of the

peaks (0.01kBΓ where kBΓ is about 4.198 × 10−10 W/K for

 20 meV) are smaller than the thermal conductance quan-

tum g0(T) =  at room temperature T = 1.25

300 K (g0(T)  9.456 × 10−13 (W/K2)T) [96].

It is useful to observe the similarities between the  shown in

Figure 7a and the phonon thermal conductance  reported in

Figure 7c. Indeed, they share a double peak shape and the prop-

erty of increasing their amplitude with EP. Notice that the

phonon thermal conductance  in Figure 7 has been ob-

tained using γ = 0.15Γ and assumes in this case an amplitude

comparable with . The amplitude of  increases as a

function of γ so a larger value of this quantity would imply a

larger contribution to the total thermal conductance GK.

Overall, at fixed gate voltage away from the peaks at VG  0

and VG  −20,  has an amplitude larger than .

The results described above concerning the electronic conduct-

ance G, Seebeck coefficient S, and thermal conductance  all

combine in giving a pure electronic figure of merit ZTel. This

latter quantity has been shown in Figure 8b. Notice the four-

peak structure with amplitudes larger than 2. The dashed-

dotted-dotted blue curve shows the results for U = 0, confirming

that the effect of the electron–electron interaction is to reduce

the amplitude and shift the peaks of the figure of merit, even

neglecting the effect of the phononic leads. Increasing the elec-

tron–oscillator coupling EP, the behaviour of G, S and 

cooperates toward a further reduction of the height of the figure

of merit peaks, which can assume a common average height

smaller than 2. Observe finally that the position of the peaks in

ZTel roughly coincides with the position of the peaks and dips

of the Seebeck coefficient.

We can now study the behaviour of the thermal properties of

the junction when also a coupling γ different from zero of the
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vibrational mode with the phononic leads is present. We begin

discussing the phonon thermal conductance  which has

been already briefly described above in comparison with the

electronic contribution . As observed early in this section,

the  behaviour is strongly linked to the total damping rate

of the oscillator. In the case where γ = 0.15Γ, the electron–oscil-

lator contribution to the damping θ′(x) is smaller than the contri-

bution of the phononic leads, so one expects that the behaviour

of  is mostly influenced by the electron–oscillator coupling

EP. Indeed, this is what is observed in Figure 7c. If EP is not too

large, the estimated height of peaks (as always at VG  0 and

VG  −20) of  roughly coincides with an estimation of the

same quantity in the absence of electron–electron and

electron–oscillator interaction given in [86]. Furthermore,

Figure 7c shows that the increase of the amplitude of 

strongly depends on the gate voltage, while, at EP = 1, the

height of the main peaks is 0.05kBΓ  20 pW/K, which is close

to the thermal conductance measured for molecules anchored to

gold [95,97]. Summarizing, in the presence of a realistic cou-

pling with the vibrational degrees of freedom of the leads, elec-

tron–electron interaction, and within the limits of validity of the

adiabatic approximation, the phonon thermal conductance

depends crucially on the rate of damping induced by the elec-

tron–oscillator coupling.

We finally explore the effect of the phonon thermal conduct-

ance on the total figure of merit ZT, which is plotted in

Figure 8c as a function of the gate voltage with increasing

values of the electron–oscillator coupling EP. Comparing with

the results obtained for the pure electronic ZTel, one can see that

the effect of  is to further reduce the amplitude of the figure

of merit. The height of the peaks of ZT is slightly above unity

for an intermediate coupling EP = 0.5, pointing to a reduction

by a factor of 2 when compared with those observed in ZTel. If

the electron–oscillator coupling is further increased, height of

the peaks of the ZT can reduce to values below unity. We can

therefore conclude this section observing that the combined

effect of a large electron–electron interaction strength, an inter-

action with an adiabatic oscillator, and the presence of vibra-

tional degrees of freedom in the leads, has the final result of

reducing the thermoelectric capabilities of a molecular dot

device. Nevertheless, it has been shown that for a large set of

the model parameters, the total figure of merit ZT is still signifi-

cant, pointing to possible future thermoelectric applications of

these devices.

6 Time-dependent perturbations
6.1 Suspended CNT with external antenna effects:
electronic transport
In this section we discuss the effect of the time-dependent per-

turbation induced by an external antenna on molecular devices.

Our work has been motivated by recent transport experiments

performed on suspended carbon nanotubes [11,12], where an

external temporal periodic perturbation given by a nearby

antenna actuates the flexural motion of the suspended nanotube.

A sketch of the device studied in this section is reported in

Figure 9. The main assumption is that the coupling between

charge and vibrational degrees of freedom is affecting directly

the mechanical displacement of the nanotube. In the general

scheme outlined in section 1, the driving considered in this

section can be described by (the semiclassical approximation is

assumed)

(52)

which means that in Equation 2, the dot  and the

 parts are assumed to be independent of time and

the driving is acting directly on the oscillator Hamiltonian in

Equation 6, where the coupling with the vibrational degrees of

freedom in the leads has also been neglected. Unless otherwise

stated, in this and the next sections, we neglect the effect of a

finite Coulomb repulsion U. We stress that in suspended car-

bon nanotubes devices, often a description in terms of a spin-

less electronic level is sufficient for capturing the main physics

since the distance between adjacent electronic levels of the dot

is assumed to be very large.

Figure 9: Sketch of the device investigated in section 6. A carbon
nanotube is suspended between two metal leads to which a bias
voltage VL = −VR = Vbias/2 is applied. The motion of the nanotube is
activated by an external antenna. The contact giving the gate potential
VG is also shown. In the case of a two-parameter charge pumping, one
has also a time-dependent modulation of the potential barriers be-
tween the leads and the nanotube, ΓL(t), and ΓR(t).

As thoroughly discussed by us [77,98], the regime of parame-

ters relevant for the experiments is very accurately described by

the adiabatic approximation for the vibrational degrees of free-

dom. Indeed, the vibrating nanotube is oscillating at a frequen-

cy in the megahertz range so that ω0/Γ  1, where Γ is the elec-

tronic tunneling rate. Also, a strong coupling between the elec-
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Figure 10: Electronic transport properties in the presence of an external periodic time-dependent perturbation. Panel (a) and panel (b): Normalized
current change (ΔI/I0) as a function of the external frequency ( ) for different antenna amplitudes. Panels (c) and (d) show the distribution P(x)
both out of mechanical resonance and at mechanical resonance for the larger value of antenna amplitude considered in panels (a) and (b). The short-
dashed line (magenta) represents current as function of position I(x). Adapted from [77].

tronic and vibrational degrees of freedom is realized in the ex-

periments (EP/  = 10), while for the other parameters one

has . We observe here that the

Langevin equation describing the dynamics of the CNT flex-

ural motion acquires a forcing term

(53)

where Uext and  represent the amplitude and the frequency

of the external antenna, respectively. In this section, the cou-

pling with the phonon leads is neglected (γ = 0). In Figure 10

and Figure 11, we report a summary of the main results ob-

tained by us in [77]. In this review, we intend to focus on the

particular case when one tunes the frequency of the external

antenna across the natural vibrational frequency of the oscil-

lating nanotube.

