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a b s t r a c t

The work presents the qualitative analysis of the free boundary value problem
related to the biosorption process in multispecies biofilms. In the framework of
continuum biofilm modeling, the mathematical problem consists of a system of
nonlinear hyperbolic partial differential equations for microbial species growth and
spreading, a system of semilinear parabolic partial differential equations describing
the substrate trends and a system of semilinear parabolic partial differential
equations accounting for the diffusion, reaction and biosorption of different agents
on the various biofilm constituents. Two systems of nonlinear hyperbolic partial
differential equations have been considered as well for modeling the dynamics of
the free and bounded sorption sites. The free boundary evolution is regulated by a
nonlinear ordinary differential equation. Overall, this leads to a free boundary value
problem essentially hyperbolic. The main result is the existence and uniqueness of
the solutions to the stated free boundary value problem, which have been derived by
converting the partial differential equations to Volterra integral equations and then
using the fixed point theorem. Moreover, the work is completed with numerical
simulations for a real case examining the growth of a heterotrophic–autotrophic
biofilm devoted to wastewater treatment and acting as a sorbing material for heavy
metal biosorption.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the years, biofilms have been recognized as the most prevalent form of microbial life in various
habitats with medical, industrial, and ecological relevance [1]. Biofilms are mainly constituted by bacterial
cells of a single or multiple different species in proximity one to another, associated to a solid surface or
phase inter-phase and embedded in a self-produced primarily polysaccharide matrix [2]. The interspecies
interactions [3,4], the presence of a multitasking matrix [5] and the structure itself, provide to the biofilm
several capabilities, such as increased tolerance against antimicrobial agents [6] and protozoan grazing [7],
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improved degradation of organic compounds, high sorption properties for a variety of recalcitrant or slow-
degrading compounds, e.g. toxic metal ions and xenobiotics, which are mainly exploited in the field of
bioremediation and wastewater treatment [8]. The use of biomass as sorbents for the removal and recovery
of organic and inorganic substances in gaseous, soluble or insoluble forms is known as biosorption [9].
The term traditionally refers to the passive physico-chemical metabolism-independent process, involving
a solid phase (biosorbent) and a liquid phase containing the dissolved or suspended species to be sorbed
(sorbate) (e.g. metals, dyes, fluoride, pharmaceuticals, phenols) and resulting in an accumulation at the
sorbate–sorbent interface [10]. This relatively new process has become during the last years one of the
most promising and cost-effective alternative technologies for the removal and recovery of a wide range
of organic and inorganic compounds from industrial effluents and natural waters as it is characterized by
a low cost, high removal efficiency, reduced chemical use, reuse potential of biomaterials and nutrients,
and possibility of metal recovery [11]. Various materials of biological origin can be used as biosorbents,
including plant biomass, bacteria, fungi, and algae, etc. [12]. Dead biomass has been preferred in most of
experimental studies due to the following advantages: absence of toxicity limitations; easy absorbance and
recovery of biosorbed metals; easy regeneration and reuse of biomass; possibility of easy immobilization of
dead cells; easier mathematical modeling of metal uptake [10]. However, additional benefits might result
from the metabolic activities (respiration, nutrient uptake, EPS, metabolite release and oxido-reductive
transformations) of living organisms which might alter the microenvironment around the cells and contribute
to the overall removal process. Biofilms have drawn particular interest in this context due to the abundant
binding site concentration in both microbial cell walls and extracellular polymeric substances and the natural
absence of toxicity limitations. The binding mechanism of the sorbate onto the biomass surface can be
performed by many mechanisms occurring under different operating and environmental conditions, including
electrostatic interactions, covalent binding, ions exchange, microprecipitation, chelation and complexation
[13]. Biosorption efficiency is affected by various environmental factors, such as pH, which rules metal
mobility and speciation, temperature, with an optimal value ranging between 20 and 35 C, and the co-
presence of multiple heavy metals. Besides the factors above mentioned, the amount of sorbent used
significantly affects process efficiency and stability as a higher sorbent concentration increases the availability
of active sites that can effectively bind metal ions [13]. Although the high number of experimental studies
on biosorption developed during the last decays, several aspects still need to be clarified for the scale-up of
the process at the industrial scale.

In this context, mathematical modeling appears as a support to gain essential information for the
identification of the key factors affecting biosorption efficiency and stability [14]. Due to process similarities to
adsorption, conventional equilibrium and kinetics models have been adapted to the needs of the mathematical
description of biosorption and applied to a wide range of batch experimental situations (see [13,15,16] for a
recent overview). For single-metal solutions, the most widely used isotherm models are the two-parameter
models of Langmuir and Freundlich, which correlate the sorbed and solute sorbate concentration in the
liquid phase at equilibrium for constant environmental parameters. These models were originally derived
for non-biological systems and are based on assumptions that are quite simplistic for such complex systems.
They are not able to reproduce the mechanisms of solute uptake, but they have been widely recognized
as efficient tools to provide a suitable description of the experimental behavior. Kinetic models are usually
aimed at describing the behavior of the sorption system on time [17] and have been commonly applied to
study the contribution of the main rate controlling steps (i.e. bulk diffusion; film diffusion; intraparticle
diffusion; chemical reaction) invariably involved in the sorption process [13]. They usually come in the form
of generally highly simplified pseudo-first and second order kinetic equations. The most used kinetic model is
the Weber–Morris intraparticle diffusion model which describes well the kinetics of biosorption for the first
10 min of the process [10]. Mathematical models for continuous biosorption systems have been developed as
well: they usually refer to a flow-through fixed-bed bioreactor configuration and have been originally derived
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for research on activated carbon sorption, ion exchange, or chromatographic applications. The most used
models include the Bohart–Adams, Thomas, Wolborska, Yoon–Nelson, Modified dose–response, and Clark
models. Generally, they have been developed to predict the breakthrough curves [13,15] neglecting biofilm
dynamics. To better explore the complex relationships which establish between the biosorbent and the
sorbate and elucidate the effects that the environmental or operational conditions, including the biological
kinetics factors, exert on biosorption systems, more comprehensive and accurate mechanistic models need
to be developed [12]. To the best of our knowledge, a first attempt on this direction has been made by
the authors in [14], where a general mechanistic model accounting for the biosorption process of heavy
metals on the different components (e.g. EPS, active microbial species, inert) of a multispecies biofilm has
been presented. This 1D model has been conceived in the framework of continuum mathematical modeling
of biofilm growth [18–20] and explicitly accounts for the diffusion and reaction of heavy metals within
the biofilm matrix. The heavy metal diffusion–biosorption has been modeled by the well known diffusion–
reaction equations, in which the reaction terms are functions of the number of free binding sites on the
constituting biofilm components. Each biofilm component is characterized by the presence of a specific
number of sorption sites, which can be free or occupied and are quantified as volume fractions. Their
dynamics have been explicitly tracked. The model has been applied to a case of engineering interest which
addresses the biosorption problem of a single metal on the EPS matrix of a multispecies biofilm. The model
in [14] has been generalized in [21] to predict the fate of an arbitrary number of sorbates (organic/inorganic
pollutants) in a biofilm system in the context of bioremediation and account for the formation of free binding
sites due to biofilm expansion. The hyperbolic equations governing the dynamics of the microbial species
and the free and occupied binding sites constituting the biofilm, as well as the parabolic equations for
the diffusion/reaction of the dissolved substrates and sorbates have been derived from mass conservation
principles in 1D and then generalized to 3D. The effects that sorbates might exert on the bacterial metabolism
have been taken into account by considering a direct dependence of the growing rates on the free sorbate
concentrations within the biofilm. Numerical simulations have been performed for two special cases which
account for the dynamics of a free sorbate component diffusing in a multispecies biofilm and interacting with
specific binding sites and the fate of two different contaminants in the same biofilm system, each of them
sorbing on a specific biofilm component. However, the question of existence and uniqueness of the solutions
has remained open, even in 1D case. The current paper is aimed at answering this question.

