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Abstract

Inflammation is a key component of the tumor microenvironment. Tumor-associated
macrophages (TAMs) and tumor-associated neutrophils (TANs) are prototypic inflam-
matory cells in cancer-related inflammation. Macrophages provide a first line of resis-
tance against infectious agents but in the ecological niche of cancer behave as
corrupted policemen. TAMs promote tumor growth and metastasis by direct interac-
tions with cancer cells, including cancer stem cells, as well as by promoting angiogen-
esis and tissue remodeling and suppressing effective adaptive immunity. In addition,

1 E.B., M.R.G., and S.J. have equally contributed to this review and are in alphabetical order.

Specifically, E.B. contributed to the field of macrophage and complement and M.R.G. and S.J. to

the neutrophils section.
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the efficacy of chemotherapy, radiotherapy, and checkpoint blockade inhibitors is pro-
foundly affected by regulation of TAMs. In particular, TAMs can protect and rescue
tumor cells from cytotoxic therapy by orchestrating a misguided tissue repair response.
Following extensive preclinical studies, there is now proof of concept that targeting
tumor-promoting macrophages by diverse strategies (e.g., Trabectedin, anti-colony-
stimulating factor-1 receptor antibodies) can result in antitumor activity in human can-
cer and further studies are ongoing. Neutrophils have long been overlooked as a minor
component of the tumor microenvironment, but there is evidence for an important role
of TANs in tumor progression. Targeting phagocytes (TAMs and TANs) as corrupted
policemen in cancer may pave the way to innovative therapeutic strategies
complementing cytoreductive therapies and immunotherapy.

1. INTRODUCTION

Epidemiological, genetic, and experimental evidence demonstrate

that chronic nonresolving inflammation can increase cancer risk and

promotes cancer progression (Coussens, Zitvogel, & Palucka, 2013;

Mantovani & Allavena, 2015; Mantovani, Allavena, Sica, & Balkwill,

2008). Tumor-promoting inflammation is now recognized as a key

component of cancer (Hanahan & Weinberg, 2011). A link between

chronic inflammation and cancer has long been suspected, but only recently

the cellular and molecular mechanisms have in part been disclosed.

Epidemiological studies indicate that the risk of carcinogenesis increases

under conditions of persistent nonresolving inflammation. Estimate suggests

that chronic infections are at the basis of 15–20% of all cancers developed.

Examples include viral infections with hepatitis B and C for liver cancer,

papilloma virus for cervix carcinoma; bacterial infections, such asHelicobacter

pylori for gastric cancer or lymphoma; parasites, such as Schistosoma for

bladder cancer.

Chronic inflammation can also be triggered by noninfectious agents

including irritants such as tobacco smoke, asbestos, silica, gastric reflux,

chronic inflammatory disorders of the gastrointestinal tract, and autoim-

mune diseases can promote cancer development and metabolic dysfunc-

tions, obesity in particular, are associated with a state of low-grade

inflammation and increased cancer risk. Long-term use of nonsteroidal

antiinflammatory drugs aspirin in particular reduces the risk of carcinogen-

esis and tumor progression.

Another line of evidence is provided by the composition of the tumor

microenvironment, where inflammatory leukocytes and many inflamma-

tory mediators (cytokines, chemokines, enzymes) are present. Inflammatory
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cells and mediators are an essential constituent of the tumor microenviron-

ment (Coussens et al., 2013; Hanahan &Weinberg, 2011; Mantovani et al.,

2008). Cells of the monocyte–macrophage lineage are major components of

the host cell infiltrate of tumors that can reach up to 50% of the total mass.

The analysis of the function of leukocyte infiltrate has paved the way to the

dissection of tumor-promoting inflammatory mechanisms in cancer (De

Palma & Lewis, 2013; Mantovani, Bottazzi, Colotta, Sozzani, & Ruco,

1992; Mantovani, Sozzani, Locati, Allavena, & Sica, 2002; Noy &

Pollard, 2014). Indeed, the observation of leukocyte infiltration in tumors

was first made by the German pathologist Rudolf Virchow in the nineteenth

century, who postulated that cancer may arise in chronically inflamed tissues

(Balkwill & Mantovani, 2001; Mantovani et al., 1992).

