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Primary ciliary dyskinesia (PCD) is an orphan disease (MIM 244400), autosomal recessive 
inherited, characterized by motile ciliary dysfunction. The estimated prevalence of PCD is 
1:10,000 to 1:20,000 live-born children, but true prevalence could be even higher. PCD 
is characterized by chronic upper and lower respiratory tract disease, infertility/ectopic 
pregnancy, and situs anomalies, that occur in ≈50% of PCD patients (Kartagener syn-
drome), and these may be associated with congenital heart abnormalities. Most patients 
report a daily year-round wet cough or nose congestion starting in the first year of life. 
Daily wet cough, associated with recurrent infections exacerbations, results in the devel-
opment of chronic suppurative lung disease, with localized-to-diffuse bronchiectasis. 
No diagnostic test is perfect for confirming PCD. Diagnosis can be challenging and 
relies on a combination of clinical data, nasal nitric oxide levels plus cilia ultrastructure 
and function analysis. Adjunctive tests include genetic analysis and repeated tests in 
ciliary culture specimens. There are currently 33 known genes associated with PCD 
and correlations between genotype and ultrastructural defects have been increasingly 
demonstrated. Comprehensive genetic testing may hopefully screen young infants before 
symptoms occur, thus improving survival. Recent surprising advances in PCD genetic 
designed a novel approach called “gene editing” to restore gene function and normalize 
ciliary motility, opening up new avenues for treating PCD. Currently, there are no data 
from randomized clinical trials to support any specific treatment, thus, management 
strategies are usually extrapolated from cystic fibrosis. The goal of treatment is to pre-
vent exacerbations, slowing the progression of lung disease. The therapeutic mainstay 
includes airway clearance maneuvers mainly with nebulized hypertonic saline and chest 
physiotherapy, and prompt and aggressive administration of antibiotics. Standardized 
care at specialized centers using a multidisciplinary approach that imposes surveillance 
of lung function and of airway biofilm composition likely improves patients’ outcome. 
Pediatricians, neonatologists, pulmonologists, and ENT surgeons should maintain high 
awareness of PCD and refer patients to the specialized center before sustained irrevers-
ible lung damage develops. The recent creation of a network of PCD clinical centers, 
focusing on improving diagnosis and treatment, will hopefully help to improve care and 
knowledge of PCD patients.
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iNTRODUCTiON

Primary ciliary dyskinesia (PCD) is a clinically and genetically 
heterogeneous group of disorders of ciliary motility (MIM 
244400) (1). In most cases of PCD, inheritance is autosomal 
recessive, but X-linked PCD caused by mutations in RPGR gene, 
which is responsible for 20% of all cases with retinitis pigmentosa, 
or also in PIH1D3 gene have been reported (2–4).

History of PCD starts with Kartagener who first described 
a syndrome that included the triad of chronic sinusitis, bron-
chiectasis, and situs viscerum inversus (SI) (5). Approximately 
40 years later, Afzelius reported on four subjects with recurrent 
bronchitis and pneumonia associated with recurrent upper 
airways infections who also had SI in 50% of the cases, then 
known as Kartagener’s syndrome (6). In that case series, sperm 
tails and respiratory cilia lacked dynein arms and showed 
impaired motility. This report clarified that a congenital defect 
in cilia and sperm tails can result in the association of chronic 
respiratory tract infections and male sterility, and the term 
“immotile-cilia syndrome” was eventually coined (7). The 
term “primary” was used to distinguish this condition from 
secondary ciliary abnormalities caused by inflammation and 
infection.

The goal of this review is to provide an update on the genetics, 
the diagnosis, and current and future treatment of PCD in order 
to increase the clinicians’ awareness of the disorder and hopefully 
improve final outcome.

CiLiA BiOLOGY: STRUCTURe AND 
FUNCTiON

Cilia are hair-like organelles that project from cells. Traditionally, 
cilia are distinguished into thre classes: primary cilia, which are 
not motile and are expressed on most cells during development, 
when they play important roles in sensing and transducing 
environmental signals (8); nodal cilia, which are found in the 
embryonic node; and motile cilia, which are long thin protrusions 
that extend up to 20 mm from the cell surface and propel fluids 
along surfaces of respiratory epithelium, brain ependyma, and 
falloppian tubes. Syndromes associated with defects in cilia of 
either classes are termed ciliopathies (9).

Each ciliated cell has approximately 200 motile cilia projecting 
from its surface that beat in a coordinated fashion. Motile cilia 
are dysfunctional in PCD. They are mainly immotile, but stiff, 
uncoordinated, and/or ineffective ciliary beats have also been 
reported (10).

Motile cilia are found in the apical surface of the upper and 
lower respiratory tract, on the ependymal cells that line the 
ventricles of the central nervous system, in the oviducts of the 
female reproductive system, and in the flagellum of male sper-
matozoa (11).