In this study, the biosorption model in [14] and its extension in [21] will be recalled and qualitatively
studied. The mathematical problem is constituted by a system of nonlinear hyperbolic partial differential
equations for the growth of the n microbial species constituting the biofilm, two systems of hyperbolic partial
differential equations for the dynamics of the free and occupied sorption sites on the n biofilm components,
a system of semilinear parabolic partial differential equations describing the diffusion and reaction of p

substrates and a system of parabolic partial differential equations governing the diffusion and sorption of l

sorbates. Overall this leads to a free boundary problem, essentially hyperbolic. The uniqueness and existence
result to the free boundary value problem is obtained converting the differential systems to Volterra equations
by introducing the characteristics lines and then using the fixed point theorem. Numerical simulations related
to a special biological case where the sorbate component is acting as a stimulating agent have been performed.
This is for instance the case of trace metals, which are often of vital importance for the enzyme system in
bioreactors [22]. Two simulation experiments have been considered with the aim of assessing the effect of
model parameters on biosorption efficiency. The work is organized as follows. In Section 2, the mathematical
model is presented, the variables defined, the governing equations and the related initial and boundary
conditions are introduced and discussed. In Section 3, the integral equations are derived by introducing
the method of characteristics. Section 4 is devoted to the uniqueness and existence theorem. In Section 5,
numerical simulations are developed for real cases of biological and engineering interest.
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2. Biosorption model

2.1. Overview

In this section, the biosorption model in [14] and its extension in [21] examining the growth and sorption
phenomena characterizing a multispecies biofilm proliferating in a liquid environment containing sorbates,
in some cases relevant to bacterial metabolism, is studied. In the framework of 1D continuum modeling, the
biofilm is assumed as a densely packed layer of bacterial cells growing mainly in the direction perpendicular
to the attachment surface, with z denoting the coordinate across the surface, and constituted by n microbial
species characterized by specific metabolic activities. Following Wanner and Gujer approach [18], biomass
quantities are represented as microbial species concentrations Xi(z, t) or equivalently as volume fractions
fi(z, t), the latter indicating the fraction of available space at a particular location that is occupied by species
i [23]. The biomass generated from cell growth is displaced in z direction according to a biomass advective
velocity u(z, t), assumed equal for all the microbial species. The location of the biofilm/liquid interface L(t),
herein denoted as moving boundary, is updated according to both the increased presence of biomass and
the erosion of biofilm surface, usually named detachment process. The dynamics of bacterial cells inhabiting
the biofilm matrix are strictly connected to nutrient (dissolved substrate) diffusion from the bulk liquid to
the biofilm, which is explicitly taken into account. The bioconversion of substrates occurring within the
biofilm matrix is modeled as well. The sorbate(s) is modeled as a dissolved substrate, diffusing from the
bulk liquid within the biofilm matrix and enhancing or inhibiting bacterial activity based on the microbial
diversity. Beyond being involved in bacterial metabolism, sorbates are subjected to sorption phenomena
on the various biomass components, each one owing specific sorption features. In particular, each biofilm
component is characterized by the presence of a certain number of sorption (binding) sites which are agent
specific and can be categorized in two status: occupied (binded) or free. According to mass balance laws,
the free and occupied binding sites are quantified as volume fractions Θi and Θ̄i respectively. Desorption
phenomena are taken into account as well.

2.2. Free boundary value problem

The main processes related to the sorption phenomena, including biofilm and substrate dynamics, are
described by the following nonlinear partial differential equations. The unknown variables that are solved
for in this model and the notations used in the following equations are reported in Table 1.

∂Xi

∂t
+ ∂

∂z
(uXi) = ρirM,i(z, t, X, S, µ), i = 1, . . . , n, 0 ≤ z ≤ L(t), t > 0, (2.1)

∂u

∂z
=

n∑
i=1

rM,i(z, t, X, S, µ), 0 < z ≤ L(t), t ≥ 0, (2.2)

L̇(t) = u(L(t), t) + σa(t) − σd(L(t)), t > 0, (2.3)

∂ Θi

∂t
+ ∂

∂z
(uΘi) = rM,i(z, t, X, S, µ) + rΘ,i(z, t, µ,Θ , Θ̄), i = 1, . . . , n, 0 ≤ z ≤ L(t), t > 0, (2.4)

∂ Θ̄i

∂t
+ ∂

∂z
(uΘ̄i) = rΘ̄,i(z, t, µ,Θ , Θ̄), i = 1, . . . , n, 0 ≤ z ≤ L(t), t > 0, (2.5)

∂µk

∂t
− ∂

∂z

(
Dk

∂µk

∂z

)
= rµ,k(z, t, X, S, µ,Θ , Θ̄), k = 1, . . . , l, 0 < z < L(t), t > 0, (2.6)

∂Sj

∂t
− ∂

∂z

(
DS,j

∂Sj

∂z

)
= rS,j(z, t, X, S, µ), j = 1, . . . , p, 0 < z < L(t), t > 0. (2.7)
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Table 1
Notations.

n Number of microbial species
Xi(z, t) = ρifi Concentration of microbial species i, X = (X1, . . . , Xn)
ρi Constant density
fi(z, t) Volume fraction of microbial species i,

∑n

i=1
fi = 1

u(z, t) Advective biomass velocity
Θi Volume fraction of free binding sites on microbial species i,

Θ = (Θ1, . . . , Θn)
Θ̄i Volume fraction of occupied binding sites on microbial

species i, Θ̄ = (Θ̄1, . . . , Θ̄n)
l Number of sorbates
µk(z, t) Concentration of sorbate k, µ = (µ1, . . . , µl)
Dk Diffusion coefficient of sorbate k
p Number of substrates
Sj(z, t) Concentration of substrate j, S = (S1, . . . , Sp)
DS,j Diffusion coefficient of substrate j

rM,i(z, t, X, S, µ) Specific growth rate of species i

rΘ,i(z, t, µ, Θ, Θ̄) Specific sorption/desorption rate for free binding sites on
microbial species i

rΘ̄,i(z, t, µ, Θ, Θ̄) Specific sorption/desorption rate for occupied binding sites
on microbial species i

rµ,k(z, t, X, S, µ, Θ, Θ̄) Reaction rate of sorbate k
rS,j(z, t, X, S, µ) Production/consumption rate of substrate j
L(t) Biofilm thickness, free boundary
σa(t) Attachment biomass flux from bulk liquid to biofilm
σd(L(t)) Detachment biomass flux from biofilm to bulk liquid