In Figure 10a,b, we report the electronic current change (ΔI/I0,

where ΔI = I − I0 and I0 is the current observed in the absence

of external antenna) as a function of the antenna frequency 

in two different regimes of the gate voltage applied on the nano-

tube. In panel (a), we show the case of low occupancy where a

small current is flowing through the CNT (the external gate

Figure 11: Interplay between the resonator frequency and the charge
density. Panel (a): Resonator frequency at resonance against effective
gate voltage (shifted of EP) for different bias voltages. Solid (blue) and
short-dashed (red) portions of each curve indicate resonance frequen-
cy values with positive and negative current change ΔI, respectively.
Panel (b): Electronic occupation at resonance frequency against
effective gate voltage (shifted of EP). Adapted from [77].
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voltage with  tunes the electronic level of the CNT

away from the bias window), while in panel (b) a high current

regime with VG = EP is shown. As already discussed by us in

[77], a characteristic peak (panel (a)) and dip (panel (b)) struc-

ture is observed in qualitative agreement with the experimental

results, including the particular shape of the curves reported

when one increases the amplitude of the antenna field Uext.

A characteristic triangular shape is obtained in complete agree-

ment with experimental results [11] accompanied by a shift in

the position of the resonance frequency with respect to small

amplitude regime. This nonlinear behaviour has been

understood by analyzing the properties of the force F(x) (Equa-

tion 10) in the equation of motion, which has nonlinear terms

stemming from the electron–vibration interaction. Softening,

hardening and shape of the curves are usually related to the sign

of the cubic nonlinear term in the force [99]. When the external

gate voltage is tuned in such a way that the current flow through

the device is blocked ( ) the sign of this term is posi-

tive, giving a net softening effect. When the external gate

voltage tunes the electronic level of the quantum dot within the

conduction window (VG = EP) and for bias values sufficiently

small, the sign of the cubic nonlinear term is negative provid-

ing an hardening.

In the experiments described in [11,12] it is has been shown

that, under conditions of mechanical resonance, one can control

the oscillation frequency of the nanotube by tuning the gate

voltage. Motivated by this finding, in Figure 11a we review the

results obtained by us in [77] concerning the natural frequency

of the nanotube as a function of the gate voltage applied to the

junction. As in the actual experiment, the position of the

frequencies are detected by calculating the electronic current

change (analysed in Figure 11 in the regime of small antenna

amplitudes). The solid part of the curves (red) indicates that a

positive current change peak was found (as in panel (a)), while

the dashed part (blue) indicates that a negative current change

was found (as in panel (b)).

If one observes curve (1) of Figure 11a, a characteristic

V-shaped curve is found in almost quantitative agreement with

experimental results in [11]. The observed renormalization of

the resonance frequency can be related to the variations of the

electronic occupation as function of the gate voltage (see solid

line in Figure 11b). Increasing the bias voltage to values closer

to  or larger (line (3) and (4) of Figure 11a), one obtains a

non-trivial renormalization of the resonance frequency as func-

tion of the gate. We note that for eVbias = 1.5  (line (4) of

Figure 11a), a fine structure represented by two very small dips

appears. This feature has been experimentally observed recently

in [100].

6.2 Single-parameter charge pumping
In this review, as stated before, we will discuss some of the

effects that arise when an external temporal periodic driving

gets resonant with the internal frequency of the quantum nano-

system. In this subsection, we consider a nano-system very sim-

ilar to that considered previously but with a different coupling

between the electric field produced by the external antenna and

the quantum dot degrees of freedom. In particular, we assume

that the coupling is affecting directly the electronic gate poten-

tial (Uext = 0 and Vext ≠ 0 in Equation 6).

The driving considered in this section can be described by

(54)

which means that in Equation 2, the  part as well

as the oscillator Hamiltonian in Equation 6 are assumed to be

independent of time, while the coupling with the vibrational

degrees of freedom in the leads has also been neglected even if

in this section the electronic temperature of the leads is assumed

to be non-zero.

As thoroughly discussed by us in [79], when the external

antenna frequency is close to mechanical resonance with the

natural frequency of the dot, one can observe a charge current

flowing through the system realizing a single-parameter quan-

tum pumping. We point out that the conventional quantum

pumping can only be realized with two out of phase driving pa-

rameters [47,101-104], for example left and right lead voltages

or one lead and the gate voltages.

We hereby review [79] the main mechanism that allows for the

single-parameter charge pumping in a system that can be real-

ized by a suspended carbon nanotube quantum dot. In

Figure 12a, we report the electronic current IL(x) flowing

through the system as a function of the CNT vibrational dis-

placement. In particular, we show IL(x) at a quarter and at three

quarters of the period Text for different values of static gate VG.

As one can see, close to mechanical resonance, in the first half-

period it shows a different behaviour from that in the second

half-period (in the case where ωext = 0.93ω0). This involves that

the average over a period is different from zero, allowing to

pump charge into the nanotube.

At fixed VG, IL(x,t) acquires a minimum at a quarter of a period,

while a maximum at three quarters of a period. Moreover, the

static gate induces a shift of the curves toward positive values
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Figure 12: Single-parameter charge-pumping mechanism, and oscillator frequency as a function of the gate voltage. Panel (a): Left current IL as a
function of oscillator position x for different times t and static gate voltages VG. Panel (b): Reduced position probability distribution P as a function of x
for different times t at fixed static voltage VG. The time averaged distribution is in black line. Panel (c): Softening of the resonance frequency corre-
sponding to the first and to the second harmonic as a function of the static gate voltage VG. Adapted and reproduced with permission from [79], copy-
right 2013 EPLA.

for negative VG, but negative values for positive VG. The shifts

of IL are compared with the behaviour of P(x,t) at the reson-

ance. As shown in Figure 12b, in addition to the new center of

the distribution due to the coupling EP, the distribution aver-

aged over a period (black line) is bimodal due to the resonance

phenomenon. In the supplementary material of [79], we point

out that the bimodal character is present only close to the reson-

ance. For the reasons explained above, the tail of the distribu-

tion probability P(x,t) is always able to intercept a spatial region

where IL is not zero giving an average non-zero charge pumped

through the nanotube.

We point out that the pumping mechanism is due to a relevant

dynamical adjustment of the oscillator to the single external

drive and cannot be understood in terms of a phase shift be-

tween the external drives, such as in the two-pumping parame-

ter mechanism [47], or between the ac gate voltage and the

parametrically excited mechanical oscillations [105]. Moreover,

we have considered a configuration where the inversion

symmetry has been broken: the coupling ΓL to the left lead is

slightly different from the coupling ΓR (ΓR = 0.9ΓL = 0.9Γ). A

small asymmetry is sufficient to induce a single-parameter

pumping even if the system is in the adiabatic regime.

In analogy to what was considered under out-of-equilibrium

conditions in the previous subsection, we here review our theo-

retical proposal [79] of controlling the oscillation frequency of

the nanotube by tuning the gate voltage under conditions of me-

chanical resonance even at zero bias where pumping is realized.

In Figure 12c, we show the natural frequencies of the nanotube

as a function of the gate voltage applied to the junction. We

point out that the particular coupling between the electronic and

vibrational degrees of freedom allows us to excite also higher

harmonics of mechanical vibration of the nanotube.