Not all the tumors have an underlying cause of infection or chronic

inflammation, but also in these tumors a reactive inflammatory microenvi-

ronment and inflammatory cell infiltration have been described. Inflamma-

tion, in these cases, is triggered by the activation of oncogenes (e.g., Ras,

Myc, BRAF) and/or the inactivation of tumor-suppressor genes (e.g.,

p53, PTEN), that in addition to promote cell proliferation, also stimulate

the transcription of inflammatory genes, including cytokines and

chemokines that recruit circulating leukocytes to the tumor tissues and fur-

ther fuel the inflammatory response. Several lines of evidence indicate that

macrophages have the potential to kill tumor cells and to elicit tumor-

destructive reactions. Tumor-associated macrophages (TAMs) are drivers

of tumor progression in established tumors, promoting cancer cell prolifer-

ation and survival, angiogenesis and lymphoangiogenesis, skewing and tam-

ing effective T-cell responses. There is also evidence that inflammatory cells

may mediate tumor initiation and promote genetic instability (Mantovani

et al., 2008; Noy & Pollard, 2014). Thus, extrinsic causes of inflammation

(infections, irritants) and intrinsic causes (oncogene-activated inflammatory

response in cancer cells) both concur to build up an inflammatory tumor

microenvironment (Mantovani & Allavena, 2015; Mantovani et al.,

2008). Here, we will review the role of phagocytes (macrophages and neu-

trophils) in tumor progression and their connection with humoral innate

immunity, prompted by recent evidence (Bonavita et al., 2015).

2. ORIGIN AND FUNCTIONS OF TAMs

Tissue-resident macrophages, characterized in mice by the expression

of the chemokine receptor CX3CR1, protect tissues and maintain
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homeostasis, whereas inflammatory macrophages, characterized by the

expression of CCR2, are recruited at inflammatory sites and contribute

to the inflammatory response. Mouse-resident macrophages (Kupffer cells

in liver, microglia in brain, Langerhans cells in the skin, and alveolar mac-

rophages in lung) develop in the embryo (Gomez Perdiguero et al., 2015).

During this process, progenitors colonize peripheral tissues and differentiate

into resident macrophages which will self-maintain throughout life (De

Kleer et al., 2014). On the other hand, inflammatory macrophages derive

from adult bone marrow-derived monocytes. However, resident macro-

phages in the gut, heart, and dermis originally derive from the yolk sac,

but during adult life are replenished by bone marrow progenitors

(Bain et al., 2014; McGovern et al., 2014; Molawi et al., 2014; Wynn

et al., 2013). In tumors, TAMs mainly originate from bone marrow mono-

cytes (Franklin et al., 2014; Mantovani et al., 1992; Noy & Pollard, 2014;

Shand et al., 2014). In some mouse tumors, local proliferation does occur

(Bottazzi et al., 1990; Tymoszuk et al., 2014), but recent evidence suggests

that, in general, recruitment of circulating monocytes is essential for TAMs

accumulation (Franklin et al., 2014; Noy & Pollard, 2014). Chemokines

(e.g., CCL2, CCL5, and CXCL12) and the growth factor CSF-1

(M-CSF) play a major role in monocyte infiltration in tumors. Recently,

components of the Complement cascade have also been described to play a

role in macrophage recruitment (e.g., Bonavita et al., 2015). Incoming

blood monocytes preferentially localize in hypoxic or necrotic areas within

tumor stroma; they are profoundly influenced by the tumor environment

and rapidly differentiate into tumor-conditioned macrophages. Among

chemokines, CCL5/RANTES,CXCL12/SDF-1, andCXC3L1/fractalkine,

for instance, were found in neoplastic tissues and contribute to macrophage

recruitment and tumor promotion (Balkwill, 2004; Bottazzi et al., 1983;

Mantovani et al., 2004; Reed et al., 2012; Ueno et al., 2000). In addition

to chemokines and growth factors, noncanonical chemotactic peptides also

produced by stromal and tumor cells, such as vascular endothelial growth fac-

tor (VEGF), transforming growth factor-beta (TGF-β), basic fibroblast

growth factor (bFGF), macrophage colony-stimulating factor (M-CSF/

CSF-1), urokinase plasminogen activator (uPa), the antimicrobial peptide

β-defensin-3, and the lectin Reg3β (Allavena & Mantovani, 2012;