The nonlinear hyperbolic partial differential equations (2.1) are derived from local mass balance and
govern the dynamics of the microbial species constituting the biofilm whose spreading has been modeled
as an advective transport mechanism. Beyond depending on the microbial distribution and substrate
concentrations within the biofilm, the specific growth rate terms rM,i are functions of the sorbate trends
as well, due to the influence such substances might exert on microbial metabolism (see for example metal
ions etc.). Eq. (2.2) regulates the advective velocity at which the microbial mass is displaced on z direction.
Such equation is obtained by summing (2.1) on i and considering the constrain

∑n
i=1fi = 1. The moving

boundary evolution is governed by Eq. (2.3), which accounts for the expansion of the microbial mass and the
exchanging fluxes between the biofilm and the bulk liquid, here denoted σa(t) and σd(L(t)). The nonlinear
hyperbolic partial differential equations (2.4) and (2.5) derive from local mass balance and govern the
dynamics of the free and occupied binding sites respectively [21]. In particular, the reaction term rM,i in
Eqs. (2.4) reproduces in this case the formation of free binding sites directly connected to the production
of new biomass, while the term rΘ,i accounts for the sorption/desorption phenomena and thus depends on
the concentration of sorbate within the biofilm. Similarly, the term r

Θ̄,i
represents a production/loss rate

for the occupied binding sites due to sorption/desorption phenomena such that r
Θ̄,i

= −rΘ,i. Note that
the displacement velocity for the free and occupied binding sites in Eqs. (2.4) and (2.5) is the same as the
advective velocity u(z, t) which regulates biofilm expansion as the sorption sites can be seen as an intrinsic
characteristic of the various biofilm components. The semilinear parabolic partial differential equations (2.6)
and (2.7) govern the dynamics of the sorbates and dissolved substrates which diffuse from the bulk liquid
within the biofilm, where they take part to microbial metabolism or are subjected to sorption phenomena on
the biofilm matrix constituents. Considering the difference in process time scales, it is common practice in
biofilm modeling to assume a steady-state profile for dissolved substrate concentrations in the domain on the
time scale of biomass growth [23]. Therefore, the following semilinear elliptic partial differential equations
are considered for the free sorbate and substrate concentrations within the biofilm:

− Dk

∂2µk

∂z2 = rµ,k(z, X, S, µ,Θ , Θ̄), k = 1, . . . , l, 0 < z < L(t), (2.8)

− DS,j

∂2Sj

∂z2 = rS,j(z, X, S, µ), j = 1, . . . , p, 0 < z < L(t). (2.9)
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2.3. Initial–boundary conditions

The following initial and boundary conditions are prescribed for the system of nonlinear partial differential
equations (2.1)–(2.5) and (2.8)–(2.9).

Xi(z, 0) = φi(z), i = 1, . . . , n, 0 ≤ z ≤ L0, (2.10)

u(0, t) = 0, t ≥ 0, L(0) = L0, (2.11)

Θi(z, 0) = Θi0(z), Θ̄i(z, 0) = Θ̄i0(z), i = 1, . . . , n, 0 ≤ z ≤ L0, (2.12)

∂µk

∂z
(0, t) = 0, µk(L(t), t) = µkL(t), t > 0, k = 1, . . . , l, (2.13)

∂Sj

∂z
(0, t) = 0, Sj(L(t), t) = SjL(t), t > 0, j = 1, . . . , p. (2.14)

Eq. (2.10) designates the initial condition for Xi, with φi(z) being general positive functions representing
the initial biofilm composition in terms of microbial species. Condition (2.11)1 for Eq. (2.2) comes from no
flux condition on substratum. In Eq. (2.11)2 the initial value for L(t) is introduced. The functions Θi0(z)
and Θ̄i0(z) in Eq. (2.12) designate the initial distribution of the free and occupied binding sites. For a virgin
biofilm, which has not experienced sorption phenomena, the initial volume fraction of occupied binding sites
for the various biofilm components can be set to zero, while Θi0(z) is assumed equal to the initial volume
fraction of the ith microbial species. For µk(z, t), no substrate flux is assumed on the substratum z = 0
(2.13)1 and on the free boundary z = L(t) Dirichlet conditions are prescribed (2.13)2. The functions µkL(t)
represent the sorbate concentrations within the bulk liquid. They can be prescribed or derived from a mass
balance on the liquid compartment. Similar boundary conditions are prescribed for the functions Sj(z, t),
where SjL(t) represent the substrate concentrations in the liquid environment.

3. Volterra integral equations

The partial differential equations introduced in section 2 are here converted to a system of Volterra
integral equations as follows. Introducing the characteristic-like lines z = c(z0, t) defined as

∂c

∂t
(z0, t) = u(c(z0, t), t), c(z0, 0) = z0, 0 ≤ z0 ≤ L0, t > 0, (3.1)

and considering (2.11)1, the nonlinear hyperbolic partial differential equations (2.1) are rewritten as a system
of ordinary differential equations

d

dt
Xi(c(z0, t), t) = Fi(c(z0, t), t, X(c(z0, t), t), S(c(z0, t), t), µ(c(z0, t), t)), 0 ≤ z0 ≤ L0, t > 0, (3.2)

with

Fi = ρirM,i(c(z0, t), t, X(c(z0, t), t), S(c(z0, t), t), µ(c(z0, t), t)) − Xi(c(z0, t), t)
n∑

i=1
rM,i, (3.3)

and initial conditions

Xi(c(z0, 0), 0) = φi(z0), 0 ≤ z0 ≤ L0. (3.4)
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Then, the following integral equations for Xi along the characteristics are obtained

Xi(c(z0, t), t) = φi(z0) +
∫ t

0
Fi(c(z0, τ), τ, X(c(z0, τ), τ), S(c(z0, τ), τ), µ(c(z0, τ), τ))dτ,

i = 1, . . . , n, 0 ≤ z0 ≤ L0, t > 0. (3.5)

Similarly, the following integral equations for Θi(c(z0, t), t) and Θ̄i(c(z0, t), t) are obtained

Θi(c(z0, t), t) = Θi0(z0) +
∫ t

0
Ti(c(z0, τ), τ, X(c(z0, τ), τ), S(c(z0, τ), τ), µ(c(z0, τ), τ),

Θ(c(z0, τ), τ), Θ̄(c(z0, τ), τ))dτ, i = 1, . . . , n, 0 ≤ z0 ≤ L0, t > 0, (3.6)

where

Ti = rM,i(c(z0, τ), τ, X(c(z0, τ), τ), S(c(z0, τ), τ), µ(c(z0, τ), τ))

+ rΘ,i(c(z0, τ), τ, µ(c(z0, τ), τ),Θ(c(z0, τ), τ), Θ̄(c(z0, τ), τ)) − Θi(c(z0, τ), τ)
n∑

i=1
rM,i, (3.7)

Θ̄i(c(z0, t), t) = Θ̄i0(z0) +
∫ t

0
T̄i(c(z0, τ), τ, µ(c(z0, τ), τ),Θ(c(z0, τ), τ), Θ̄(c(z0, τ), τ))dτ,

i = 1, . . . , n, 0 ≤ z0 ≤ L0, t > 0, (3.8)

where

T̄i = rΘ̄,i(c(z0, τ), τ, µ(c(z0, τ), τ),Θ(c(z0, τ), τ), Θ̄(c(z0, τ), τ))

− Θ̄i(c(z0, τ), τ)
n∑

i=1
rM,i. (3.9)

