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Abstract
Otolith morphogenesis of the brook lamprey, Lampetra planeri, was analysed from larval to adult stages. The brook lamprey
remains juvenile for about 4 years, facilitating analysis of otoliths maturation that permits to identify relevant evolutionary
traits in this primitive species and to compare our results with more evoluted species of vertebrate taxa. We combined
histochemical, immunohistochemical, scanning electron microscopy, elemental analysis and X-ray diffraction of lamprey
otoliths to establish possible relationships between otolithic mass, individual crystals, the otolithic organic substance that
binds individual otoconia together and the inorganic elements that mineralize the lamprey otoliths. Histochemical analysis
of the otoliths suggests that mineralization occurs gradually, beginning near the apex of the secretory epithelium. Then, the
otoconia increase in size by deposition of layers of a dense crystalline substance. Immunohistochemical reactivity of calcium
binding proteins indicates that calmodulin, calbindin, S-100 and parvalbumin are parts of the uncalcified organic mass that
holds otoconia together. Imaging of the immunoreactivity of each protein by Confocal Laser Scanning Microscopy in
ammocoete at the first year of the larval stage shows weak reaction products which, however, gradually increase in intensity,
with peak value in ammocoete at the fourth year of the larval stage.
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Introduction

The primitive vertebrate Lampetra planeri (Block,

1784) analysed in this study is a non-parasitic

freshwater lamprey which lives in soft bottoms of

brooks and rivers. The number of larval stages in this

species spread in central and western Europe, varies

between 4 and 6 according to geographical position,

and about half a year for the adult stage (Hardisty

1986). Our specimens belong to a population

collected in the river Sele, Italy. According to the

examinations of combined data reported in two

recent contributions, Bianco et al. (2004) and

Bianco (2006), four larval stages were identified

and the ranges are reported in Table I.

The brook lamprey spends its larval life in the soft

bottom of brooks and rivers, the larval growth period

ends at metamorphosis. Sexual maturity is reached in

the first spring following metamorphosis, when the

adult, which does not feed, spawns and dies after a few

months (Hardisty 1951). Lamprey larvae, called

ammocoetes, are excellent monitors for changes in

the environment that are detrimental to their survival.

The long juvenile period of Lampetra allows the

detailed analysis of otolith development (Lychakov

1995), which in evolutively newer species, occurs very

rapidly, compressed in short critical periods of

embryonic development, thereby making analysis

difficult (Riley et al. 1997). The placement of lampreys

among primitive vertebrates concerns also the organi-

zation of the inner ear (Retzius 1881; de Burlet &

Versteegh 1930; Lowenstein et al. 1968; Thornhill

1972; Hoshino & Kodama 1976; Popper 1981; Popper

& Hoxter 1981, 1987; Popper & Platt 1983; Avallone
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et al. 2005), in particular that of their sensory epithelia.

The typical arrangement of linear and angular accel-

eration detectors that is found in mammals and birds

consists of three semicircular canals and two maculae:

the saccule and utricle. In lampreys, instead, there are

only two semicircular canals and a single elongated

epithelium or macula communis, which is covered by a

mass of calcific otoliths (Tret’yakov 1915; Carlström

1963; Fermin et al. 1998).

Despite the primitive organization of the lamprey

otoliths, most of the components of the gravity-

sensing structures overlaying the hair cells are

identical to those of newer species with respect to

the effectiveness of gravity detection in their native

environment. The greatest difference between the

otolith of lampreys and of more recent species is the

mode of cation accumulation, which is in turn

dictated by refinement of the endolymphatic fluid,

its molecular composition, and/or ionic concentra-

tion (Peterson et al. 1978; Hara et al. 1989;

Wroblewski 1993; Lychakov & Lavrova 1994;

Payan et al. 1997). While the nature of the

extracellular receptors to which calcium binding

proteins (CBPs) attach remains elusive, there is

consensus among many investigators that CBPs are

important components of sensory and non-sensory

structures (Braun 1990; Celio 1990; Kevetter &

Leonard 2002), vestibular organs (Yamagishi et al.