Bierie & Moses, 2010; Gironella et al., 2013; Jin et al., 2010; Lin, Gouon-

Evans, Nguyen, & Pollard, 2002; Linde et al., 2012; Reed et al., 2012;

Zhang, Sud, Mizutani, Gyetko, & Pienta, 2011), caused monocyte recruit-

ment and macrophage differentiation. CXC chemokines (CXCL8, CXCL1,
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CXCL2, CXCL3, CXCL5), known for their role in neutrophil recruitment

in both physiological and pathological conditions and involved in cancer pro-

gression, are also produced in tumor-associated inflammation. This favors

tumor angiogenesis and metastasis (Keeley, Mehrad, & Strieter, 2010;

Lazennec & Richmond, 2010; Mantovani, Cassatella, Costantini, &

Jaillon, 2011).

Plasticity and diversity are key properties of cells of the monocyte–

macrophage lineage (Biswas & Mantovani, 2010; Mosser & Edwards,

2008; Sica & Mantovani, 2012). In primary tumors and in metastatic sites,

TAMs are involved in complex bidirectional interactions with tumor cells;

cancer stem cells (CSCs); fibroblasts; mesenchymal stem cells; endothelial

cells; and T, B, and NK cells. Macrophages can undergo polarized classical

M1 activation in response to interferon-γ (IFN-γ) and Lipopolysaccharide

(LPS), or alternative M2 activation driven by IL-4 or IL-13. M1- and

M2-polarized macrophages are extremes of a continuum in a universe of

functional states. The molecular mechanisms and functional properties of

polarized macrophages have recently been reviewed (Mantovani &

Allavena, 2015; Murray et al., 2014). In many mouse and human tumors,

TAMs have a frank M2 phenotype or properties which are to some extent

shared with M2-polarized cells. In general, TAMs promote tumor growth

andmetastasis, angiogenesis, and subversion of effective antitumor immunity

(Biswas &Mantovani, 2010; Coussens et al., 2013; Sica &Mantovani, 2012).

Signals derived from tumors and host cells shape the functional phenotype of

TAMs. In different tumor and tissue contexts, these functional determinants

include hypoxia, cytokines (e.g., TGF-β andCSF-1), andmetabolic products

of cancer cells (e.g., lactic acid); IL-4 and IL-13 produced by Th2 cells; and

IL-10 produced byTreg cells, B cells, and immune complexes (Colegio et al.,

2014;Coussens et al., 2013;DePalma&Lewis, 2013;Mantovani&Allavena,

2015; Mantovani et al., 2008; Noy & Pollard, 2014; Ruffell, Affara, &

Coussens, 2012; Sica & Mantovani, 2012). Within the cancer tissue, there

can be microanatomical diversity of TAMs function with accumulation of

M2-like cells in hypoxic areas (Movahedi et al., 2010).Moreover, inflamma-

tory components and pathways of orchestration differ in tumors originating

in distinct anatomical sites (Ruffell et al., 2012).

There is strong evidence that macrophages can be “reprogrammed” by

some immunological stimuli, such as IFN-γ or IFN-α, from immunosup-

pressive M2 macrophages into immunostimulatory cells (De Palma &

Lewis, 2013; Duluc et al., 2009). At the clinical level, it has been reported

that IFN-γ-driven intratumoral microenvironment exhibits superior
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prognostic effect compared with an IFN-α-driven microenvironment in

patients with colon carcinoma. This gives a successful proof of principle that

complex cytokine interaction networks can be found and dissected in

human tissues (Grenz et al., 2013). Moreover, a Th1-dominated tumor

micromilieu is strongly associated with a positive prognosis in CRC

(Camus et al., 2009; Galon et al., 2006; Naschberger et al., 2008). Several

lines of evidence indicate that macrophages infiltrating the tumor take part

in the inflammatory process, favoring tumor formation and progression and

a M2-like phenotype for TAMs has been reported in several studies (Biswas

et al., 2006). The M2-like phenotype can be induced by the tumor cells.