The following integral equation for c(z0, t) is derived from (3.1) and (2.2)

c(z0, t) = z0 +
∫ t

0
dτ

∫ z0

0

n∑
i=1

rM,i(c(ζ0, τ), τ, X(c(ζ0, τ), τ), S(c(ζ0, τ), τ), µ(c(ζ0, τ), τ)) ∂c

∂ζ0
(ζ0, τ) dζ0,

0 ≤ z0 ≤ L0, t > 0. (3.10)

From (3.10) it follows easily

∂c

∂z0
(z0, t) = 1 +

∫ t

0

n∑
i=1

rM,i(c(z0, τ), τ, X(c(z0, τ), τ), S(c(z0, τ), τ), µ(c(z0, τ), τ)) ∂c

∂z0
(z0, τ)dτ. (3.11)

The integral equations for Sj(z, t) are obtained by integrating (2.9) and considering the boundary
conditions (2.14)2,3

Sj(z, t) = SjL(t) + D−1
S,j

∫ L

z

dη

∫ η

0
rS,j(ζ, X(ζ, t), S(ζ, t), µ(ζ, t))dζ,

j = 1, . . . , p, 0 < z < L(t), t > 0. (3.12)

Eqs. (3.12) are equivalent to the following integral equations

Sj(z, t) = SjL(t) + D−1
S,j

∫ z

0
(L − z)rS,j(ζ, X(ζ, t), S(ζ, t), µ(ζ, t))dζ

+ D−1
S,j

∫ L

z

(L − ζ)rS,j(ζ, X(ζ, t), S(ζ, t), µ(ζ, t))dζ, j = 1, . . . , p, 0 < z < L(t), t > 0.

(3.13)
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Similarly, the following integral equations for µk are obtained

µk(z, t) = µkL(t) + D−1
k

∫ z

0
(L − z)rµ,k(ζ, X(ζ, t), S(ζ, t), µ(ζ, t),Θ(ζ, t), Θ̄(ζ, t))dζ

+ D−1
k

∫ L

z

(L − ζ)rµ,k(ζ, X(ζ, t), S(ζ, t), µ(ζ, t),Θ(ζ, t), Θ̄(ζ, t))dζ,

k = 1, . . . , l, 0 < z < L(t), t > 0. (3.14)

The integral equation for L(t) is obtained from (2.3) with initial condition (2.11)2

L(t) = L0 +
∫ t

0
u(L(τ), τ) dτ +

∫ t

0
σa(τ) dτ −

∫ t

0
σd(L(τ)) dτ, t > 0. (3.15)

4. Existence and uniqueness of solutions

An existence and uniqueness result for the integral system (3.5), (3.6), (3.8), (3.10), (3.11), (3.13), (3.14),
(3.15) is derived in this section under the hypotheses σd = σa = 0. Note that in this case, the free boundary
coincides with the characteristic line z = c(L0, t), whose evolution is governed by Eq. (3.10). In addition,
considering z = c(z0, t) and introducing the change of variable ζ = c(ζ0, t), ζ0 < L0, Eqs. (3.13) and (3.14)
can be written as

Sj(c(z0, t), t) = SjL(t)

+ D−1
S,j

∫ z0

0
(c(L0, t) − c(z0, t))rS,j(c(ζ0, t), X(c(ζ0, t), t), S(c(ζ0, t), t), µ(c(ζ0, t), t))

× ∂c

∂ζ0
(ζ0, t)dζ0 + D−1

S,j

∫ L0

z0

(c(L0, t) − ζ0)rS,j(c(ζ0, t), X(c(ζ0, t), t), S(c(ζ0, t), t),

µ(c(ζ0, t), t)) ∂c

∂ζ0
(ζ0, t)dζ0, j = 1, . . . , m, 0 < z0 < L0, t > 0. (4.1)

µk(c(z0, t), t) = µkL(t) + D−1
k

∫ z0

0
(c(L0, t) − c(z0, t))rµ,k(c(ζ0, t), X(c(ζ0, t), t), S(c(ζ0, t), t),

µ(c(ζ0, t), t),Θ(c(ζ0, t), t),

Θ̄(c(ζ0, t), t)) ∂c

∂ζ0
(ζ0, t)dζ0 + D−1

k

∫ L0

z0

(c(L0, t) − ζ0)rµ,k(c(ζ0, t), X(c(ζ0, t), t), S(c(ζ0, t), t),

µ(c(ζ0, t), t),Θ(c(ζ0, t), t), Θ̄(c(ζ0, t), t)) ∂c

∂ζ0
(ζ0, t)dζ0, k = 1, . . . , l, 0 < z0 < L0, t > 0.

(4.2)

By setting

xi(z0, t) = Xi(c(z0, t), t), i = 1, . . . , n, x = (x1, . . . , xn), (4.3)

ϑi(z0, t) = Θi(c(z0, t), t), i = 1, . . . , n, ϑ = (ϑ1, . . . , ϑn), (4.4)

ϑ̄i(z0, t) = Θ̄i(c(z0, t), t), i = 1, . . . , n, ϑ̄ = (ϑ̄1, . . . , ϑ̄n), (4.5)

sj(z0, t) = Sj(c(z0, t), t), j = 1, . . . , p, s = (s1, . . . , sp), (4.6)

mk(z0, t) = µk(c(z0, t), t), k = 1, . . . , l, m = (m1, . . . , ml), (4.7)
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and introducing the vector of unknown variables x∗ = (x, ϑ, ϑ̄, c, ∂c/∂z0, s, m) such that

x∗
i = xi, x∗

n+i = ϑi, x∗
2n+i = ϑ̄i, i = 1, . . . , n,

x∗
3n+1 = c, x∗

3n+2 = ∂c/∂z0, x∗
3n+2+j = sj , j = 1, . . . , p, x∗

3n+2+p+k = mk, k = 1, . . . , l.

the integral equations (3.5), (3.6), (3.8), (3.10), (3.11), (4.1), (4.2) are converted to the following more
compact equations

x∗
i (z0, t) = φi(z0) +

∫ t

0
Fi(τ, x∗(z0, τ))dτ, i = 1, . . . , n, 0 ≤ z0 ≤ L0, (4.8)

x∗
n+i(z0, t) = Θi0(z0) +

∫ t

0
Fn+i(τ, x∗(z0, τ))dτ, i = 1, . . . , n, 0 ≤ z0 ≤ L0, (4.9)

where

Fn+i(τ, x∗(z0, τ)) = Ti(c(z0, τ), τ, x(z0, τ), s(z0, τ), m(z0, τ), ϑ(z0, τ), ϑ̄(z0, τ)),

x∗
2n+i(z0, t) = Θ̄i0(z0) +

∫ t

0
F2n+i(τ, x∗(z0, τ))dτ, i = 1, . . . , n, 0 ≤ z0 ≤ L0, (4.10)

where

F2n+i(τ, x∗(z0, τ)) = T̄i(c(z0, τ), τ, m(z0, τ), ϑ(z0, τ), ϑ̄(z0, τ)),

x∗
3n+1(z0, t) = z0 +

∫ t

0
dτ

∫ z0

0
F3n+1(τ, x∗(ζ0, τ))dζ0, 0 ≤ z0 ≤ L0, (4.11)

where

F3n+1(τ, x∗(ζ0, τ)) =
n∑

i=1
rM,i(c(ζ0, τ), τ, x(ζ0, τ), s(ζ0, τ), m(ζ0, τ)) ∂c

∂ζ0
(ζ0, τ),

x∗
3n+2(z0, t) = 1 +

∫ t

0
F3n+2(τ, x∗(z0, τ))dτ, 0 ≤ z0 ≤ L0, (4.12)

where

F3n+2(τ, x∗(z0, τ)) =
n∑

i=1
rM,i(c(z0, τ), τ, x(z0, τ), s(z0, τ), m(z0, τ)) ∂c

∂z0
(z0, τ),

x∗
3n+2+j(z0, t) = SjL(t) +

∫ z0

0
F 1

3n+2+j(x∗(ζ0, t))dζ0 +
∫ L0

z0

F 2
3n+2+j(x∗(ζ0, t))dζ0,

j = 1, . . . , p, 0 < z0 < L0, (4.13)