1993; Fermin & Martin 1995; Baird et al. 1997;

Fermin et al. 1997; Balsamo et al. 2000; Abbate et al.

2002), and inner ear in general (Winsky et al. 1989;

Kerschbaum & Hermann 1993; Balsamo et al. 2000;

Nakazawa 2001). All CBPs are homologous proteins

sharing high sequence identity (Braun 1990;

Moncrief et al. 1990; Kerschbaum & Hermann

1993; Yamagishi et al. 1993; Zimmer et al. 1995;

Kawasaki et al. 1998), and cross-react with poly-

clonal antisera produced from different species.

The non-cellular otolithic mass is composed of

proteins and an acidic mucosubstance, containing

sulphate and carboxy groups (Marmo 1982), glyco-

proteins (Fermin et al. 1990, 1995) and starches

(Kuijpers & Manni 1986). All these molecules are

made by nonsensory cells of the end organs

(Tachibana & Morioka 1992; Davis et al. 1997;

Borelli et al. 2001; Thalmann et al. 2001). Various

isoforms of the same family or differing types of CBP

react with cellular and non-cellular components of

the otoliths in older and younger species such as

cichlid fish (Presson 1994), other teleosts (Abbate

et al. 2002), amphibians (Hackney et al. 1993;

Kerschbaum & Hermann 1993; Baird et al. 1997;

Steyger et al. 1997; Heller et al. 2002), lizard

(Piscopo et al. 2004), rodents (Chard et al. 1993;

Dememes et al. 1993; Raymond et al. 1993;

Yamagishi et al. 1993; Nakazawa et al. 1995;

Karita et al. 1999; Furness et al. 2002), birds

(Fermin & Igarashi 1985; Heil & Scheich 1986;

Hiel et al. 2002), other mammals (Pack & Slepecky

1995; Imamura & Adams 1996; Coppens et al.

2000, 2001, 2003), primates (Usami et al. 1995),

and humans (Yamashita et al. 1995).

This study was undertaken to evaluate the otolith

morphogenesis of lamprey, L. planeri, from larval to

adult stages. We combined histochemical, immuno-

histochemical, scanning electron microscopy obser-

vations, elemental analysis and X-ray diffraction of

lamprey otoliths to determine the relationships that

may exist between otolithic mass, individual crystals,

the otolithic organic substance that binds individual

otoconia together and the inorganic elements that

mineralize the lamprey otoliths.

To this aim, in this study we mapped the

distribution of the CBPs: calmodulin (CaM),

calbindin D28K (CaB), S-100 and parvalbumin

(PA) in the non-cellular structures of the end organs

of lampreys and determined the expression of these

CBPs during the first four years of the ammocoete

larval stage and in the adult. In the otolithic

membrane of lampreys, only single amorphous

otoliths are found (Tret’yakov 1915; Carlström

1963; Volk 1986; Lychakov 1988, 1995; Fermin et

al 1998). We performed studies by SEM on otolith

morphogenesis of L. planeri during the first four

years of the ammocoete larval stage and in the adult.

Moreover, using histochemical methods, we studied

the early appearance of glycoproteins, glycosamino-

glycans and calcium. We also established the areas

and the stages in which the otolith matrix precursors

appear, glycoproteins and glycosaminoglycans, and

the possible changes in their secretion during larval

development.

Table I. Range of total length in ammocoetes of L. planeri at four larval stages and adult collected between March–June (2003) and

February–April (2006) in rivers Sele of Avellino Province and rivers of Cilento and Vallo di Diano National Park.

Stage

Ammocoetes

First year

Ammocoetes

Second year

Ammocoetes

Third year

Ammocoetes

Fourth year Adult

Specimen (no.) 36 66 88 65 8

Total length (mm) 40–80 70–118 90–135 125–164 89–158
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Materials and methods

The evaluation of lamprey otoliths was carried out

on five specimens for each of four ammocoete larval

stages and on five adult L. planeri. Specimens were

collected from basins of rivers Sele and Bussento in

Campania region, National Park of Cilento and

Vallo di Diano, southern Italy, on February and

March 2005. Animals were deeply anaesthetized

with Ms 222, sacrificed, and the cartilaginous otic

capsule exposed.