As in the experiments described in [11,12], the position of the

natural CNT frequencies are detected by calculating the change

pumped as a function of the antenna frequency (as in Figure 13)

for different gate voltages. As shown in Figure 12c (Vext = 0.1,

slightly nonlinear regime), the first harmonic resonance has a

characteristic V-shape similar to that seen in the previous

section for a different antenna–vibration coupling. We point out

that the softening is symmetrical with respect to VG − EP even if

the pumped charges have opposite signs (see below). We found

that the characteristics (softening, hardening) of the second

harmonic are similar to those of the first harmonic. Once the

frequency of the first harmonic has been individuated, in order

to explore the behaviour of the system at higher harmonics it is

sufficient to tune the external antenna frequency close to integer

multiples of the proper frequency n × ω0. We expect that higher

harmonics, which could be experimentally excited by a larger

antenna power, exhibit a similar behaviour.
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Figure 13: Single-parameter charge pumped at zero bias. Panel (a):
Charge Q (in units of e) as a function of the external frequency in the
interval close to 1 × ω0 with varying the static gate VG. Panel (b):
Charge Q (in units of e) as a function of the external frequency in the
interval close to 2 × ω0 with varying the static gate VG. Adapted and
reproduced with permission from [79], copyright 2013 EPLA.

We notice that in Figure 13a,b the sign of the pumped charge

depends on that of VG. In fact, this is due to the different behav-

iour of the currents for positive and negative VG. As a result,

there is a specular symmetry with respect to VG − EP (EP = 0.3

in Figure 12a,b). Moreover, with increasing VG, the shape of the

charge–frequency curves tends to be more triangular as a func-

tion of the frequency, meaning that the response becomes

progressively nonlinear with features of the Duffing oscillator

[77,99]. In [79], we have studied the current–frequency

response of the device by increasing the antenna power well

above the linear regime. We observed that the pumped current

at the first harmonic increases to a maximum, where the second

harmonic response becomes appreciable. By increasing the

antenna power further, the response at the first harmonic

reduces while the second harmonic increases up to a maximum

value as the first harmonic. The response is successively trans-

ferred to higher harmonics, and eventually the total pumped

charge changes sign. We finally discuss the response for

frequencies close to second harmonic. As shown in Figure 13b,

in the weakly nonlinear regime (Vext = 0.1), some charge (less

than 10% of that corresponding to the first harmonic) is pumped

close to those frequencies. Moreover, the frequency response

shows a very complex behaviour with several maxima and

minima that should be experimentally observed in future experi-

ments.

6.3 Noise-assisted pumping
In this section, we investigate another nano-system where

charge pumping effects can be reinforced and amplified against

temperature and noise when one excites the system close to the

mechanical resonance with an external driving. In particular, we

here review some of recent results obtained by us in [84]. We

consider a conventional quantum pumping scheme [101] where

the tunneling amplitudes between the dot and the leads (uα(t)

represents the strength of the pumping) are oscillating periodic-

ally in time due to external fields. We consider that no antenna

effect and no bias voltage is present with γ = 0 (no coupling

with phonon leads).

In the general scheme outlined in section 2, the driving

considered in this section can be summarized in the following

equation

(55)

which means that in Equation 2, the dot part  is

assumed to be independent of time (ε(t) = VG) and the driving is

acting directly on the coupling between the dot and the leads.

In  par t icular ,   =   g iving  =

, where uα(t) = , with S

being amplitude of the pumping driving with the frequency ωP

and phase , with phase shift . Finally, the oscil-

lator Hamiltonian is assumed to be independent of time.

In order to apply the adiabatic approximation, we have assumed

that the external time-dependent perturbations are slowly

varying in time together with the mechanical mode vibrational

motion:  and , where we have assumed

that ΓL = ΓR = Γ0.

In [84], we have shown that the adiabatic approach leads to a

Langevin dynamics for the vibrational mode where the external

fields give rise to a forcing term as in the case of an antenna.

Indeed, the deterministic part of the force appearing in the

Langevin equation contains also a dissipative term proportional

to the velocity

(56)

with the coefficients A(x,t) (positive definite) and B(x,t) taken

from [84]. Remarkably, we have also verified that the noise

strength associated with this force fulfills the fluctuation–dissip-
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Figure 14: Electronic charge pumped in a two-parameter pumping device in the presence of an adiabatic vibrational degree of freedom. Panel (a):
The pumped charge Q as a function of the external frequency for different temperatures. Inset: The value of the charge at the maximum as a function
of the temperature is compared with the pumped charge for EP = 0. In this panel T = 0.3, VG = −0.1, S = 0.20,  = π/4. Panel (b): The pumped
charge Q for S = 0.5 as a function of the phase difference  for different values of rP. In this panel T = 0.3, VG = −0.1, and EP = 0.2. Panel (c): The
pumped charge Q as a function of VG − EP for different values of rP. In this plot T = 0.3, VG = −0.1, EP = 0.2, S = 0.50, and  = π/4. Panel (d): The
pumped charge Q as a function of the electron–oscillator coupling EP for different values of the pumping strength S. In this plot T = 0.3, VG = −0.1,
rP = 0.945, and  = π/4. Notice that the pumping strength S = 0.6 corresponds to the driving ratio  ≈ 1.765, which is very close to the
maximal value of 2. Adapted and reproduced with permission from [84], copyright 2014 IOP Publishing.

ation theorem at each oscillator position and time D(x,t) =

2kBTA(x,t), where the position-dependent noise D(x,t) has been

calculated in general in Equation 28.

From the solution of the Langevin equation, one can calculate

the oscillator distribution function P(x,v,t) and compute all the

observable quantities as in the previous section. As stated

above, in the regime of adiabatic pumping, one has ,

and , so that the dimensionless ratio rP = ωP/ω0 is of

the order of unity. The regime of weak pumping is defined by

the condition , where S is proportional to the amplitude of

the pumping terms. Throughout the section, we will assume

ω0 = 0.1Γ0.

In Figure 14a, we plot the pumped charge  as a func-

tion of the pumping frequency ωP, hence as a function of rP for

different temperatures. We point out that  is the

average  cu r ren t  ove r  one  pe r iod  o f  the  d r iv ing

, where  has been obtained

averaging over P(x,v,t).

As one can see, the curves show a characteristic peak–dip struc-

ture around the renormalized frequency reff = ωeff/ω0, where the

charge pumped through the system is zero. This compensation

effect (also observed in [106]) is due to a non-trivial dynamical

adjustment of the vibrational mode distribution probability

against the temporal variation of the current density in the phase

space [84]. Note that, due to the electron–oscillator interaction,

a strong softening of the bare frequency is expected as a func-

tion of the system parameters [77,107]. As shown in the inset of

panel (a), this fact affects the behaviour of the pumped charge

as a function of the temperature. Even if decreasing with tem-

perature, the pumped charge under resonance conditions is

always larger than the same quantity in the absence of interac-

tion with a vibrational degree of freedom.

Another key element to explain the mechanism of cooperation

between the vibrational and electronic degrees of freedom in the

pumped charge is nonlinearity. In order to amplify the nonline-

arity effects, in Figure 14b we show the pumped charge Q at

pumping strength S = 0.5 as a function of the phase difference

. Different values of the external frequency ωP are shown.