where

F 1
3n+2+j(x∗(ζ0, t)) = D−1

S,j(x∗
3n+1(L0, t) − x∗

3n+1(z0, t))rS,j(x∗
3n+1(ζ0, t), x(ζ0, t), s(ζ0, t), m(ζ0, t)) ∂c

∂ζ0
(ζ0, t),

F 2
3n+2+j(x∗(ζ0, t)) = D−1

S,j(x∗
3n+1(L0, t) − ζ0)rS,j(x∗

3n+1(ζ0, t), x(ζ0, t), s(ζ0, t), m(ζ0, t)) ∂c

∂ζ0
(ζ0, t),

x∗
3n+2+p+k(z0, t) = µjL(t) +

∫ z0

0
F 1

3n+2+m+k(x∗(ζ0, t))dζ0 +
∫ L0

z0

F 2
3n+2+m+k(x∗(ζ0, t))dζ0,

k = 1, . . . , l, 0 < z0 < L0, (4.14)
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where

F 1
3n+2+p+k(x∗(ζ0, t)) = D−1

k (x∗
3n+1(L0, t) − x∗

3n+1(z0, t))rµ,k(x∗
3n+1(ζ0, t), x(ζ0, t), s(ζ0, t),

m(ζ0, t), ϑ(ζ0, t), ϑ̄(ζ0, t)) ∂c

∂ζ0
(ζ0, t),

F 2
3n+2+p+k(x∗(ζ0, t)) = D−1

k (x∗
3n+1(L0, t) − ζ0)rµ,k(x∗

3n+1(ζ0, t), x(ζ0, t), s(ζ0, t),

m(ζ0, t), ϑ(ζ0, t), ϑ̄(ζ0, t)) ∂c

∂ζ0
(ζ0, t).

Consider the map y = Ax∗, where A(x∗) designates the right hand side of Eqs. (4.8)–(4.14). Denote by
V the vector space of the continuous functions x∗

h, h = 1, . . . , 3n + 2 + p + l, on I = [0, L0] × [0, T ]. The
following results can be proved.

Lemma. Assume that:
(i) The functions x∗

h(z0, t) are continuous on C(I), I = [0, L0] × [0, T1], L0 > 0, T1 > 0, h = 1, . . . , 3n +
2 + p + l;

(ii) φi(z0),Θi0(z0), Θ̄i0(z0) are positive continuous functions on C(I), I = [0, L0] × [0, T1], L0 > 0, T1 >

0, i = 1, . . . , n;
(iii) SjL, j = 1, . . . , p and µkL, k = 1, . . . , l are positive continuous functions;
(iv) |x∗

i − φi| ≤ Ki, i = 1, . . . , n; |x∗
n+i − Θi0| ≤ Kn+i, i = 1, . . . , n; |x∗

2n+i − Θ̄i0| ≤ K2n+i, i = 1, . . . , n;
|x∗

3n+1−z0| ≤ K3n+1; 1 ≤ x∗
3n+2 ≤ 1+K3n+2; |x∗

3n+2+j −SjL| ≤ K3n+2+j , j = 1, . . . , p; |x∗
3n+2+p+k −µjL| ≤

K3n+2+p+k, k = 1, . . . , l, where Kh = constant > 0;
(v) G =

∑n
i=1(rM,i(c(z0, t), t, x(z0, t), s(z0, t), m(z0, t))) is essentially positive;

(vi) Fh are continuous and bounded functions with

Mh = max|Fh|, h = 1, . . ., 3n + 2,

M1
3n+2+j = max|F 1

3n+2+j |, M2
3n+2+j = max|F 2

3n+2+j |,
M3n+2+j = max{M1

3n+2+j , M2
3n+2+j}, j = 1, . . ., p,

M1
3n+2+p+k = max|F 1

3n+2+p+k|, M2
3n+2+p+k = max|F 2

3n+2+p+k|,
M3n+2+p+k = max{M1

3n+2+p+k, M2
3n+2+p+k}, k = 1, . . ., l,

when (z0, t) ∈ [0, L0] × [0, T1] and the functions x∗
h satisfy the assumptions (i)–(v). Under the hypotheses

(i)–(vi) A maps V into itself.

Proof. Consider

T = min
{

T1,
K1

M1
, . . .,

K3n

M3n
,

K3n+1

L0M3n+2
,

K3n+2

M3n+2

}
.

Let K3n+2+j = 2M3n+2+jL0 and K3n+2+p+k = 2M3n+2+p+kL0. Firstly, hypothesis (v), jointly with
x∗

3n+2 ≥ 1, implies F3n+2 ≥ 0.
Then,

|x∗
i − φi| ≤ MiT ≤ Ki, i = 1, . . . , n,

|x∗
n+i − Θi0| ≤ MiT ≤ Kn+i, i = 1, . . . , n,
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|x∗
2n+i − Θ̄i0| ≤ MiT ≤ K2n+i, i = 1, . . . , n,

|x∗
3n+1 − z0| ≤ M3n+1TL0 ≤ K3n+1,

1 ≤ x∗
3n+2 ≤ 1 + M3n+2T ≤ 1 + K3n+2,

|x∗
3n+2+j − SjL| ≤ 2M3n+2+jL0 ≤ K3n+2+j , j = 1, . . . , p,

|x∗
3n+2+p+k − µjL| ≤ 2M3n+2+p+kL0 ≤ K3n+2+p+k, k = 1, . . . , l,

which is the desired result.

Theorem. Under the same hypotheses as the Lemma there exists a unique continuous solution x∗
h(z0, t), h =

1, . . . , 3n + 2 + p + l, 0 ≤ z0 ≤ L0, 0 ≤ t ≤ T to system (4.8)–(4.14).

Proof. Consider x̃∗ ∈ V with ỹ = Ax̃∗. In the Lemma, it has been shown that A maps V into itself. Let
us now prove that A is a contractive map.