Light microscopy

The cartilaginous otic capsules were fixed in 4%

paraformaldehyde in 0.1M phosphate-buffered sal-

ine (PBS) pH 7.4 for 3 h at 4uC. After several washes

in the same buffer, the membranous labyrinths were

dissected, dehydrated, and paraffin embedded.

Sections (4 mm) were prepared and stained with

periodic acid–Schiff (PAS), Alcian blue–Neutral red

or von-Kossa solutions (Luna 1968). Observations

were carried out with a Zeiss Axioskop microscope,

Figure 1. SEM: otoliths in adult stage of L. planeri. Two otoliths, a larger one measuring 400–450 mm in diameter and a smaller one

measuring 90–100 mm are present. The otoliths are conically shaped. The largest otoconia were arranged on the top of the otolith (arrows)

(a); the smallest otoconia (arrow) were located on the side of the otolith facing the sensory epithelium (b); the otolith appears to be an

aggregation of numerous otoconia forming a homogeneous stone (arrow) (c); many large spherical otoconia were present on the sensory

epithelium and some appear to be fused (arrows) (d); potential precursors at the spherical otoconia are granules found near the microvilli of

the supporting cells (arrows) (e) and not over the hair cells bundles (arrow) (f).
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Figure 2. SEM: progressive increase in size of the larger otolith: a–c, in ammocoete at the first year of the larval stage; d–f, in ammocoete at

the second year of the larval stage; g–i, in ammocoete at the third year of the larval stage; l–n, in ammocoete at the fourth year of the larval

stage. 2A shows the progressive increase in size of large otolith from the first year to the adult stage. Values represent means¡SE.
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using the KS300 software to acquire microscope

images and ProPalette 8000 for digital colour film

recorder.

X-ray diffraction

Unfixed otoliths were attached to the tips of glass

fibres using a collodion wire holder. Diffraction

patterns (Glauert 1972) were recorded with Ni-

filtered Cu-Ka radiation (1.5418 Å, 40 kV and

30 mA) using a Debye–Scherrer camera with a

diameter of 114.6 mm and evaluated for changes.

Confocal laser scanning microscopy (CLSM)

The cartilaginous otic capsules were fixed in 100%

methanol at 4uC for 2 h after which the otoliths were

dissected. For the identification of calcium binding

proteins in the otolithic organic mass, the otoliths were

treated with 0.25% Triton X-100 and 0.1% Tween 20

in 0.1 M PBS, pH 7.4 for 1 h. After several washes in

PBS, the otoliths were incubated overnight at 4uC,

with primary antibodies against CaB, rabbit anti-

calbindin-D28K (KD-15) 1:500, (Sigma, St. Louis,

MO, USA) and against CaM, mouse monoclonal anti-

calmodulin (clone 6D4), 1:1000 (Sigma). After

transfer in PBS (6 washes610 min), the otoliths were

incubated in the same buffer for 2 h at room

temperature in a moist, dark chamber in the presence

of FITC-labelled sheep anti-rabbit IgG (1:10) to

reveal antibodies against CaB, and in the presence of

rodhamine-labelled sheep anti-mouse IgG (1:10), to

reveal anti CaM mAb. After washing again several

times in PBS, the otoliths were mounted on slides

using Diazabicyclo-octane (DABCO) (Sigma). The

same procedure was followed using primary antibodies

against S-100, rabbit anti-S-100 (1:80; Chemicon),

and against PA, using mouse monoclonal anti-

Parvalbumin (clone PARV-19) (1:2,000; Sigma).

Figure 3. SEM: progressive increase in size of the smaller otolith:

a,b, in ammocoete at the first year of the larval stage; c,d, in

ammocoete at the second year of the larval stage; e,f, in

ammocoete at the third year of the larval stage; g,h, in ammocoete

at the fourth year of the larval stage. 3A shows the progressive

increase in size of small otolith from the first year to the adult

stage. Values represent means¡SE.