Away from the resonance regime (rP = 0.950), the response has

a perfect sinusoidal shape, meaning that only the first harmonic

is contributing. In resonance conditions, the response is distort-

ed by the contribution of many harmonics.

In Figure 14c we show the pumped charge Q as a function of

VG for different values of rP. We note an interesting threshold

behaviour as a function of the frequency of the pump. Indeed,
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the curves correspondent to rP = 0.92, rP = 0.94 and rP = 0.95,

which satisfy the condition rP ≤reff, where reff = 0.95 for

, show a change of sign just at . Differ-

ently, for rP = 0.96 and rP = 0.97, Q suddenly changes sign at

finite values of VG − EP. For larger values of rP (not shown in

Figure 14), the pumped charge flattens, then, for rP close to

unity, it tends to small negative values. Even in the presence of

electron–oscillator interaction, when the gate voltage is tuned

very far from the conduction window ( ) the softening

of the oscillator frequency tends to zero in agreement with

Equation 9 of [106]. Finally, in Figure 14d we study the

pumped charge Q as a function of the electron–oscillator cou-

pling EP for different values of the pumping strength S. We

notice that, around the intermediate coupling EP = 0.2, the

pumping charge has, in absolute value, the maximum increase

as function of the pumping strength. Also, for S > 0.05, an

interesting change of sign in the pumped charge at 

occurs.

Conclusion
In conclusion, we have generalized the adiabatic approach for

nanoscopic systems in the presence of slow vibrational degrees

of freedom to the case where time-dependent perturbations are

acting on the system. Focus has been on the prototype model

system consisting of a single electron level with a slow single

vibrational mode in the parameter regimes appropriate to differ-

ent soft nanosystems, such as molecular junctions and NEMS.

In this work, we have identified the range of parameters where

the adiabatic approach is reliable in the absence of time-depend-

ent perturbations. We have constructed the phase diagram

(Figure 4) of the model in the presence of an applied finite bias

voltage at zero temperature. The average kinetic energy of the

vibrational mode is shown to play a crucial role in the estab-

lishing the validity of the method (Figure 3b). Its meaning is

related to the effective excitation energy of the vibrational

modes dynamically induced by a bias voltage or a temperature

gradient. When this quantity is larger than the static vibrational

energy of the modes, the adiabatic approach can be meaning-

fully applied to study the charge or heat transport.

At zero bias voltage and finite temperature, a comparison with a

calculation which is exact in the low charge density limit on the

dot has shown that the semiclassical adiabatic approach de-

scribes accurately the device down to quite low temperatures

(Figure 2).

We have studied the current–voltage characteristic at zero tem-

perature (Figure 5) and have observed a complete cancellation

of hysteresis or finite discontinuity jumps typical of the static

infinite mass approximation.

For sufficiently large electron–oscillator interaction strength,

contrary to the expectations, we find a region of the parameter

space where the kinetic energy decreases as a function of the

bias voltage. Correspondingly, a finite electronic current flow is

observed in the device, contrary to the static limit where it was

completely blocked.

We have studied the thermoelectric properties within the linear

response regime at room temperature (Figure 6). In particular,

we have analyzed the role played by the phonon thermal contri-

bution  on the thermoelectric figure of merit ZT in the pres-

ence of electron–vibration coupling. We have found that  is

of the same order of the electronic thermal conductance  and

it gets larger with increasing the electron–vibration coupling.

Moreover, deviations from the Wiedemann–Franz law are

progressively reduced with increasing the electron–vibration

coupling. Therefore, the figure of merit ZT depends appre-

ciably on the behaviour of  and electron–vibration cou-

pling. Indeed, for realistic parameters of the model, ZT can be

substantially reduced, but it can still have peaks of the order of

unity with enhancements due to temperature increase.

We have then included the effect of a strong local repulsive

electron–electron interaction, addressing the thermal transport

in the Coulomb blockade regime (Figure 7 and Figure 8).

Within the intermediate electron–vibration coupling regime, the

phonon thermal conductance  has a behaviour similar to the

electron thermal conductance . With increasing the elec-

tron–vibration coupling, they both get larger as in the absence

of electron–electron interaction, while the charge conductance

G and the thermopower S get smaller. The main result is that

the figure of merit ZT depends considerably on the behaviour of

 and intramolecular interactions. Indeed, for realistic pa-

rameters of the model, ZT can be substantially reduced, but its

peak values can be still of the order of unity indicating that our

results can be very interesting for applications.

In the presence of time-dependent perturbations, we have

shown that the vibrational modes are driven in dynamical states

that can be very well described in terms of our adiabatic ap-

proach. In particular, we have studied a single-level quantum

dot realized by a suspended carbon nanotube including, in a

non-perturbative way, the effect of the antenna actuating the

nanotube motion (a schematic illustration of the device is given

in Figure 9). For the scope of this review, we have reproposed

[77] the main features of the device when the antenna drives the

system close to the mechanical resonance with the natural

vibrational frequency (Figure 10 and Figure 11). The

current–frequency curves have been studied, showing a very

good agreement with the experimental results. Here the non-

linear effects are understood without adding extra nonlinear
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terms to the effective force exerted on the resonator

[12,98,108], but they are shown to be naturally included in our

adiabatic scheme.

In the presence of the same antenna, for frequencies close to the

mechanical resonance, we have shown that it is possible to

realize single-parameter adiabatic charge pumping (Figure 12

and Figure 13). The mechanism [79] is different from that

active in the two-parameter pumping since it requires a dynamic

adjustment of the mechanical motion of the nanotube to the

external drive. Moreover, the excitation of the second harmonic

is feasible showing a similarity of the softening with the first

harmonic.

Finally, we have studied the two-parameter quantum pumping

through a molecular level coupled to a slow vibrational mode

(Figure 14). Again, we have studied the device close to

resonance conditions, showing that in this regime the presence

of dissipation and noise does not destroy the pumping mecha-

nism and, even, amplifies it. One of the main results has been

the observation of reinforcement of the charge pumping as a

function of the temperature close to resonant condition with

respect to the situation where no vibrational motion of the dot is

allowed. Furthermore, we have observed finite jumps in the

charge Q vs gate voltage curves at finite values of VG, and an

amplification of charge pumping by increasing the strength of

the driving. These effects could be observable in future experi-

ments.

In the future, our approach could be extended to the study of the

thermal transport away from the linear regime in NEMS of

molecular junctions in the presence of time-dependent

perturbations [30,31]. New directions in the field include also

the possibility to control directly the vibrational degrees of

freedom in order to manipulate heat flow by use of time-

varying thermal bath temperatures or various other external

fields [109].

Summarizing, we have discussed common features of different

soft nanosystems, such as molecular junctions and NEMS,

under external drive. The effects induced by time-dependent

perturbations are very marked when the external forcing is

nearly resonant with the vibrational modes. Indeed, close to the

mechanical resonance, the external temporal perturbations in-

duce nonlinear regimes where the interplay between electronic

and vibrational degrees of freedom plays a major role. We

believe that our work could represent a guide for future studies

of more realistic models of multi-level electronic systems

coupled to many slow vibrational degrees of freedom, in the

presence of time-dependent perturbations, such as pumping and

external forcing antennas.