Assume Fh Lipschitz continuous functions with respect to x∗
h, h = 1, . . . , 3n + 2 + p + l

|Fi(τ, x∗) − Fi(τ, x̃∗)| ≤ λi

3n+2+p+l∑
h=1

|x∗
h − x̃∗

h|, i = 1, . . . , 3n + 2,

|F 1
i (τ, x∗) − F 1

i (τ, x̃∗)| ≤ λ1
i

3n+2+p+l∑
h=1

|x∗
h − x̃∗

h|, i = 3n + 3, . . . , 3n + 2 + p + l,

|F 2
i (τ, x∗) − F 2

i (τ, x̃∗)| ≤ λ2
i

3n+2+p+l∑
h=1

|x∗
h − x̃∗

h|, i = 3n + 3, . . . , 3n + 2 + p + l.

and introduce the norm

∥x∗∥ =
3n+2+p+l∑

h=1
max

I
exp(−γt)|x∗

h|,

with γ a positive constant.
It follows:

|yi − ỹi| exp(−γt) ≤ (λi/γ)∥x∗ − x̃∗∥, i = 1, . . ., 3n,

|y3n+1 − ỹ3n+1| exp(−γt) ≤ (λn+1L0/γ)∥x∗ − x̃∗∥,

|y3n+2 − ỹ3n+2| exp(−γt) ≤ (λn+2/γ)∥x∗ − x̃∗∥,

|yi − ỹi| exp(−γt) ≤ (λ1
i + λ2

i )L0∥x∗ − x̃∗∥, i = 3n + 3, . . ., 3n + 2 + p + l,

Hence,

∥y∗ − ỹ∗∥ ≤ Λ∥x∗ − x̃∗∥,

where

Λ = Λ1 + Λ2,

Λ1 = 1
γ

( 3n∑
i=1

λi + λ3n+1L0 + λ3n+2

)
, Λ2 = L0

3n+2+p+l∑
i=3n+3

(λ1
i + λ2

i ).

Selecting γ such that Λ1 < ϵ, ∀ϵ > 0 and L0 small enough such that

L0 ≤ (1 − ϵ)
(3n+2+p+l∑

i=3n+3
(λ1

i + λ2
i )
)−1

,

then, Λ < 1 and the theorem is proved.
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5. Numerical applications to a heterotrophic–autotrophic biofilm system for wastewater treatment

In this section, we consider numerical solutions to the free boundary problem stated above. The numerical
analysis has been developed by using the method of characteristics as in [24,25] and an original software
has been properly set-up. Accuracy was checked by comparison to the equation

∑n
i=1fi(z, t) = 1. The

mathematical model presented in its general form in Section 2 has been applied to the well-known
case of a heterotrophic–autotrophic biofilm growing in a liquid environment and devoted to wastewater
treatment [26]. The biofilm is supposed to act as a biosorbent for the entrapment of heavy metals in trace
concentration. Beyond being involved in sorption processes, the heavy metals might operate as stimulating or
inhibiting agents for the biofilm metabolism itself, as reported in [22]. Two microbial species are considered:
heterotrophic bacteria X1 = ρ1f1 using organic carbon S1 as substrate and autotrophic bacteria X2 = ρ2f2
growing on ammonium S2 as substrate. The decay of these microbial species produces residual inert microbial
biomass, which is treated as an additional particulate component X3 = ρ3f3. Extracellular polymeric
substances (EPS) X4 = ρ4f4 production has been also taken into account following the unified theory
for microbial products developed in [27]. Four reacting components are simultaneously considered: organic
carbon S1, expressed in terms of COD, ammonium S2, oxygen S3 and the heavy metal µ1. Oxygen is used
for ammonium and organic carbon oxidation. Ammonium, organic carbon and oxygen are provided from
the bulk liquid at a constant concentration. The heavy metal concentration within the liquid environment is
supposed constant on time as well. The biomass increase is determined by the metabolism of the dissolved
components. In particular, the autotrophic bacteria X2 metabolize ammonium S2 while the heterotrophs X1
consume organic carbon S1. Both microbial groups use oxygen S3 as electron acceptor. The heavy metal µ1
has been considered as a co-substrate for the microbial metabolism of both heterotrophic and autotrophic
bacteria. Moreover, the biosorption process has been considered irreversible and selective for the binding
sites present on biomass component X1. The biofilm growth is governed by Eqs. (2.1), rewritten here in
terms of bacterial volume fractions for convenience

∂fi

∂t
+ ∂

∂z
(ufi) = rM,i(z, t, X, S, µ), i = 1, . . . , 4, 0 ≤ z ≤ L(t), t > 0. (5.1)

The biomass growth rates are expressed as:

rM,1 = ((1 − k1)m∗
1(S, µ) − c1)f1, (5.2)

rM,2 = ((1 − k2)m∗
2(S, µ) − c2)f2, (5.3)

while for inert residues

rM,3 = c1f1 + c2f2, (5.4)

and EPS

rM,4 = k1m∗
1f1 + k2m∗

2f2, (5.5)

where m1, m2, are the net biomass growth rates for biomass X1, X2; c1 and c2 are the decay rates for
the heterotrophic and autotrophic microorganisms; k1 and k2 are the growth-associated EPS formation
coefficients.

The net biomass growth rates are given by:

m∗
1 = µmax,1

S1

K1,1 + S1

S3

K1,3 + S3

µ1

Kµ,1 + µ1
, (5.6)

m∗
2 = µmax,2

S2

K2,2 + S2

S3

K2,3 + S3

µ1

Kµ,2 + µ1
, (5.7)
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Table 2
Parameter values used for numerical simulations.

Parameter Symbol Unit Value Reference

Maximum growth rate of X1 µmax,1 d−1 4.8 [18]
Maximum growth rate of X2 µmax,2 d−1 0.95 [18]
Half saturation constant of X1 on S1 K1,1 mg/L 5 [18]
Half saturation constant of X1 on S3 K1,3 mg/L 0.1 [18]
Half saturation constant of X2 on S2 K2,2 mg/L 1 [18]
Half saturation constant of X2 on S3 K2,3 mg/L 0.1 [18]
Half saturation constant of X1 on µ1 Kµ,1 mg/L 10−7 This study
Half saturation constant of X2 on µ1 Kµ,2 mg/L 10−7 This study
Yield of X1 on S1 Y1 gbiomass/gsubstrate 0.4 [18]
Yield of X2 on S2 Y2 gbiomass/gsubstrate 0.22 [18]
Yield of X1 on µ1 Yµ,1 gbiomass/gsubstrate 105 This study
Yield of X2 on µ1 Yµ,2 gbiomass/gsubstrate 105 This study
Microbial decay constant of X1 c1 d−1 0.05 [27]
Microbial decay constant of X2 c2 d−1 0.05 This study
Growth-associated EPS formation coefficient for X1 k1 – 0.663 This study
Growth-associated EPS formation coefficient for X2 k2 – 0.663 This study
Biosorption yield of µ1 on X1 Yads gmetal/nsites 1 This study
Erosion parameter λ m−1d−1 1250 This study

Table 3
Initial–boundary conditions used for numerical simulations.

Parameter Symbol Unit Value

Initial Biofilm thickness L0 µm 300
Initial Volume Fraction of f1 f1(z, 0) – 0.4
Initial Volume Fraction of f2 f2(z, 0) – 0.5
Initial Volume Fraction of f3 f3(z, 0) – 0.0
Initial Volume Fraction of f4 f4(z, 0) – 0.1
Initial concentration of S1 S1,0(z) mg/L 0.0
Initial concentration of S2 S2,0(z) mg/L 0.0
Initial concentration of S3 S3,0(z) mg/L 0.0
Initial concentration of µ1 µ1,0(z) mg/L 0.0
S1 concentration at z = L S1L mg/L 20.0
S2 concentration at z = L S2L mg/L 2.0
S3 concentration at z = L S3L mg/L 8.0
µ1 concentration at z = L µ1L mg/L 4 ∗ 10−4

where µmax,i denotes the maximum net growth rate for biomass i, Ki,j the affinity constant of substrate
j for biomass i, Kµ,i the half saturation constant of species i for µ1. The values assumed for the former
parameters in the numerical simulations are taken from the literature and are reported in Table 2.