The motile cilium structure is made of nine peripheral doublet 
microtubules and two central single microtubules (central pair 
complex) and includes inner and outer dynein arms (ODAs), 
radial spokes, and nexin links (9  +  2 axonemes). Nexin links 
connect the nine peripheral doublets which are connected to the 
central pair by radial spokes. Outer and inner dynein arms (IDAs) 

are motor proteins that are attached to the outer microtubules 
providing energy for ciliary movement.

Cilia play a fundamental role in mucociliary clearance. Ciliary 
ultrastructure and orientation are critical for enhancing clearance 
of the lower respiratory tract as they help move fluids, mucus, and 
inhaled foreign materials vectorially from distal to more proximal 
airways. In normal airways, cilia beat with a rapid frequency that 
ranges from approximately 8–20 Hz and mobilizes the mucus that 
sits atop the cilia (12).

During embryogenesis, the motile 9 + 0 monocilia generate 
a whirling, rotational movement that directs leftward flow of 
extracellular fluid (nodal flow). The nodal cilia play a vital role in 
establishing left–right body orientation, and abnormalities can 
lead to laterality defects that include SI and a spectrum of situs 
ambiguous condition, that may be also associated with congenital 
heart abnormalities (13). The association of cilia dysfunction and 
SI, formerly described as Kartagener syndrome (5), may occur 
even in less than 50% of all PCD as some defects, in particular 
those associated with mutations in HYDIN, RSPH9, RSPH4A, 
and RSPH1 genes, do not cause SI (14).

Sperm flagella and motile cilia have a similar, although not 
identical, axonemal structure, which might explain why sperm 
flagella dyskinesia is often, but not necessarily, associated with 
PCD and vice versa (15).

ePiDeMiOLOGY

In 2010, Kuehni et  al. conducted the largest international 
survey of pediatric PCD patients ever undertaken, which 
included 1,192 patients from 26 European countries (16). 
They concluded that the prevalence of diagnosis ranged 
from 1:10,000 to 1:20,000 live-born children. Actually, PCD 
prevalence shows large variations, with estimates ranging from 
1:2,200 to 1:40,000 due to different methods of analysis (17, 18). 
The highest prevalence was reported in Cyprus, Switzerland, 
and Denmark. The wide variation of doctor-diagnoses in 
different countries is likely due, at least in part, to geographic 
differences in mutational data, founder effects for certain gene 
mutations, high proportions of consanguineous marriages, or 
to differences in the diagnostic work-up of PCD among the 
participating countries.

Diagnosis of PCD may be delayed or missed completely, due 
to lack of awareness and/or difficulties in confirming it (19). In 
Europe, median age at diagnosis is 5.3 years, with cases with SI 
being confirmed as PCD at significantly lower age than those 
without (3.5  years versus 5.8  years) (16). Many patients may 
also experience a extraordinarily high number of physicians 
visits (50–100) before PCD is confirmed, thus indicating that 
also in specialized centers the awareness of the disorder may 
be poor (20).

Registries of patients with rare disorders are increasingly 
recognized as crucial tools to achieve a collection of phenotypic 
data, to understand the pathophysiology of the underlying condi-
tion, and to facilitate multicentre collection of data for research 
studies. In order to systematically collect data on PCD incidence, 
clinical presentation, and treatment, a registry was launched in 
January 2014, that provides epidemiological data and clinical 
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3

Mirra et al. Update on Primary Ciliary Dyskinesia

Frontiers in Pediatrics | www.frontiersin.org June 2017 | Volume 5 | Article 135

information of 201 patients with PCD from several European and 
North-American centers (21).

DiSeASe MANiFeSTATiONS

At all ages, the clinical phenotype of PCD is very wide (Figure 1). 
Respiratory manifestations are part of the classic description 
of the disease and are considered “sine qua non” features for 
the diagnosis. Main PCD manifestations include recurrent to 
chronic upper and lower respiratory tract infections that eventu-
ally complicate with bronchiectasis at older ages. Most symptoms 
occur on a chronic, daily basis and start soon after birth (1). 
Unfortunately, most of the symptoms or signs of PCD upper and 
lower airway disease are very common also in healthy children, 
and this is why the diagnosis is often made beyond infancy or 
childhood, with delayed start of follow-up and/or adequate treat-
ment (19, 22).

Unexplained neonatal respiratory distress is a possible mani-
festation of PCD. Transient tachypnea of the newborn, starting 
soon after birth, is a well-known cause of respiratory distress in 
term and near-term newborns, and resolution by the fifth day 
of life is generally reported (23). Conversely, more than 75% of 
full-term neonates with PCD require continuous supplemental 
oxygen for days to weeks (24). The most stricking finding of a 
recent study was that pneumonia and multiple lobar collapse that 
require prolonged hospital stay may be very severe in newborns 
who will be later confirmed as PCD (25).

Persistent nasal obstruction is very common at all ages, as chil-
dren and adults refer a daily year-round nose congestion evident 
yet in the neonatal period or in the first years of life (26, 27).