Katara et al. reported that vacuolar ATPase (V-ATPase) produced by tumor

cells can promote tumor survival and growth. In particular, cancer tissues

and cells overexpress the a2 isoform of V-ATPase (a2V). The relevance

of the a2V role has been tested in in vitro studies, exposing macrophages

to the cleaved N-terminal domain of a2V. In these conditions, macrophages

express and secrete TAM-associated molecules such as mannose receptor-1,

arginase-1, interleukin-10, TGF-β, MMP-9, and VEGF (Katara et al.,

2014). A member of the TGF-β family has recently been reported to

promote M2-like polarization of TAMs and to inhibit IL-12 (Wang

et al., 2014).

During tumor growth and progression, functions of TAMs include

extracellular matrix remodeling, promotion of tumor cell invasion and

metastasis, angiogenesis, lymphangiogenesis, and immune suppression

(Mantovani et al., 2002). In fact, TAMs produce a number of proteolytic

molecules, such as plasmin, urokinase-type plasminogen activator, cathepsin

B, and matrix metalloproteases (MMPs) which may directly remodel the

extra cellular matrix (ECM) (Gocheva et al., 2010; Nagakawa, Aoki,

Kasuya, Tsuchida, &Koyanagi, 2002;Wang et al., 2011). The role ofMMPs

in tumor progression has been suggested by their capacity to degrade the

basement membrane to activate growth factors and to enhance angiogenesis

(Huang et al., 2002; Stetler-Stevenson & Yu, 2001; Wang, So, Reierstad, &

Fishman, 2005). Invasiveness of cancer cells is facilitated by TAMs expres-

sion of nonproteolytic molecules. For instance, expression of chemokines

that bind CXCR2 was increased in macrophages exposed to conditioned

media from mammary epithelial cells containing FGF receptor 1-induced

soluble factors. In turn, these chemokines induced migration of primary

and tumoral mammary epithelial cells (Bohrer & Schwertfeger, 2012). In

mice injected subcutaneously with pancreatic cancer cells, expression of
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scavenger-receptor A in hematopoietic cells, consistent with its expression

on macrophages, was required for cancer metastasis (Neyen et al., 2013).

In glioma stem-like cells, the expression of MMP-9 promoted by

macrophages-derived TGF-β1 increased the invasiveness of tumor cells

(Ye et al., 2012). Finally, tumor-derived versican V1 enhanced the expression

of the antimicrobial peptide hCAP18/LL37 in macrophages, which in turn

contributed to ovarian tumor cell proliferation and invasion (Li et al., 2013).

Macrophages have been described to be associated with the metastatic

potential of several tumors (Lin, Li, Tadashi, & Dong, 2011; Qing et al.,

2012). In classical experiments of Gorelik and coworkers, it was described

that transfer of thioglycollate-elicited peritoneal macrophages in mice

increased by up to 100-fold the number of metastatic lung nodules induced

by the intravenous injection of melanoma or Lewis lung carcinoma tumor

cells (Gorelik, Wiltrout, Brunda, Holden, & Herberman, 1982). In a mouse

model of breast cancer, IL-4-treated macrophages upregulated the expres-

sion of cysteine protease cathepsin B, which promoted lung metastasis

(Vasiljeva et al., 2006). Moreover, M2-polarizing cytokines or tumor

cell-conditioned media cause macrophages expression of a truncated fibro-

nectin isoform, namely migration-stimulating factor, that is a potent chemo-

tactic factor for tumor cells (Solinas et al., 2010). Depletion studies in

experimental animals cause reduced incidence of metastasis, giving further

support to the prometastatic function of TAMs (DeNardo et al., 2009;

Joyce & Pollard, 2009).