Acknowledgements
C. A. P. acknowledges partial financial support from the

Progetto Premiale CNR/INFN EOS “Organic Electronics for In-

novative Research Instrumentation”. C. A. P. and V. C.

acknowledge partial financial support from the Regione

Campania project L.R. N.5/2007 “Role of interfaces in magnet-

ic strongly correlated oxides: manganite heterostructures”.

References
1. Delerue, C.; Lannoo, M. Nanostructures: theory and modelling;

Springer Science & Business Media, 2004.
doi:10.1007/978-3-662-08903-3

2. Scheer, E.; Cuevas, J. C. Molecular electronics: an introduction to
theory and experiment; World Scientific, 2010.

3. Galperin, M.; Ratner, M. A.; Nitzan, A. J. Phys.: Condens. Matter
2007, 19, 103201. doi:10.1088/0953-8984/19/10/103201

4. Zimbovskaya, N. A.; Pederson, M. R. Phys. Rep. 2011, 509, 1.
doi:10.1016/j.physrep.2011.08.002

5. Craighead, H. G. Science 2000, 290, 1532–1535.
doi:10.1126/science.290.5496.1532

6. LaHaye, M. D.; Buu, O.; Camarota, B.; Schwab, K. C. Science 2004,
304, 74–77. doi:10.1126/science.1094419

7. Blencowe, M. Phys. Rep. 2004, 395, 159–222.
doi:10.1016/j.physrep.2003.12.005

8. Ekinci, K. L.; Roukes, M. L. Rev. Sci. Instrum. 2005, 76, 061101.
doi:10.1063/1.1927327

9. Park, H.; Park, J.; Lim, A. K. L.; Anderson, E. H.; Alivisatos, A. P.;
McEuen, P. L. Nature 2000, 407, 57–60. doi:10.1038/35024031

10. Qin, H.; Holleitner, A. W.; Eberl, K.; Blick, R. H. Phys. Rev. B 2001,
64, 241302. doi:10.1103/PhysRevB.64.241302

11. Hüttel, A. K.; Steele, G. A.; Witkamp, B.; Poot, M.;
Kouwenhoven, L. P.; van der Zant, H. S. J. Nano Lett. 2009, 9,
2547–2552. doi:10.1021/nl900612h

12. Steele, G. A.; Hüttel, A. K.; Witkamp, B.; Poot, M.; Meerwaldt, H. B.;
Kouwenhoven, L. P.; van der Zant, H. S. J. Science 2009, 325,
1103–1107. doi:10.1126/science.1176076

13. Atalaya, J.; Isacsson, A.; Dykman, M. I. Phys. Rev. Lett. 2011, 106,
227202. doi:10.1103/PhysRevLett.106.227202

14. Knobel, R. G. Nat. Nanotechnol. 2008, 3, 525–526.
doi:10.1038/nnano.2008.250

15. Naik, A. K.; Hanay, M. S.; Hiebert, W. K.; Feng, X. L.; Roukes, M. L.
Nat. Nanotechnol. 2009, 4, 445–450. doi:10.1038/nnano.2009.152

16. Ekinci, K. L.; Huang, X. M. H.; Roukes, M. L. Appl. Phys. Lett. 2004,
84, 4469–4471. doi:10.1063/1.1755417

17. Lassagne, B.; Garcia-Sanchez, D.; Aguasca, A.; Bachtold, A.
Nano Lett. 2008, 8, 3735–3738. doi:10.1021/nl801982v

18. Kacem, N.; Hentz, S.; Pinto, D.; Reig, B.; Nguyen, V. Nanotechnology
2009, 20, 275501. doi:10.1088/0957-4484/20/27/275501

19. Hiebert, W. Nat. Nanotechnol. 2012, 7, 278–280.
doi:10.1038/nnano.2012.66

20. Panchal, M. B.; Upadhyay, S. H.; Harsha, S. P. 2012, 7, 1250029.
doi:10.1142/S1793292012500294

21. Dubi, Y.; Di Ventra, M. Rev. Mod. Phys. 2011, 83, 131–155.
doi:10.1103/RevModPhys.83.131

22. Finch, C. M.; Gárcia-Suárez, V. M.; Lambert, C. J. Phys. Rev. B 2009,
79, 033405. doi:10.1103/PhysRevB.79.033405

23. Reddy, P.; Jang, S.-Y.; Segalman, R. A.; Majumdar, A. Science 2007,
315, 1568–1571. doi:10.1126/science.1137149

http://dx.doi.org/10.1007%2F978-3-662-08903-3
http://dx.doi.org/10.1088%2F0953-8984%2F19%2F10%2F103201
http://dx.doi.org/10.1016%2Fj.physrep.2011.08.002
http://dx.doi.org/10.1126%2Fscience.290.5496.1532
http://dx.doi.org/10.1126%2Fscience.1094419
http://dx.doi.org/10.1016%2Fj.physrep.2003.12.005
http://dx.doi.org/10.1063%2F1.1927327
http://dx.doi.org/10.1038%2F35024031
http://dx.doi.org/10.1103%2FPhysRevB.64.241302
http://dx.doi.org/10.1021%2Fnl900612h
http://dx.doi.org/10.1126%2Fscience.1176076
http://dx.doi.org/10.1103%2FPhysRevLett.106.227202
http://dx.doi.org/10.1038%2Fnnano.2008.250
http://dx.doi.org/10.1038%2Fnnano.2009.152
http://dx.doi.org/10.1063%2F1.1755417
http://dx.doi.org/10.1021%2Fnl801982v
http://dx.doi.org/10.1088%2F0957-4484%2F20%2F27%2F275501
http://dx.doi.org/10.1038%2Fnnano.2012.66
http://dx.doi.org/10.1142%2FS1793292012500294
http://dx.doi.org/10.1103%2FRevModPhys.83.131
http://dx.doi.org/10.1103%2FPhysRevB.79.033405
http://dx.doi.org/10.1126%2Fscience.1137149


Beilstein J. Nanotechnol. 2016, 7, 439–464.

463

24. Paulsson, M.; Datta, S. Phys. Rev. B 2003, 67, 241403(R).
doi:10.1103/PhysRevB.67.241403

25. Romero, H. E.; Sumanasekera, G. U.; Mahan, G. D.; Eklund, P. C.
Phys. Rev. B 2002, 65, 205410. doi:10.1103/PhysRevB.65.205410

26. Koch, J.; von Oppen, F.; Oreg, Y.; Sela, E. Phys. Rev. B 2004, 70,
195107. doi:10.1103/PhysRevB.70.195107

27. Segal, D. Phys. Rev. B 2005, 72, 165426.
doi:10.1103/PhysRevB.72.165426

28. Krawiec, M.; Jalochowski, M. Phys. Status Solidi B 2007, 244,
2464–2469. doi:10.1002/pssb.200674614

29. Remaggi, F.; Ziani, N. T.; Dolcetto, G.; Cavaliere, F.; Sassetti, M.
New J. Phys. 2013, 15, 083016. doi:10.1088/1367-2630/15/8/083016