Chronic rhinorrhea complicated by anosmia, associated with 
recurrent secretory type otitis (glue ear), occur in 76–100% of 
PCD children (19, 28) and may lead to sleep-disordered breath-
ing (29, 30). Chronic rhinosinusitis is frequently associated with 
hypoplastic frontal and sphenoid sinuses (31). Recurrent otitis 
media is a troublesome complaint in many PCD patients, with 
as much as 38% of the cases requiring more than 30 antibiotic 
courses in their life (20).

Lower airways are commonly involved in PCD.
In preschool and school-age children daily wet cough due to 

repeated episodes of bronchitis and/or recurrent pneumonia is 
a universal finding (32), that may result in the development of 
chronic obstructive suppurative lung disease, with localized-to-
diffuse bronchiectasis (1). The underlying cause of bronchiectasis 
was PCD in 1–17% of several pediatric case series (33–35). 
Although the development of bronchiectasis increases with 
aging (28), it has been reported even in toddlers with PCD (36). 
High-resolution computed tomography (HRCT) is a highly 
sensitive imaging modality for investigating PCD lung disease, 
and in particular to detect bronchiectasis (35, 37, 38) (Figure 2). 
However, HRCT involves larger radiation doses than the con-
ventional X-ray procedure, and therefore its use in the follow-up 
of pediatric chronic lung disorders is controversial (39). Chest 
magnetic resonance imaging may be a valid alternative with a 
good-to-excellent agreement with HRCT findings (40, 41). 
In addition to wet cough and bronchiectasis, chronic asthma, 
generally unresponsive to maintenance treatment, is frequently 
reported at school-age and during adolescence (42). A mild to 
moderate obstructive pattern is a common finding at spirom-
etry. Possible pathological changes mainly include bronchial 
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FiGURe 2 | High-resolution computed tomography findings from a 
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obstruction, and altered lung mechanics secondary to repeated 
endobronchial infection (43).

Sputum cultures tipically yield oropharyngeal flora includ-
ing Haemophilus influenzae, Streptococcus pneumoniae, and 
Staphylococcus aureus in the early childhood, while Pseudomonas 
aeruginosa (first smooth and then mucoid) and other Gram-
negative pathogens such as Klebsiella species are prevalent in older 
PCD (44). Actually, mucoid P. aeruginosa may be found in 5% 
of PCD patients younger than 19  years (45). Although rare in 
childhood, non-tuberculous mycobacteria are reported in more 
than 10% of PCD adults (28).

As a consequence of abnormal sperm structure some, but not 
all, male patients with PCD have fertility problems (46). Sperm 
flagellum is a type of cilia. Therefore, abnormal ciliary structure 
may lead to the reduction or loss of the ability of the flagellum 
to swing, causing ultimately male infertility (7, 47). The most 
frequent ultrastructural defects of the sperm flagella are missing 
dynein arms, microtubular translocations, and lack of radial 
spokes (48). Having immotile sperm is common among affected 
males, and spontaneous pregnancy is rarely achieved unless 
through artificial insemination, including in  vitro fertilization 
and intracytoplasmic sperm injection (49). For this reason, 
genetic counseling to couples pursuing assisted reproductive 
technology is mandatory, and genetic assessment of sperm is 
highly recommended prior to any clinical action. Females with 
PCD may experience an increased rate of ectopic pregnancy and 
decreased fertilization ability, because of impaired ciliary func-
tion in the oviduct (50, 51).

Situs inversus totalis is present in 50% of individuals with 
PCD (6). Heterotaxy, defined as an abnormality where the 
internal thoracoabdominal organs demonstrate abnormal 
arrangement across the left–right axis of the body is described 
in approximately 6% of the cases (52). Patients with heterotaxy 
may also have complex cardiac defects such as double outlet right 
ventricle, atrioventricular canal defects, atrial and ventricular 
septal defects, L-transposition of the great arteries, and tetralogy 
of Fallot (52, 53). The respiratory phenotypes of the PCD patients 
with heterotaxy are not different than those without heterotaxy 

(28). Other conditions as complex congenital heart disease, 
polycystic kidney and liver disease, hydrocephalus, biliary atresia, 
severe esophageal disease (esophageal atresia, severe reflux), and 
retinal degeneration, including retinitis pigmentosa, could also 
be associated in patients with PCD (54).

Data on growth of PCD patients are controversial. Chronic 
respiratory disease and long-term inflammation decrease IGF-I 
levels and compromise children’s growth, as demonstrated in 
cystic fibrosis (CF) (55, 56). At present, few studies that investi-
gated growth in PCD using national and international reference 
values show conflicting results, with some suggesting impaired 
growth (57–59), and others reporting no differences (45, 60).