The following initial conditions will be considered for Eqs. (5.1)

fi(z, 0) = fi,0(z), 0 ≤ z ≤ L0, i = 1, 2, 3, 4. (5.8)

The functions fi,0(z), i = 1, . . . , 4, represent the initial volume fractions of biofilm components and their
values are reported in Table 3.

The reaction rate for Θ1 in Eqs. (2.4) accounts for a non-reversible mechanism of metal sorption on the
component X1 and is expressed as

rΘ,1 = −kadsµ1Θ1, (5.9)

with kads being the sorption constant for the heavy metal µ1 on biomass component X1, whose value is
reported in Table 2. As above mentioned, the production rate for the volume fraction of occupied binding
sites rΘ̄,1 is the opposite of rΘ,1. Moreover, the sorption rates for all the other biomass components
rΘ,i, i = 2, . . . , 4 have been set to zero. Similarly to fi, the following initial conditions have been set to
Θi

Θi(z, 0) = Θi,0(z) = fi,0(z), 0 ≤ z ≤ L0, i = 1, 2, 3, 4. (5.10)
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Fig. 5.1. Microbial species distribution (A1, A2, A3, A4), substrate trends (B1, B2, B3, B4), free and adsorbed heavy metal
concentrations (C1, C2, C3, C4) after 1, 10, 20 and 100 days simulation time within a heterotrophic–autotrophic biofilm system
devoted to wastewater treatment (kads = 5 ∗ 103, N1 = 1). µ1 concentration is multiplied by a factor of 103.

Organic carbon, ammonium and oxygen dynamics are governed by Eqs. (2.7), where the net conversion
rates rS,j(z, t, X, S, µ) for substrate j = 1, 2, 3 are expressed by:

rS,1 = − 1
Y1

m∗
1X1, (5.11)

rS,2 = − 1
Y2

m∗
2X2, (5.12)

rS,3 = −(1 − k1) (1 − Y1)
Y1

m∗
1X1 − (1 − k2) (1 − Y2)

Y2
m∗

2X2, (5.13)

where Yi denotes the yield for biomass i (Table 2). The following initial–boundary conditions will be
considered for Eqs. (2.7)

Sj(z, 0) = Sj0(z), 0 ≤ z ≤ L0, j = 1, 2, 3 (5.14)

∂Sj

∂z
(0, t) = 0, Sj(L(t), t) = SjL, 0 < t ≤ T, (5.15)

where SjL denotes the constant ammonium, organic carbon and oxygen level within the bulk liquid, whose
value is reported in Table 3.
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Fig. 5.2. Microbial species distribution (A1, A2, A3, A4), substrate trends (B1, B2, B3, B4), free and adsorbed heavy metal
concentrations (C1, C2, C3, C4) after 1, 10, 20 and 100 days simulation time within a heterotrophic–autotrophic biofilm system
devoted to wastewater treatment (kads = 5 ∗ 103, N1 = 5). µ1 concentration is multiplied by a factor of 104.

The heavy metal dynamics are governed by Eq. (2.6), where the net consumption rate rµ,1 can be expressed
as:

rµ,1 = − m∗
1

Yµ,1
X1 − m∗

2
Yµ,2

X2 − YadsN1kadsµ1Θ1, (5.16)

where Yµ,i denotes the yield of biomass Xi on the heavy metal µ1, N1 the concentration of sorption sites
on biomass component X1 and Yads the biosorption yield expressed in terms of grams of heavy metal on
number of sites (Table 2).

The following initial–boundary conditions will be considered for Eqs. (2.6)

µ1(z, 0) = 0, 0 ≤ z ≤ L0, (5.17)

∂µk

∂z
(0, t) = 0, µk(L(t), t) = µkL, 0 < t ≤ T, (5.18)

where µkL denotes the heavy metal concentration in the bulk liquid, assumed constant over time and whose
value is reported in Table 3.

Biosorption efficiency is significantly influenced by many parameters such as environmental factors, the
sorbing material and the metal species to be removed, and highly depends on the type of microbial cultures
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Fig. 5.3. Microbial species distribution (A1, A2, A3, A4), substrate trends (B1, B2, B3, B4), free and adsorbed heavy metal
concentrations (C1,C2,C3,C4) after 1, 10, 20 and 100 days simulation time within a heterotrophic–autotrophic biofilm system
devoted to wastewater treatment (kads = 5 ∗ 103, N1 = 50). µ1 concentration is multiplied by a factor of 104.

involved. In this context, the main goals for the computational studies are to determine how successful

biosorption depends on some parameters of the system. For this reason we vary the density of binding sites

N1 on X1 and the sorption constant kads and we use the term sites density to refer to the applications

with a variable sorption sites density but constant kads and the phrase sorption constant to refer to the

second protocol. A summarizing panel of the numerical simulations with the relative value associated to the

constants N1 and kads is reported in Table 4.

Table 4
Summary of the simulation studies.

STUDY I STUDY II

Set # N1 Set # kads

1.1 1 2.1 5 ∗ 104

1.2 5 2.2 5 ∗ 102

1.3 50 2.3 5
1.4 500

kads = 5 ∗ 103 N1 = 2
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Fig. 5.4. Microbial species distribution (A1, A2, A3, A4), substrate trends (B1, B2, B3, B4), free and adsorbed heavy metal
concentrations (C1, C2, C3, C4) after 1, 10, 20 and 100 days simulation time within a heterotrophic–autotrophic biofilm system
devoted to wastewater treatment (kads = 5 ∗ 103, N1 = 500). µ1 concentration is multiplied by a factor of 105.

5.1. Study I: sites density

Model outcomes for each simulation experiment have been summarized in Figs. 5.1–5.4. More precisely,
simulation results have been reported for each investigated biofilm system in terms of microbial species
distribution, substrate concentration trends, free and sorbed heavy metal within the biofilm for each specific
simulation time. In Fig. 5.1(A1, A2, A3, A4) a reduction in microbial diversity occurs: X2 which are initially
present within the biofilm are outcompeted by X1 due to the higher growth rate and the heavy metal
limitation. Indeed, after 100 days simulation time (Fig. 5.1(A4)) X1 represent the most abundant microbial
species all over the biofilm, while X2 occupy the inner part of the biofilm. Due to microbial decay, the inert
concentration increases over time, reaching the highest concentration close to the substratum. For what
concerns substrate profiles, S1 is found to decrease within the biofilm due to the microbial metabolism; S2 is
mostly consumed during the first simulation days due to the higher X2 concentration while it keeps almost
constant when the microbial diversity decreases (Fig. 5.1(B1, B2, B3, B4)). S3 drops to zero in the inner
part of the biofilm. The heavy metal µ1 shows a fully penetrated profile: it acts as a stimulating agent for
both X1 and X2 metabolisms and adsorbs progressively on X1. The concentration of the sorbed heavy metal
is reported in Fig. 5.1(C1, C2, C3, C4) as well. In Figs. 5.2–5.4(A1, A2, A3, A4), it is possible to note that
a higher N1 leads to the complete loss of X2 and a reduced biofilm thickness. In particular, Fig. 5.2(A4)
shows that after 100 days simulation time the biofilm is essentially constituted by X1, X3 and X4, the latter
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Fig. 5.5. Microbial species distribution (A1, A2, A3, A4), substrate trends (B1, B2, B3, B4), free and adsorbed heavy metal
concentrations (C1, C2, C3, C4) after 1, 10, 20 and 100 days simulation time within a heterotrophic–autotrophic biofilm system
devoted to wastewater treatment (kads = 5 ∗ 104, N1 = 2). µ1 concentration is multiplied by a factor of 104.