30. Zhou, H.; Thingna, J.; Hänggi, P.; Wang, J.-S.; Li, B. Sci. Rep. 2015,
5, 14870. doi:10.1038/srep14870

31. Crépieux, A.; Šimkovic, F.; Cambon, B.; Michelini, F. Phys. Rev. B
2011, 83, 153417. doi:10.1103/PhysRevB.83.153417

32. Chi, F.; Dubi, Y. J. Phys.: Condens. Matter 2012, 24, 145301.
doi:10.1088/0953-8984/24/14/145301

33. Juergens, S.; Haupt, F.; Moskalets, M.; Splettstoesser, J.
Phys. Rev. B 2013, 87, 245423. doi:10.1103/PhysRevB.87.245423

34. Arrachea, L.; Moskalets, M.; Martin-Moreno, L. Phys. Rev. B 2007, 75,
245420. doi:10.1103/PhysRevB.75.245420

35. Segal, D.; Nitzan, A. Phys. Rev. E 2006, 73, 026109.
doi:10.1103/PhysRevE.73.026109

36. Kaestner, B.; Kashcheyevs, V.; Amakawa, S.; Blumenthal, M. D.;
Li, L.; Janssen, T. J. B. M.; Hein, G.; Pierz, K.; Weimann, T.;
Siegner, U.; Schumacher, H. W. Phys. Rev. B 2008, 77, 153301.
doi:10.1103/PhysRevB.77.153301

37. Kaestner, B.; Kashcheyevs, V.; Hein, G.; Pierz, K.; Siegner, U.;
Schumacher, H. W. Appl. Phys. Lett. 2008, 92, 192106.
doi:10.1063/1.2928231

38. Kaestner, B.; Leicht, C.; Kashcheyevs, V.; Pierz, K.; Siegner, U.;
Schumacher, H. W. Appl. Phys. Lett. 2009, 94, 012106.
doi:10.1063/1.3063128

39. Fujiwara, A.; Nishiguchi, K.; Ono, Y. Appl. Phys. Lett. 2008, 92,
042102. doi:10.1063/1.2837544

40. Cavaliere, F.; Governale, M.; König, J. Phys. Rev. Lett. 2009, 103,
136801. doi:10.1103/PhysRevLett.103.136801

41. Vavilov, M. G.; Ambegaokar, V.; Aleiner, I. L. Phys. Rev. B 2001, 63,
195313. doi:10.1103/PhysRevB.63.195313

42. Moskalets, M.; Büttiker, M. Phys. Rev. B 2002, 66, 205320.
doi:10.1103/PhysRevB.66.205320

43. Foa Torres, L. E. F. Phys. Rev. B 2005, 72, 245339.
doi:10.1103/PhysRevB.72.245339

44. Foa Torres, L. E. F.; Calvo, H. L.; Rocha, C. G.; Cuniberti, G.
Appl. Phys. Lett. 2011, 99, 092102. doi:10.1063/1.3630025

45. Agarwal, A.; Sen, D. J. Phys.: Condens. Matter 2007, 19, 046205.
doi:10.1088/0953-8984/19/4/046205

46. Ganzhorn, M.; Wernsdorfer, W. Phys. Rev. Lett. 2012, 108, 175502.
doi:10.1103/PhysRevLett.108.175502

47. Brouwer, P. W. Phys. Rev. B 1998, 58, 10135(R).
doi:10.1103/PhysRevB.58.R10135

48. Splettstoesser, J.; Governale, M.; König, J.; Fazio, R. Phys. Rev. Lett.
2005, 95, 246803. doi:10.1103/PhysRevLett.95.246803

49. Splettstoesser, J.; Governale, M.; König, J.; Fazio, R. Phys. Rev. B
2006, 74, 085305. doi:10.1103/PhysRevB.74.085305

50. Riwar, R.-P.; Schmidt, T. L. Phys. Rev. B 2009, 80, 125109.
doi:10.1103/PhysRevB.80.125109

51. Tahir, M.; MacKinnon, A. Phys. Rev. B 2010, 81, 195444.
doi:10.1103/PhysRevB.81.195444

52. Albrecht, K. F.; Wang, H.; Mühlbacher, L.; Thoss, M.; Komnik, A.
Phys. Rev. B 2012, 86, 081412(R). doi:10.1103/PhysRevB.86.081412

53. Biggio, M.; Cavaliere, F.; Storace, M.; Sassetti, M. Ann. Phys. 2014,
526, 541–554. doi:10.1002/andp.201400140

54. Wilner, E. Y.; Wang, H.; Cohen, G.; Thoss, M.; Rabani, E.
Phys. Rev. B 2013, 88, 045137. doi:10.1103/PhysRevB.88.045137

55. Mitra, A.; Aleiner, I.; Millis, A. J. Phys. Rev. Lett. 2005, 94, 076404.
doi:10.1103/PhysRevLett.94.076404

56. Koch, J.; von Oppen, F. Phys. Rev. Lett. 2005, 94, 206804.
doi:10.1103/PhysRevLett.94.206804

57. Koch, J.; von Oppen, F.; Andreev, A. V. Phys. Rev. B 2006, 74,
205438. doi:10.1103/PhysRevB.74.205438

58. Braig, S.; Flensberg, K. Phys. Rev. B 2003, 68, 205324.
doi:10.1103/PhysRevB.68.205324

59. Piovano, G.; Cavaliere, F.; Paladino, E.; Sassetti, M. Phys. Rev. B
2011, 83, 245311. doi:10.1103/PhysRevB.83.245311

60. Cavaliere, F.; Mariani, E.; Leturcq, R.; Stampfer, C.; Sassetti, M.
Phys. Rev. B 2010, 81, 201303(R). doi:10.1103/PhysRevB.81.201303

61. Traverso Ziani, N.; Piovano, G.; Cavaliere, F.; Sassetti, M.
Phys. Rev. B 2011, 84, 155423. doi:10.1103/PhysRevB.84.155423

62. Blanter, Y. M.; Usmani, O.; Nazarov, Y. V. Phys. Rev. Lett. 2004, 93,
136802. doi:10.1103/PhysRevLett.93.136802

63. Blanter, Y. M.; Usmani, O.; Nazarov, Y. V. Phys. Rev. Lett. 2005, 94,
049904. doi:10.1103/PhysRevLett.94.049904

64. Armour, A. D.; Blencowe, M. P.; Zhang, Y. Phys. Rev. B 2004, 69,
125313. doi:10.1103/PhysRevB.69.125313

65. Clerk, A. A.; Bennett, S. New J. Phys. 2005, 7, 238.
doi:10.1088/1367-2630/7/1/238

66. Boubsi, R. E.; Usmani, O.; Blanter, Y. M. New J. Phys. 2008, 10,
095011. doi:10.1088/1367-2630/10/9/095011

67. Galperin, M.; Ratner, M. A.; Nitzan, A. Nano Lett. 2005, 5, 125–130.
doi:10.1021/nl048216c

68. Hussein, R.; Metelmann, A.; Zedler, P.; Brandes, T. Phys. Rev. B
2010, 82, 165406. doi:10.1103/PhysRevB.82.165406

69. Pistolesi, F.; Blanter, Y. M.; Martin, I. Phys. Rev. B 2008, 78, 085127.
doi:10.1103/PhysRevB.78.085127

70. Cataudella, V.; De Filippis, G.; Perroni, C. A. Phys. Rev. B 2011, 83,
165203. doi:10.1103/PhysRevB.83.165203

71. Mozyrsky, D.; Hastings, M. B.; Martin, I. Phys. Rev. B 2006, 73,
035104. doi:10.1103/PhysRevB.73.035104

72. Lü, J.-T.; Brandbyge, M.; Hedegård, P.; Todorov, T. N.; Dundas, D.
Phys. Rev. B 2012, 85, 245444. doi:10.1103/PhysRevB.85.245444

73. Marx, D.; Hutter, J. Ab initio molecular dynamics: Theory and
implementation. In Modern Methods and Algorithms of Quantum
Chemistry, Forschungszentrum Jülich, Germany, Feb 21–25, 2000;
Grotendorst, J., Ed.; John von Neumann Institute for Computing
(NIC), 2000; pp 301–449.