Despite it is well known that micronutrients and vitamins 
play a role in respiratory infections, data on their contribution 
in the inception or maintenance of PCD-associated airway 
infections are very scarce. Children and adults with stable PCD 
have deficient-to-insufficient serum vitamin D levels (61). Since, 
vitamin D has immunomodulatory properties and its deficiency 
may contribute to an increased risk of respiratory infections in 
PCD, studies aimed to evaluate the efficacy of vitamin D supple-
mentation on the rate or severity of PCD infections exacerbations 
should be proposed at a multicenter level.

Compared to CF, the natural history of PCD lung disease is 
much less clear. Information on PCD disease progression is still 
incomplete, even though the mortality data are hard to interpret, 
as they are not age standardized. A recent retrospective study 
of 151 PCD adults with a median age of 35 years longitudinally 
followed for 7  years found an incidence of all-cause mortality 
of nearly 5%, and a respiratory mortality of 3.3% (62). Authors 
showed that older age at diagnosis was associated with impaired 
baseline FEV1 and increased P. aeruginosa colonization. Lung 
function decline, estimated at FEV1 decline of 0.49% pred per 
year, was positively associated with ciliary ultrastructure abnor-
malities, mainly microtubular defects (62).

The severity of lung disease in adults with PCD is highly vari-
able, but is generally milder than in CF (14). However, a progressive 
course of PCD pulmonary disease is possible in mid-adulthood, 
with some patients developing an end-stage lung disease who 
may eventually require lung transplantation (28). Early studies 
have suggested relatively stable lung disease, in the absence of sig-
nificant lung function decline (63, 64). Conversely, a recent study 
showed that only 57% of PCD patients followed at a single center 
over 5–30 years have a stable FEV1 and that lung function may 
progressively decline in approximately one-third of these (65). 
This finding has been recently confirmed by Werner et  al. who 
documented progressive decline of FEV1 in 71 PCD cases from 
the international registry (21). Surprisingly, early referral to a PCD 
center may not be associated with better spirometry (60).

Traditionally, pulmonary function testing is the best non-
invasive way of tracking the progression of the disease in chronic 
lung disorders, also including PCD. Spirometry results correlate 
with lung structure changes at HRCT, but the latter may progress 
despite little or no change in lung function (66). In recent years, 
there has been increasing focus on the lung clearance index 
(LCI), a measure of ventilation inhomogeneity that appears 
more sensitive than FEV1 in detecting early airway disease (67). 
Nevertheless, data in PCD on the relationship among LCI, 
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spirometry, and lung structure changes at HRCT are conflicting 
(68, 69), and further investigation should be provided to clarify 
the role of LCI in the medium- to long-term progression of the 
disease.

DiAGNOSiS

A complete diagnostic work-up of PCD is mandatory if a positive 
family history of PCD is reported, and the latter can account up 
to 10% of all PCD diagnoses (19). Siblings of probands should 
have PCD excluded, particularly if they exhibit mild respiratory 
features that may not indicate PCD (1).

A 7-point questionnaire-based prediction tool (PICADAR) 
has been recently developed to predict the likelihood that a 
patient referred for evaluation of persistent wet cough has PCD 
(70). Authors proposed a final score that includes seven predic-
tive variables, such as full-term gestational age, admittance to 
a neonatal unit, neonatal chest symptoms, persistent perennial 
rhinitis, chronic ear and hearing symptoms, situs abnormalities, 
and presence of a cardiac defect. Patients with a PICADAR score 
≥10 have more than 90% probability of testing positive for PCD, 
while a score ≥5 indicates more than 11% chances of being 
diagnosed as PCD.

There is no single gold standard diagnostic test for PCD. 
Current diagnosis requires a combination of technically demand-
ing investigations, including nasal nitric oxide (nNO), high-speed 
video microscopy analysis (HVMA), and transmission electron 
microscopy (TEM) (71).

Among the earliest diagnostic tests for PCD evaluation, the 
saccharine test and the investigation of mucociliary clearance by 
a radioactive tracer have been long used either inside or outside of 
specialized centers to demonstrate that mucociliary transport is 
impaired as a result of abnormal ciliary motion (1). However, the 
saccharin test may miss cases with dyskinetically beating cilia and 
the radioaerosol mucociliary clearance techniques are associated 
with radiation exposure albeit quite low. Therefore, the evidence 
appears too limited to recommend them (71).