Figure 4. SEM elemental microanalysis of large otoliths. Peaks

corresponding to Ca, K, and P, are present suggesting that these

elements are components of the Lamprey otolith.
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After transfer in PBS (6 washes610 min), the otoliths

were incubated in the presence of FITC-labelled sheep

anti-rabbit IgG (1:10), to reveal antibodies against S-

100 and in presence of rodhamine-labelled sheep anti-

mouse IgG (1:10), to reveal anti-PA mAb. All

antibodies were diluted in PBS. All histochemical

incubations were done simultaneously to allow a

comparison of the staining intensity. Preimmune sera

were used as negative controls. Finally, fluorescence

observations were carried out using a confocal micro-

scope (Leica TCSNT) with laser argon-krypton

7.5 mW multilines. Focal series of horizontal planes

of sections were simultaneously monitored for FITC

using the 488-nm and 568-nm laser line, a FITC band-

pass 530/30, and a long-pass filter 590 for TRITC. The

Leica TCSNTconfocalmicroscope was equipped with

an AOTF filter. This filter minimizes cross talk during

simultaneous detection of FITC/TRITC labels.

Scanning electron microscopy (SEM)

The cartilaginous otic capsules were fixed in 2.5%

glutaraldehyde in PBS for 3 h at 4uC. After micro

dissection of the membranous labyrinth, the speci-

mens were transferred in PBS and post-fixed in 1%

OsO4 in the same buffer for 1 h at 4uC. After several

washes in PBS, the specimens were dehydrated in a

step gradient of Freon in ethanol to final 100%

Freon, then critical point dried. Specimens were

mounted on aluminium stubs, coated with gold for

about 30 s at a distance of 15 cm from the source at

40 kV and 2–3 mA. For SEM microanalysis, the

otoliths were mounted on carbon stubs without gold

coating. The observations were carried out with a

Cambridge Stereoscan 250 MK III microscope fitted

with an elemental microanalysis system.

Statistical analysis

Ten images of left and right otoliths alike for each

stage of development were used for quantitative

analysis. Statistical analysis was performed with a

single factorial analysis of variance (ANOVA). A P

value of less than 0.01 was considered to be

significant. Values represent means¡SE.

Results

SEM observations showed that all animals examined

(ammocoetes at either larval or in adult stages) had

Figure 5. PAS staining shows an accumulation of glycoproteins in ammocoete at the second year of the larval stage. a, all ciliated chamber

cells are positive (asterisk); b, crista ampullaris: positive signal in the cytoplasm of sensory cells, (arrows); c, macula communis: sensory cell

cytoplasm (asterisk) and secreted vesicles (arrow) are positive; d, crista ampullaris (asterisk) and ciliated chamber (arrows).
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two otoliths, conical-shaped, one larger otolith with

maximum chord of the base measuring 400–450 mm

and one smaller with maximum chord of the base

measuring otolith 90–100 mm, in adult stage

(Figure 1a, b). During the four larval stages the sizes

of both otoliths increase (Figures 2, 3). Figures 2a

and 3a show the progressive increase in size of

otolith in ammocoete from the first year to the adult

stage. The analysis indicates that a significant

increase in size of otolith exists from the progressive

four larval stages to the adult. Values represent

means¡SE. Both otoliths were conical-shaped

(Figure 1a) and appeared to be formed by fusion of

a large number of spherical otoconia (Figure 1a, b,

d). Each otolith had a homogeneous appearance and

no boundaries were detected between the fused

otoconia (Figure 1c). Fused otoconia differed in size

such that the largest otoconia were arranged on the

top of the otoliths (Figures 1a, 2a–n) whereas the

smallest otoconia were located on the side of the

otolith facing the sensory epithelium (Figure 1b).

Moreover, SEM observations revealed the presence

of numerous, probably secretory, vesicles on the

sensory epithelium surface (Figure 1e, f), apparently

in association with the supporting microvilli rather

than the stereocilia of hair cells.