in small concentration in the outmost part of the biofilm. S1 and S3 show a fully penetrated profile while S2

remains constant after 10 days simulation time (Fig. 5.2(B1, B2, B3, B4)). The heavy metal concentration
drops to zero in the middle of the biofilm matrix as it progressively adsorbs on the outmost part of the biofilm
where it is contemporarily used for X1 metabolism (Fig. 5.2(C1, C2, C3, C4)). The lack of heavy metal in
the inner part of the biofilm represents one of the cues inducing the loss of X2, as µ1 acts as a stimulating
agent for both X1 and X2. The sorbed heavy metal concentration keeps higher in the outmost part of the
biofilm for all the simulation times (Fig. 5.2(C1, C2, C3, C4)). For N1 = 50 and N1 = 500, a similar trend
can be observed. However, when N1 increases, biofilm thickness decreases as µ1 concentration drops to zero
in the outmost part of the biofilm as a consequence of the progressive sorption on the heterotrophic biofilm
fraction (Figs. 5.3–5.4). X2 are completely out-competed after 100 days simulation time (Figs. 5.3–5.4(A4)),
while X1, which initially occupy the whole biofilm matrix, start to proliferate over time only in the outmost
part of the biofilm, where there is nutrient abundance and heavy metal availability (Figs. 5.3–5.4(A1, A2,
A3, A4)). After 100 days simulation time, the biofilm is so partitioned: the outmost part is microbially
active while the inner part is mainly constituted by inert material, which derives from the bacterial decay
(Figs. 5.3–5.4(A1, A2, A3, A4)). For what concerns substrate profiles, for both the simulation set 1.3 and
set 1.4 Sj , j = 1, . . . , 3 show a fully penetrated profile. In particular, S2 keeps constant for all the simulation
times; S1 and S3 are slightly consumed due to the reduced X1 concentration within the biofilm matrix (Figs.
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Fig. 5.6. Microbial species distribution (A1, A2, A3, A4), substrate trends (B1, B2, B3, B4), free and adsorbed heavy metal
concentrations (C1, C2, C3, C4) after 1, 10, 20 and 100 days simulation time within a heterotrophic–autotrophic biofilm system
devoted to wastewater treatment (kads = 5 ∗ 102, N1 = 2). µ1 concentration is multiplied by a factor of 103.

5.3–5.4(B1, B2, B3, B4)). The heavy metal adsorbs progressively in the outmost part of the biofilm where
the highest concentration of sorbed heavy metal can be also found (Figs. 5.3–5.4(C1, C2, C3, C4)).

5.2. Study II: biosorption constant

Simulation study II analyzes the effect of kads on biosorption efficiency and biofilm dynamics. Similarly to
the previous numerical experiment, model outcomes for each simulation experiment have been summarized
in Figs. 5.5–5.7, where the microbial species distribution, substrate concentration trends, free and sorbed
heavy metal within the biofilm for each specific biofilm system and simulation time have been reported. In
Fig. 5.5 simulation results for the highest biosorption constant have been summarized. Microbial diversity
is found again to decrease over time and X2 is completely outcompeted after 100 days simulation time
(Fig. 5.5(A1, A2, A3, A4)). The biofilm is essentially constituted by X1, which proliferates thanks to the
nutrient abundance and heavy metal availability in the outmost part of the biofilm, while the biofilm layers
close to the substratum are dominated by X3 (Fig. 5.5(A1, A2, A3, A4)). All the substrates Sj , j = 1, . . . , 3
show a fully penetrated profile all over time: S1 and S3 are consumed for X1 metabolism while due to the
loss of X2, S2 keeps constant after 100 days simulation time (Fig. 5.5(B1, B2, B3, B4)). The heavy metal
concentration shows a typical parabolic profile: it decreases going from the bulk liquid to the substratum
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Fig. 5.7. Microbial species distribution (A1, A2, A3, A4), substrate trends (B1, B2, B3, B4), free and adsorbed heavy metal
concentrations (C1, C2, C3, C4) after 1, 10, 20 and 100 days simulation time within a heterotrophic–autotrophic biofilm system
devoted to wastewater treatment (kads = 5, N1 = 2). µ1 concentration is multiplied by a factor of 102.

and drops to zero in the middle part of the biofilm as it is consumed by X1 and progressively adsorbs
on it. For what concerns the sorbed heavy metal concentration, it is possible to note that it keeps higher
on the free boundary where there is the highest percentage of free binding sites and free heavy metal
concentration (Fig. 5.5(C1, C2, C3, C4)). A reduction in biosorption constant leads to a higher microbial
diversity and biofilm thickness, a result which is complementary to the previous simulation study confirming
model consistency. In Fig. 5.6(A1, A2, A3, A4) it is possible to note that X2 decreases over time but it
is not completely outcompeted by X1. Indeed, X2 is able to proliferate in the central/inner part of the
biofilm where the formation of an environmental microniche suitable for its growth occurs. This microniche
is characterized by the presence in abundance of S2 and µ1 while S1 is close to zero (Fig. 5.6(B1, B2, B3,
B4)). As for all the reported simulation sets, the inert represents the most abundant biofilm component in
the inner part of the matrix (Fig. 5.6(A1, A2, A3, A4)). S1 and S3 are mostly consumed in the outmost
part of the biofilm and thus their profiles drop to zero close to the substratum. Conversely, S2 shows a
fully penetrated profile for all the simulation times (Fig. 5.6(B1, B2, B3, B4)). Similarly to S2, the heavy
metal penetrates the whole biofilm and shows a typical parabolic profile: it is consumed by X1 and X2
and progressively adsorbs on X1, accumulating in the form of sorbed heavy metal in the inner part of the
biofilm (Fig. 5.6(C1, C2, C3, C4)). A similar result is achieved by further decreasing kads in simulation set
2.3 (Fig. 5.7). The main difference can be observed in Fig. 5.7(C1, C2, C3, C4) in terms of free heavy metal
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profile, whose concentration keeps higher all over the biofilm, and sorbed heavy metal which shows a similar
trend but in lower concentration than the previous simulation sets.

6. Conclusion

In this work, the qualitative analysis of the free boundary problem related to the biosorption process
in multispecies biofilms has been performed. The model takes into account the dynamics of both biofilm
components, nutrients and dissolved agents, the latter diffusing from the bulk liquid within the biofilm
matrix, where they might participate to the microbial metabolism or be adsorbed on the various biofilm
constituents. The dynamics of the sorption sites have been explicitly modeled by considering two systems of
nonlinear hyperbolic partial differential equations. An existence and uniqueness result has been proved for
the derived free boundary value problem by using the method of characteristics and the fixed point theorem.
Numerical simulations related to a real biofilm system dedicated to wastewater treatment and acting as a
sorbing agent for heavy metals have been performed. The behavior of the model under different parameter
regimes has been analyzed. Simulation results demonstrate the underlying conclusion that biofilm systems
can be effectively used in the context of bioremediation and the presented mathematical model can be used
as a predictive tool to develop specific treatment plans.
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