Measurement of nNO is a helpful tool for screening PCD. Its 
levels are extremely low in PCD compared to healthy and disease 
controls (72). Possible explanation include a reduced biosynthesis 
of NO by paranasal sinuses or a possible increased consumption 
by superoxide anions or, alternatively, a sequestration in the upper 
respiratory tract within blocked paranasal sinuses or, finally, its 
biosynthesis or storage capacity is limited due to agenesis of the 
sinuses (73). nNO measurement should be used as part of the 
diagnostic work-up of schoolchildren over 6 years and of adults 
suspected of having PCD, preferably using a chemiluminescence 
analyzer and the velum closure technique, that achieves palate 
closure by exhaling through the mouth into a disposable resistor 
(74). This test is sensitive, rapid, non-invasive, and results are 
immediately available. Unfortunately, standardized methods to 
measure nNO are not appropriate for younger children, precisely 
the age group that would need urgent targeting for diagnostic 
measurement. In preschool children, nNO should be prefer-
ably measured using tidal breathing. Available data suggest that  
measurements of nNO correlate well with the values obtained 
at the plateau, but values are lower (71). The limitation is that 

breath-hold with velum maneuver can be difficult to obtain 
particularly by young children, and there is mounting evidence 
that simpler measurements, such as breath-hold without velum 
closure or sampling during tidal breathing, can discriminate 
between PCD and non-PCD also in younger children (75, 76). 
Diagnostic cutoff values for tidal techniques from preschool 
children are not currently available (77).

In older children, nNO analysis includes multiple methods of 
measurement and different cutoff values, making it difficult to 
provide definite thresholds in that age range. It has been reported 
that nNO cutoff value less than 77 nl/min strongly suggest PCD, 
with 98% sensitivity and 99% specificity (78). However, cases with 
demonstrated PCD may exhibit normal or even raised nNO levels 
(79). This indicates that patients with high clinical suspicion of 
PCD should be evaluated by additional diagnostic procedures 
other than nNO measurement (71).

Measurement of nNO can be obtained by stationary or 
handheld devices. Stationary devices are very commonly used, 
but are expensive and need frequent technical assistance (78).  
A handheld device simple to use and cheap has been developed, 
and a study found no difference between nNO obtained from 
stationary or handheld analyzer during silent and humming 
exhalation (80). A portable device equipped also for nNO analysis 
through the aspiration method is currently available (81, 82), but 
more experience is needed to validate its use.

Historically, a PCD diagnosis was based on analysis at TEM of 
ciliary cross sections from a nasal respiratory epithelium sample 
(83). This is usually obtained from the inferior turbinate of the 
nose by brush or curette biopsy or from the lower respiratory 
tract during bronchoscopy. Nasal brushing represents an elegant, 
simple, well-tolerated, and only minimally invasive way to col-
lect the ciliated epithelium (84). The sample is chemically fixed 
with glutaraldehyde, processed, and cilia are analyzed using a 
transmission electron microscope (83, 85). Examination of the 
ciliary ultrastructure by electron microscopy remains a defini-
tive diagnostic test for PCD (71). Nevertheless, TEM analysis 
can confirm but does not always exclude the diagnosis (86).  
It usually allows to identify PCD variants exhibiting a complete 
or partial absence of ODAs, combined ODA and IDA defects, 
and microtubular disorganization defects. Figure 3 shows cilia 
ultrastructure from a PCD patient, compared to the normal 
ultrastructure from a healthy subject. It has been reported that 
TEM fails to identify at least 30% of all PCD variants (57, 87), 
such as the nexin link (88, 89) or the central pair components 
defects (90), or those associated with DNAH11 mutations  
(80, 91, 92). Moreover, only a subset of radial spokes defects are 
identified by TEM (93), while false-positive diagnosis has been 
reported in cases with isolated IDA (94). Importantly, a number 
of ciliary abnormalities including absence of the central micro-
tubular pair, disorientation of the cilia, and disarrangement of 
microtubules may be secondary to infection or inflammation 
as well (1). As secondary defects are absent after ciliogenesis 
in culture, this procedure has been recommended in order to 
distinguish between primay and secondary cilia defects (71). 
Finally, further diagnostic investigations should be performed 
in all cases with normal ultrastructure if the clinical history 
strongly suggests PCD (91).
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Direct visualization of ciliary beat pattern (CBP) and  
frequency (CBF) by HVMA should be used as part of the diag-
nostic work-up of patients suspected of having PCD and in order 
to improve diagnostic accuracy of HVMA, CBF/CBP assessment 
should be repeated after air–liquid interface culture (71). CBF 
should not be used without assessment of CBP in diagnosing 
PCD. HVMA protocols differ among centers in many respects 
including sampling techniques, microscopes and cameras, tem-
perature during analysis, software, and evaluation criteria. Videos 
are recorded using a digital high-speed video camera attached 
to an inverted phase-contrast microscope. Digital image sam-
pling was performed at 120–150 frames per second (fps) and a 
640 × 480 pixel resolution. A CBF of less than 11 beats per second 
(<11 Hz) has been suggested as a cutoff value, with only those 
with lower beat frequency proceeding to EM (95). On the other 
hand, HVMA is not sufficiently standardized to rule in or rule 
out PCD in isolation.

High-resolution immunofluorescence (IF) analysis is an 
emerging tool to investigate the subcellular localization of 
ciliary proteins in respiratory epithelia (96) (Figure 4). It reliably 
identifies all ultrastructural abnormalities which are detectable 
by TEM (96–98), and additionally abnormalities of nexin links 
components (89) and radial spoke head proteins (10, 99–101). 
This technology has been adopted by an increasing number of 

laboratories and it is likely that further development will allow to 
recognize an increasing number of PCD variants.