The elemental microanalysis at the SEM of

otoliths of all larval stages examined showed peaks

Figure 6. A comparison between the PAS reaction in ammocoete at the third year of the larval stage (a–c) and at the fourth year of the

larval stage (d–f), showing that PAS reaction is progressively reduced. a, crista ampullaris: positive signal is present in the cytoplasm of

sensory cells (asterisk) and secreted vesicles (arrows); b, ciliated chamber: many cells are positive (asterisk); c, macula communis: expression

is present in the cytoplasm of some sensory cells (arrow); d, crista ampullaris: PAS reaction is very reduced.; e, ciliated chamber: PAS

reaction is reduced.; f, macula communis: PAS reaction is almost absent.
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corresponding to Ca, K, and P (Figure 4). But the

peaks were absent in the small otoliths in ammocoete

at the first year of the larval stage.

The otoliths examined by X-ray diffraction were

formed by carbonate–fluorapatite, in agreement with

the JCPDS–ICDD (Joint Committee on Powder

Diffraction Standards–International Centre for

Diffraction Data) database for inorganic structures.

Their three strongest diffraction peaks were 2.69

(strong), 2.79 (medium/strong), and 2.24 (medium).

PAS revealed the presence of glycoproteins in the

cytoplasm of all cells in the ciliated chamber

(Figure 5a, d), in the cytoplasm of sensory cells at

the crista ampullaris level (Figure 5b, d), and in both

the sensory cell cytoplasm and secreted vesicles of

macula communis (Figure 5c) mainly in the early

stages of larval development. In late ammocoete

larval stages, the PAS reaction was progressively

reduced (Figure 6).

By Alcian blue–Neutral red stain, glycosaminogly-

cans were clearly present in all the examined

samples, mainly in the material over the sensory

epithelium, both of the macula communis and crista

ampullaris (Figure 7a). The von Kossa method

showed calcium in otoconia beginning in the second

larval stage (Figure 7b–d).

CLSM observations showed a weak presence of

CaB, CaM, S-100, and PA at the first larval stage

around the otoconia (Figure 8a, g, h). In the

successive larval stages, these proteins progressively

increased and, in the ammocoete at the fourth larval

stage, were present in the fibrous ground substance

that surrounded and held together the otoconia

(Figure 8b, c, d, i, l, m). In the adult stage these

CBPs were always present in the fibrous ground

substance that surrounded and held together the

otoconia but their presence was again weak

(Figure 8e, f, n). Conversely, in all larval stages

and in the adult these CBPs were not detected in the

central core of spherical otoconia.

Incubation with preimmune sera resulted in

complete lack of immunoreactivity.

Discussion

According to Lychakov (1995), during evolution,

the appearance of otolithic mass is associated with

the need of vertebrate to have a constant growing

Figure 7. a, Alcian blue–Neutral red in ammocoete at the second year of the larval stage, macula communis: glycosaminoglycans are present

on the sensory epithelium (arrow); b–d, von Kossa method reveals calcium in otoconia (arrows) of ammocoete at the second year of the

larval stage (b,c), and in ammocoete at the third year of the larval stage (d).
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and a load mass to stimulate the hair cells of the

macular epithelia. In lampreys, only amorphous

otoliths, arising from the fusion of spherical otoconia

are found in the macula of adults (Tret’yakov 1915;

Carlström 1963; Volk 1986; Fermin et al. 1998).

This arrangement resembles the incorporation of

calcium positive granules studied in avian otoconia

by Fermin and Igarashi (1985, 1986). In birds,

accretion occurs at the single crystal level, whereas in

older species accumulation occurs onto a single large

otolith. Earlier investigations on lamprey otolith

morphology and development have shown that

spherules seen at the apex of the epithelia are not

artefacts of fixation (Lychakov 1995).