74. Kartsev, A.; Verdozzi, C.; Stefanucci, G. Eur. Phys. J. B 2014, 87, 14.
doi:10.1140/epjb/e2013-40905-5

75. Li, X.; Tully, J. C.; Schlegel, H. B.; Frisch, M. J. J. Chem. Phys. 2005,
123, 084106. doi:10.1063/1.2008258

76. Nocera, A.; Perroni, C. A.; Marigliano Ramaglia, V.; Cataudella, V.
Phys. Rev. B 2011, 83, 115420. doi:10.1103/PhysRevB.83.115420

77. Nocera, A.; Perroni, C. A.; Marigliano Ramaglia, V.; Cataudella, V.
Phys. Rev. B 2012, 86, 035420. doi:10.1103/PhysRevB.86.035420

78. Bode, N.; Kusminskiy, S. V.; Egger, R.; von Oppen, F.
Beilstein J. Nanotechnol. 2012, 3, 144–162. doi:10.3762/bjnano.3.15

79. Perroni, C. A.; Nocera, A.; Cataudella, V. EPL 2013, 103, 58001.
doi:10.1209/0295-5075/103/58001

http://dx.doi.org/10.1103%2FPhysRevB.67.241403
http://dx.doi.org/10.1103%2FPhysRevB.65.205410
http://dx.doi.org/10.1103%2FPhysRevB.70.195107
http://dx.doi.org/10.1103%2FPhysRevB.72.165426
http://dx.doi.org/10.1002%2Fpssb.200674614
http://dx.doi.org/10.1088%2F1367-2630%2F15%2F8%2F083016
http://dx.doi.org/10.1038%2Fsrep14870
http://dx.doi.org/10.1103%2FPhysRevB.83.153417
http://dx.doi.org/10.1088%2F0953-8984%2F24%2F14%2F145301
http://dx.doi.org/10.1103%2FPhysRevB.87.245423
http://dx.doi.org/10.1103%2FPhysRevB.75.245420
http://dx.doi.org/10.1103%2FPhysRevE.73.026109
http://dx.doi.org/10.1103%2FPhysRevB.77.153301
http://dx.doi.org/10.1063%2F1.2928231
http://dx.doi.org/10.1063%2F1.3063128
http://dx.doi.org/10.1063%2F1.2837544
http://dx.doi.org/10.1103%2FPhysRevLett.103.136801
http://dx.doi.org/10.1103%2FPhysRevB.63.195313
http://dx.doi.org/10.1103%2FPhysRevB.66.205320
http://dx.doi.org/10.1103%2FPhysRevB.72.245339
http://dx.doi.org/10.1063%2F1.3630025
http://dx.doi.org/10.1088%2F0953-8984%2F19%2F4%2F046205
http://dx.doi.org/10.1103%2FPhysRevLett.108.175502
http://dx.doi.org/10.1103%2FPhysRevB.58.R10135
http://dx.doi.org/10.1103%2FPhysRevLett.95.246803
http://dx.doi.org/10.1103%2FPhysRevB.74.085305
http://dx.doi.org/10.1103%2FPhysRevB.80.125109
http://dx.doi.org/10.1103%2FPhysRevB.81.195444
http://dx.doi.org/10.1103%2FPhysRevB.86.081412
http://dx.doi.org/10.1002%2Fandp.201400140
http://dx.doi.org/10.1103%2FPhysRevB.88.045137
http://dx.doi.org/10.1103%2FPhysRevLett.94.076404
http://dx.doi.org/10.1103%2FPhysRevLett.94.206804
http://dx.doi.org/10.1103%2FPhysRevB.74.205438
http://dx.doi.org/10.1103%2FPhysRevB.68.205324
http://dx.doi.org/10.1103%2FPhysRevB.83.245311
http://dx.doi.org/10.1103%2FPhysRevB.81.201303
http://dx.doi.org/10.1103%2FPhysRevB.84.155423
http://dx.doi.org/10.1103%2FPhysRevLett.93.136802
http://dx.doi.org/10.1103%2FPhysRevLett.94.049904
http://dx.doi.org/10.1103%2FPhysRevB.69.125313
http://dx.doi.org/10.1088%2F1367-2630%2F7%2F1%2F238
http://dx.doi.org/10.1088%2F1367-2630%2F10%2F9%2F095011
http://dx.doi.org/10.1021%2Fnl048216c
http://dx.doi.org/10.1103%2FPhysRevB.82.165406
http://dx.doi.org/10.1103%2FPhysRevB.78.085127
http://dx.doi.org/10.1103%2FPhysRevB.83.165203
http://dx.doi.org/10.1103%2FPhysRevB.73.035104
http://dx.doi.org/10.1103%2FPhysRevB.85.245444
http://dx.doi.org/10.1140%2Fepjb%2Fe2013-40905-5
http://dx.doi.org/10.1063%2F1.2008258
http://dx.doi.org/10.1103%2FPhysRevB.83.115420
http://dx.doi.org/10.1103%2FPhysRevB.86.035420
http://dx.doi.org/10.3762%2Fbjnano.3.15
http://dx.doi.org/10.1209%2F0295-5075%2F103%2F58001


Beilstein J. Nanotechnol. 2016, 7, 439–464.

464

80. Weiss, U. Quantum dissipative systems, 3rd ed.; World Scientific,
2008.

81. Haug, H.; Jauho, A.-P. Quantum kinetics in transport and optics of
semiconductors; Solid-State Sciences, Vol. 123; Springer, 2008.
doi:10.1007/978-3-540-73564-9

82. Perroni, C. A.; Ninno, D.; Cataudella, V. New J. Phys. 2015, 17,
083050. doi:10.1088/1367-2630/17/8/083050

83. Brüggemann, J.; Weick, G.; Pistolesi, F.; von Oppen, F. Phys. Rev. B
2012, 85, 125441. doi:10.1103/PhysRevB.85.125441

84. Perroni, C. A.; Romeo, F.; Nocera, A.; Ramaglia, V. M.; Citro, R.;
Cataudella, V. J. Phys.: Condens. Matter 2014, 26, 365301.
doi:10.1088/0953-8984/26/36/365301

85. Lu, X.; Grobis, M.; Khoo, K. H.; Louie, S. G.; Crommie, M. F.
Phys. Rev. Lett. 2003, 90, 096802.
doi:10.1103/PhysRevLett.90.096802