GeNeTiCS

Most PCD variants follow an autosomal recessive inheritance 
trait. The number of genes associated with PCD is still growing 
rapidly (Table 1).1 Some mutations leading to PCD are loss-of-
function variants (102). Missense mutations can be found in a 
minority of cases. In these instances, it is often difficult to distin-
guish disease-causing mutations from rare polymorphisms. Most 
mutations are private. Clustering of mutations in specific genetic 
regions, as it is known from other genetic disorders, is less com-
mon. There is a good correlation between specific genetic muta-
tions and their TEM, IF, and video microscopic phenotype (10). 
To date, only preliminary data have been published correlating 
genetic findings with distinct clinical phenotypes. Mutations in 
genes affecting central pair or radial spoke components (RSPH1, 
RSPH3, RSPH4A, RSPH9) as well as genes involved in the genera-
tion of multiple motile cilia (MCIDAS, CCNO) do not result in 
randomization of left/right body asymmetry. Therefore, affected 
individuals of those disease variants do not display situs abnor-
malities. This feature can be explained by the physiologic absence 
of the central pairs in the motile monocilia of the embryonic 
node. Patients with mutations in RSPH1 are reported to exhibit 
a milder clinical course (92); males with PCD due to CCDC114 
mutations do not suffer from sperm immotility and therefore are 
not infertile (103). Subjects with reduced generation of multiple 
motile cilia are likely to have a more severe respiratory disease 
phenotype with lung failure at younger age (104, 105). Finally, 
a study has showed that lung disease is heterogeneous across all 
ultrastructural and genotype groups in 118 PCD patients from 
North America, but worse in those with biallelic mutations in 
CCDC39 or CDCC40 (45).

With the support of modern high-throughput genetic technol-
ogies, it is possible to identify disease-causing biallelic mutations 
in ~70% of affected individuals. However, given the complexity 
of diagnosing PCD using multiple different and repetitive tests, 
next-generation sequencing is a cost-efficient and effective diag-
nostic approach in many instances. It is very likely that further 
advances in PCD molecular genetics will continue to facilitate 
early diagnosis and treatment.

CURReNT AND FUTURe TReATMeNT 
STRATeGieS

Currently, therapeutic strategies of PCD are not based on 
validated disease-specific recommendations. Usually, patients are 
treated according expert opinion or to available evidence for CF, 
despite differences in the pathophysiology of the two disorders 
are evident.

The mainstay of treatment for PCD involves airway clearance, 
infection control and prevention, and the elimination of exposure 
to inflammatory triggers, also including passive smoke.

1 Available from: https://www.omim.org/entry/244400 (2017).
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TABLe 1 | Genes associated with primary ciliary dyskinesia and corresponding 
ultrastructure.

Genea Axonemal/cellular structure or function

DNAH5, DNAI1, DNAI2, 
DNAL1, NME8 (TXNDC3)

Outer dynein arm (ODA) subunit

CCDC114, ARMC4, CCDC151, 
TTC25

ODA targeting/docking factor

DNAAF1 (LRRC50), DNAAF2 
(KTU), DNAAF3, HEATR2, 
LRRC6, ZMYND10, DYX1C1 
(DNAAF4), SPAG1, CCDC103, 
C21ORF59

Cytoplasmic dynein arm assembly or transport 
factor 

RSPH1, RSPH3, RSPH4A, 
RSPH9

RSPH subunit

CCDC39, CCDC40 NL/DRC factor 

CCDC164, CCDC65 NL subunit

DNAH11 ODA subunit

HYDIN CP subunit

CCNO, MCIDAS CCNO: cytoplasmic centriole assembly and 
docking factor; MCIDAS: nuclear regulator of 
CCNO and FOXJ1

OFD1, RPGR Functions related to non-motile cilia; role in 
motile cilia unknown

aReferences can be obtained from authors.

FiGURe 4 | Immunofluorescence staining of human respiratory epithelial cells with DNAH5-specific antibodies (red) and antibodies against acetylated α-tubulin 
(green). Nuclei were stained with Hoechst 33342 (blue). Overlays and bright-field images are shown on the right. Whereas in healthy human respiratory epithelial 
cells (control; upper panel), both antibodies colocalize along the entire length of the ciliary axonemes, in an individual with an outer dynein arm defect (patient; lower 
panel), DNAH5 is absent.
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Different techniques guarantee airway clearance, including 
manual chest physiotherapy, postural drainage, autogenic drain-
age, active cycle breathing, and exercise (106).