In this study we find that the otoliths, examined by

X-ray diffraction, are formed by carbonate–fluor-

apatite. Considering phylogenetic position of the

lamprey, it appears likely that their otoliths may be

Figure 8. CLSM, CaB (green) and CaM (red) localization (a–f). a, in ammocoete at the first year of the larval stage both proteins are

weakly present around the otoconia; b, CaB, c, CaM, d, CaB and CaM colocalization (yellow) in ammocoete at the fourth year of the larval

stage. These proteins are present in the fibrous ground substance that surrounds and holds together the otoconia. In the adult (e, f), the

fluorescence intensity for these proteins is weak. S-100 (green) and PA (red) localization (g–n). g, in ammocoete at the first year of the larval

stage and h, in ammocoete at the second year of the larval stage, both proteins are weakly present around the otoconia; i, S-100, l, PA, m,

S-100 and PA colocalization (yellow) in ammocoete at the fourth year of the larval stage. These proteins are present in the fibrous ground

substance that surrounds and holds together the otoconia; n, adult stage, the presence of these proteins is again weak.
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the nontetrapod ancestral otoliths. The different

chemical composition between otoliths of lamprey

and fishes (calcium carbonate) may be due to the

need of continuously adding more weight to the

otolithic mass and permitted otoliths to remain

unfused as well.

Our histochemical data, together with SEM and

microanalysis suggest that the round vesicles on the

sensory epithelium surface may be an immature

organic matrix. Therefore, it is possible that the

otoliths arise near the apex of the sensory cells as

small organic masses, followed by precocious miner-

alization. Indeed, microanalysis data show peaks

corresponding to Ca in ammocoete even at the

second larval stage. Otoconia mineralization in the

large precedes that in the small otoliths. Our

microanalysis data, in fact, show that the peaks

corresponding to Ca are absent in the small otolith

of ammocoete at the second larval stage. Then, in

agreement with the von Kossa stain, otoliths appear

to increase in size by both repeated deposition of

layers of a dense crystalline substance and the fusion

of otoconia. Moreover, we propose also that the

lamprey otoliths increase in size by binding of newly

formed spherical otoconia to the base of the otolith.

The contribution of glycoproteins to the formation

of the organic matrix that initiates otolith formation

and holds otoconia together has been demonstrated

in different species and reviewed (Fermin et al.

1998). The data presented here suggest that the

organic matrix of this very old fish contains varying

amounts of glycoproteins at different times during

development. This indicates the existence of a

differential accumulation of glycomolecules at cri-

tical stages of otolith mineralization, a point that has

been made in earlier otolith analysis of mammalian

and non-mammalian species.

CLSM data show the localization of CaM, CaB,

S-100, and PA proteins in a fibrous ground

substance that surrounds and holds together the

otoconia. These proteins were not detected in the

otoconia central core. According to Usami et al.

(1995), a Ca2+ transport mechanism in the otoconial

membrane would be required to form otoconia. As

shown in the confocal images of the otolith in the

early larval stages, the CBPs used in our studies and

that have already been shown by others to be part of

the otoliths of birds and mammals, are differently

expressed and only in the organic matrix that

surrounds and holds together the otoconia. The

presence of these four calcium-binding proteins,

CaM, CaB, S-100 and PA, in the otolith indicates

that they participate in the formation and miner-

alization of otoconia. Moreover, the unequal dis-

tribution of these proteins in the otoconia during

larval development and in the adult might be due to

a progressive increase in size of the otoliths spanning

the four years of the ammocoete larval stage. Since

the adult lamprey settles on the substrate, repro-

duces, stops feeding and generally becomes inactive

to let itself die, we suppose that otoconia turnover is

similarly reduced like the other physiological func-

tions. In the lamprey, as in other more recent

species, CBPs are expressed more abundantly earlier

in the formation of otoconia and otolith than later in

development and when animals reach adulthood.

Thus, CBP contribution to inner ear maturation

started very early in the evolutionary ladder, as

suggested by their presence in the organic matrix of

this old fish and newer teleosts as well as higher

vertebrates (Rhoten et al. 1986; Drescher et al.

1989; Foster et al. 1993; Baird et al. 1997; Abbate

et al. 2002; Heller et al. 2002; Piscopo et al. 2003,

2004).
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