86. Perroni, C. A.; Ninno, D.; Cataudella, V. Phys. Rev. B 2014, 90,
125421. doi:10.1103/PhysRevB.90.125421

87. Almbladh, C. O.; Minnhagen, P. Phys. Rev. B 1978, 17, 929–939.
doi:10.1103/PhysRevB.17.929

88. Mahan, G. D. Many-Particle Physics; Springer Science & Business
Media, 2000. doi:10.1007/978-1-4757-5714-9

89. Panasyuk, G. Y.; Levin, G. A.; Yerkes, K. L. Phys. Rev. E 2012, 86,
021116. doi:10.1103/PhysRevE.86.021116

90. Wang, J.-S. Phys. Rev. Lett. 2007, 99, 160601.
doi:10.1103/PhysRevLett.99.160601

91. Wang, J.-S.; Wang, J.; Lü, J. T. Eur. Phys. J. B 2008, 62, 381–404.
doi:10.1140/epjb/e2008-00195-8

92. Yee, S. K.; Malen, J. A.; Majumdar, A.; Segalman, R. A. Nano Lett.
2011, 11, 4089–4094. doi:10.1021/nl2014839

93. Kittel, C. Introduction to Solid State Physics; Wiley, 2004.
94. Liu, J.; Sun, Q.-f.; Xie, X. C. Phys. Rev. B 2010, 81, 245323.

doi:10.1103/PhysRevB.81.245323
95. Wang, Z.; Carter, J. A.; Lagutchev, A.; Koh, Y. K.; Seong, N.-H.;

Cahill, D. G.; Dlott, D. D. Science 2007, 317, 787–790.
doi:10.1126/science.1145220

96. Jezouin, S.; Parmentier, F. D.; Anthore, A.; Gennser, U.; Cavanna, A.;
Jin, Y.; Pierre, F. Science 2013, 342, 601–604.
doi:10.1126/science.1241912

97. Meier, T.; Menges, F.; Nirmalraj, P.; Hölscher, H.; Riel, H.;
Gotsmann, B. Phys. Rev. Lett. 2014, 113, 060801.
doi:10.1103/PhysRevLett.113.060801

98. Weick, G.; von Oppen, F.; Pistolesi, F. Phys. Rev. B 2011, 83,
035420. doi:10.1103/PhysRevB.83.035420

99. Nayfeh, A. H.; Mook, D. T. Nonlinear oscillations; John Wiley & Sons,
2008.

100.Meerwaldt, H. B.; Labadze, G.; Schneider, B. H.; Taspinar, A.;
Blanter, Y. M.; van der Zant, H. S. J.; Steele, G. A. Phys. Rev. B 2012,
86, 115454. doi:10.1103/PhysRevB.86.115454

101.Thouless, D. J. Phys. Rev. B 1983, 27, 6083–6087.
doi:10.1103/PhysRevB.27.6083

102.Altshuler, B. L.; Glazman, L. I. Science 1999, 283, 1864–1865.
doi:10.1126/science.283.5409.1864

103.Buitelaar, M. R.; Kashcheyevs, V.; Leek, P. J.; Talyanskii, V. I.;
Smith, C. G.; Anderson, D.; Jones, G. A. C.; Wei, J.; Cobden, D. H.
Phys. Rev. Lett. 2008, 101, 126803.
doi:10.1103/PhysRevLett.101.126803

104.Wei, Y.; Wang, J.; Guo, H.; Roland, C. Phys. Rev. B 2001, 64,
115321. doi:10.1103/PhysRevB.64.115321

105.Peña Aza, M. E.; Scorrano, A.; Gorelik, L. Y. Phys. Rev. B 2013, 88,
035412. doi:10.1103/PhysRevB.88.035412

106.Romeo, F.; Citro, R. Phys. Rev. B 2009, 80, 235328.
doi:10.1103/PhysRevB.80.235328

107.Nocera, A.; Perroni, C. A.; Ramaglia, V. M.; Cantele, G.;
Cataudella, V. Phys. Rev. B 2013, 87, 155435.
doi:10.1103/PhysRevB.87.155435

108.Weick, G.; Pistolesi, F.; Mariani, E.; von Oppen, F. Phys. Rev. B 2010,
81, 121409(R). doi:10.1103/PhysRevB.81.121409

109.Li, N.; Ren, J.; Wang, L.; Zhang, G.; Hänggi, P.; Li, B.
Rev. Mod. Phys. 2012, 84, 1045–1066.
doi:10.1103/RevModPhys.84.1045

License and Terms
This is an Open Access article under the terms of the

Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0), which

permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of

Nanotechnology terms and conditions:

(http://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one

which can be found at:

doi:10.3762/bjnano.7.39

http://dx.doi.org/10.1007%2F978-3-540-73564-9
http://dx.doi.org/10.1088%2F1367-2630%2F17%2F8%2F083050
http://dx.doi.org/10.1103%2FPhysRevB.85.125441
http://dx.doi.org/10.1088%2F0953-8984%2F26%2F36%2F365301
http://dx.doi.org/10.1103%2FPhysRevLett.90.096802
http://dx.doi.org/10.1103%2FPhysRevB.90.125421
http://dx.doi.org/10.1103%2FPhysRevB.17.929
http://dx.doi.org/10.1007%2F978-1-4757-5714-9
http://dx.doi.org/10.1103%2FPhysRevE.86.021116
http://dx.doi.org/10.1103%2FPhysRevLett.99.160601
http://dx.doi.org/10.1140%2Fepjb%2Fe2008-00195-8
http://dx.doi.org/10.1021%2Fnl2014839
http://dx.doi.org/10.1103%2FPhysRevB.81.245323
http://dx.doi.org/10.1126%2Fscience.1145220
http://dx.doi.org/10.1126%2Fscience.1241912
http://dx.doi.org/10.1103%2FPhysRevLett.113.060801
http://dx.doi.org/10.1103%2FPhysRevB.83.035420
http://dx.doi.org/10.1103%2FPhysRevB.86.115454
http://dx.doi.org/10.1103%2FPhysRevB.27.6083
http://dx.doi.org/10.1126%2Fscience.283.5409.1864
http://dx.doi.org/10.1103%2FPhysRevLett.101.126803
http://dx.doi.org/10.1103%2FPhysRevB.64.115321
http://dx.doi.org/10.1103%2FPhysRevB.88.035412
http://dx.doi.org/10.1103%2FPhysRevB.80.235328
http://dx.doi.org/10.1103%2FPhysRevB.87.155435
http://dx.doi.org/10.1103%2FPhysRevB.81.121409
http://dx.doi.org/10.1103%2FRevModPhys.84.1045
http://creativecommons.org/licenses/by/2.0
http://www.beilstein-journals.org/bjnano
http://dx.doi.org/10.3762%2Fbjnano.7.39

	Abstract
	Introduction
	Review
	1 Model
	2 Adiabatic approach
	2.1 Electronic charge and heat currents

	3 Range of validity of adiabatic approach: single-level molecule
	3.1 Equilibrium conditions at T ≠ 0
	3.2 Non-equilibrium conditions at T = 0

	4 Charge and heat transport
	5 Coulomb-blockade regime
	6 Time-dependent perturbations
	6.1 Suspended CNT with external antenna effects: electronic transport
	6.2 Single-parameter charge pumping
	6.3 Noise-assisted pumping


	Conclusion
	Acknowledgements
	References