Chest physiotherapists conduct deep breathing exercises, such 
as postural drainage combined with percussion and vibration 
and forced expirations, but the exclusive need for technical 
assistance may be time-consuming or uncomfortable (107). In 
addition to forced cough and breathing techniques, a variety of 
manual devices also exists that aid patients in improving mucus 

clearance. These include positive expiratory pressure (PEP) 
valves, and mouthpiece or chest wall oscillating devices (108). PEP 
devices, which give a constant back pressure to the airways during  
expiration, provide a pressure behind the mucus that push it out 
of the lungs and is widely used also in CF patients (109). There 
is no clear evidence that PEP is a more or less effective interven-
tion than other forms of physiotherapy (110). High-frequency 
chest wall oscillation involves an inflatable vest that is attached 
to a machine, generating extrathoracic oscillations at variable 
frequencies and intensities, which are transmitted to the airways, 
promoting coughs or huffs (107). In conclusion, irrespective of 
the chosen modality and despite the lack of evidence-based com-
parisons of the various techniques, routine daily physiotherapy is 
strongly recommended in PCD (71).

Physical exercise should be prescribed to all subjects with 
obstructive pulmonary disease for improving respiratory muscle 
strength and maintaining lung health. It has been reported that a 
high proportion of PCD cases (79%) have limitations in perform-
ing vigorous activities, and approximately 50% spend less than 3 h 
per week doing physical activity, thus suggesting that PCDs are 
quite inactive (61). Performing exercise prior to airway clearance 
may more significantly enhance mucociliary clearance and is 
more effective as bronchodilator stimulus than β2-agonists drugs 
(111). Actually, compared to healthy individuals, patients with 
PCD have also significantly lower peak oxygen uptake measured 
by cicloergometry (112, 113).

Nebulized inhalation is a common procedure to help moisten 
and dilute viscous airway secretions, and thereby facilitates muco-
clearance techniques (114). Inhaled hypertonic saline is used in 
the treatment of bronchiectasis for enhancing mucociliary clear-
ance (115). In a randomized controlled trial of 7% hypertonic 
saline versus isotonic saline, adults with non-CF bronchiectasis 
reported increased ease of expectoration, reduction in antibiotics 
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use and emergency health care visits over a 3-month period (116). 
Conversely, no significant change of spirometry, as well of sputum 
colonization or quality of life, was reported (117). A recent rand-
omized controlled study of a small sample of adult PCD patients 
treated with inhaled hypertonic saline for 12  weeks neither 
improved quality of life nor significantly affected spirometry or 
airway inflammation (118). Further, larger studies also including 
children are needed to confirm these results.

During infections, DNA and actin released by neutrophils 
accumulation increase sputum viscosity in the airways. 
Recombinant human DNase I (rhDNase) cleaves extracellular 
DNA, decreasing the DNA concentration, and thereby decreas-
ing sputum viscosity (119–121). Inhaled rhDNase improves 
FEV1 percent predicted in CF patients, and CF physicians often 
recommend it in their clinical practice (122). Neutrophilic 
airway inflammation has been reported in PCD (123). Until 
now, few PCD studies have showed significant clinical benefits 
of a trial with inhaled DNase (124–126). At present, rhDNase 
is not recommended in PCD, and larger studies are needed to 
confirm its efficacy in PCD. Uridine-59-triphosphate (UTP) 
may enhance clearance during cough stimulating chloride− 
secretion and mucin releasing by goblet cells. Several years ago, 
a small study demonstrated that aerosolized UTP improves 
whole lung clearance measured by gamma scintigraphy during 
forced cough in 12 adolescents and adults with PCD, without 
any adverse effects (127). Unfortunately, no further studies were 
published on this issue. Mannitol also affects mucociliary clear-
ance and is often prescribed to CF patients because it creates an 
osmotic drive for water to move into the airway and hydrate 
secretions (128). Data that sustain inhaled mannitol in PCD 
are lacking. Mannitol 400 mg inhaled twice daily for 12 months 
in adults with clinically significant non-CF bronchiectasis did 
not reduce exacerbation rates, but quality of life significantly 
improved (129). These findings indicate that a randomized 
clinical trial of inhaled mannitol might be proposed to PCD 
patients as well.

All patients with PCD should have routine clinical visits for 
spirometry monitoring and respiratory culture surveillance 
through sputum or oropharyngeal cultures (130). At any age, a 
minimum of two to four visits per year are recommended (131), 
and in case of respiratory exacerbations, antibiotics selected 
should be prescribed accordingly to culture history and microbial 
sensitivity.

Studies of CF and non-CF bronchiectasis also including some 
patients with PCD have demonstrated that systemic antibiotics 
are effective at treating “exacerbations” of lung disease (132, 133). 
Either respiratory tract symptoms including changes in cough, 
sputum production, respiratory rate, and work of breathing, or a 
decline in FEV1% predicted may be considered as reliable markers 
of a respiratory exacerbation in PCD. While mild exacerbations 
may be treated with oral antibiotics and increased aggressive 
airway clearance, severe or refractory exacerbations may require 
intravenous antibiotics and inpatient hospitalization. A duration 
of 14–21  days of antibiotic therapy is recommended in PCD, 
according to what is reported in CF and non-CF bronchiectasis 
(134–136). The selection of antibiotics should be made on the 
basis of the most recent sputum culture results and would take 

into account the airways colonization history of the individual 
patient. Macrolides are a class of antibiotics that deserves par-
ticular attention by pulmonologists. Macrolides play antibacterial 
activity at concentrations lower than those required to kill the 
infecting or colonizing bacteria (137). In addition to this, mac-
rolides anti-inflammatory and immunomodulatory properties 
are also well recognized (138). Three randomized, double-blind, 
placebo-controlled studies of non-CF bronchiectasis, also 
including few cases with PCD demonstrated that azithromycin or 
erythromycin taken for 6–12 months led to significant decrease 
in exacerbation rate and reduced the decline in lung function 
(139–141). A PCD multicenter, double-blind, randomized, 
placebo-controlled trial is currently evaluating the efficacy of 
oral azithromycin administered three times a week for 6 months 
on the frequency of respiratory infectious exacerbations (142). 
Results will hopefully clarify whether macrolides may play a role 
also in PCD.

Cycled or regular inhaled or oral antibiotics may be a treat-
ment option in patients with moderate to severe lung disease 
that fail eradication strategies and continue to be symptomatic. 
Despite there are no published studies, inhaled antibiotics are 
also an option for PCD respiratory exacerbations, but these are 
usually reserved for patients with P. aeruginosa infection. The 
use of inhaled tobramycin (300 mg nebulized twice daily) for a 
28-day period should be considered upon the first evidence of  
P. aeruginosa growth (143).

Pulmonary surgical resection (i.e., segmentectomy or lobec-
tomy) may be considered with caution in the presence of diffuse 
lung disease and can be considered only when a disproportion-
ately burdened region of the lung has failed medical management 
of bronchiectasis, and there is a significant decline in patient’s 
health due for instance to severe hemoptysis.

If end-stage lung disease develops, lung transplantation may 
be an option in PCD. Particular attention must be payed in lung 
transplant evaluation of patients with PCD as situs abnormalities 
may pose a barrier in donor lung selection and require advanced 
surgical planning (144, 145).

The management of PCD ear and nose disease does not differ 
from that of the lung disease. Close follow-up also of ear–nose–
throat district may help undoubtedly to avoid local or systemic 
complications. Recurrent or persistent otitis media with effusion 
may lead to chronic otitis media and hearing loss, and frequent 
use of antibiotics or even middle ear surgery may be ultimately 
decided (146). Whether or not tympanostomy tube placement 
may improve hearing loss is controversial, as it significantly 
increased the risk of chronic otorrhea and infection (147). 
Patients with sinus disease refractory to medical management 
may benefit from endoscopic sinus surgery (148).

It is also critical to avoid exposure to inflammatory triggers 
such as tobacco smoke, and therefore, patients and their family 
members should receive smoking cessation counseling.

Infection prevention is strongly recommended in PCD, as 
in all chronic respiratory diseases. Children and adults with 
PCD have increased risk for pneumococcal disease (148), and 
therefore, CV13 vaccinations are recommended followed by 
PPSV23 vaccination. Influenza vaccines are also recommended 
on an annual basis (149), and additional vaccinations are 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


9

Mirra et al. Update on Primary Ciliary Dyskinesia

Frontiers in Pediatrics | www.frontiersin.org June 2017 | Volume 5 | Article 135

recommended as per the routine schedules of patients’ geo-
graphic regions of treatment.

As far as the future, an improved understanding of the under-
lying genetics and phenotyping of PCD will also hopefully lead 
to novel therapeutic strategies. A great expectation has originated 
from the recent study by Pifferi et al. who first applied the “gene 
editing” to PCD; thus, they restored DNAH11 gene function 
ex vivo by replacing the inactivating mutation with wild-type 
sequence in the diseased cell (150). A new exciting era is cheer-
fully rising from genetic studies that will result in improving the 
outcome of affected patients.

The optimal integration of multiple skills in an enlarged team, 
which hopefully includes pediatricians, pulmonologists, chest 
physiotherapists, geneticists, biologists, cardiologists, radiolo-
gists, andrologists, and ENT surgeons, is essential to provide the 
most appropriate care to children and adults with PCD. All these 
specialists do have the unique opportunity to play an integrated 
role in the multidisciplinary approach to the disease.

PSYCHOLOGiCAL iSSUeS

Physicians who take care of children with PCD should take into 
valuable account the psychosocial impact of the disease. PCD 
leads to chronic respiratory symptoms and progressive loss of 
lung function, and this has a great impact on patients’ health 
and on style and quality of life of their families (151). As a 
chronic disorder, PCD is a stressful condition particular during 

adolescence and young adulthood because of the psychological 
effects of the chronic burden on the intrafamiliar relationships. 
Fortunately, patients who are diagnosed early, and hence 
receive more treatment for their condition, have better clinical 
outcome (152).
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