TAMs are associated with tumor angiogenesis and lymphangiogenesis:

TAMs express mediators such as TGF-β, VEGF-A, VEGF-C, PDGF,

MMP-9, thymidine phosphorylase, and chemokines (e.g., CXCL8/IL-8)

which are directly or indirectly involved in new vessel formation and

sprouting (Granata et al., 2010; Hotchkiss et al., 2003; Murdoch,

Giannoudis, & Lewis, 2004; Schmidt & Carmeliet, 2010; Schoppmann,

Horvat, & Birner, 2002). TAMs-derived MMP-9 induces the release of

heparin-bound growth factors, particularly VEGF-A, crucial for the angio-

genic switch (Ebrahem et al., 2010). VEGF-recruited monocytes improve

their performance as angiogenic cells (Avraham-Davidi et al., 2013). Rec-

ruited monocytes derive from the pool of circulating Ly6Chi monocytes

that undergo phenotypic and functional changes upon entry in the

VEGF-rich environment. These recruited monocytes acquire enhanced

proangiogenic capabilities and, importantly, a markedly increased capacity

to remodel existing blood vessels.
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In the tumor microenvironment, low-oxygen tension increases the

expression levels of Hypoxia-inducible factor (HIF) -1 and HIF-2, which

trigger a proangiogenic program in macrophages characterized by high

expression levels of VEGF, bFGF, CXCL8/IL-8, and glycolytic enzymes

(Murdoch et al., 2004). In the tumor microenvironment, local hypoxia cau-

ses high levels of adenosine that stimulate angiogenic and lymphangiogenic

factors released by human (Granata et al., 2010). Casazza and coworkers

recently reported that the Sema3A/neuropilin-1 signaling axis controls

TAMs localization into hypoxic tumor areas. If TAMs are confined inside

normoxic regions by blunting the Sema3A/neuropilin-1 pathway, anti-

tumor immunity is restored and angiogenesis abated, and consequently

tumor growth and metastasis are inhibited. Thus, cancer cell-derived

Sema3A, not VEGF, is responsible for TAMs entry into hypoxic niches

through neuropilin-1 signaling, where TAMs escape antitumor immunity

and promote vascularization (Casazza et al., 2013). Modulating TAMs local-

ization and thus their phenotype can be a new approach to guide TAMs

activities against cancer. Moreover, Laoui et al. reported that hypoxia is

not a major driver of the TAMs subset differentiation found in tumor infil-

trate, namely CD11bhiF4/80hiLy6Clo MHC-IIlo or MHC-IIhi TAMs, both

of which derived from tumor-infiltrating Ly6Chi monocytes, but rather

specifically fine-tunes the phenotype of M2-like MHC-IIlo TAMs, that as

a consequence contain higher mRNA levels for hypoxia-regulated genes

than their MHC-IIhi counterparts (Laoui et al., 2014).

TAMs also express immunosuppressive potential, secreting or expressing

a wide range of molecules, such as TGF-β, iNOS, arginase-1, IDO, and

IL-10, known for their immunosuppressive role (Hagemann et al., 2006;

Mantovani & Sica, 2010; Sica et al., 2000; Zhao et al., 2012). In murine

models of breast cancer, TAMs suppress T-cell functions through their met-

abolic activities, expressing arginase-1 or iNOS (Bronte & Zanovello, 2005;

Chang, Liao, & Kuo, 2001; Doedens et al., 2010; Movahedi et al., 2010).

However and particularly in humans, TAMs-mediated T-cell suppression

may also occur irrespective of L-arginine metabolism (Kryczek et al.,

2006). For instance, TAMs have been shown to express the immunosup-

pressive molecule B7-H1 in hepatocellular carcinoma (HCC), B7-H4 in

ovarian and lung cancer, and B7-H3 in lung cancer (Chen et al., 2012,

2013; Kryczek et al., 2006; Kuang et al., 2009). In addition, TAMs have

the capacity to induce the expression of these molecules on cancer cell sur-

face, thus providing a novel mechanism by which cancer cells escape the

immune surveillance (Chen et al., 2013).
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3. MACROPHAGES IN COMPLEMENT-MEDIATED,
PTX3-REGULATED TUMOR PROMOTION

The physiological functions of the Complement system include

defence against microbial infections, and disposal of immune complexes

and products of inflammatory injury (Ricklin & Lambris, 2013). The Com-

plement system also controls different immunological and inflammatory

processes. The latter include enhancement of humoral immunity, regulation

of adaptive immunity, apoptotic cell clearance, angiogenesis, cellular regen-

eration, and growth (Ricklin, Hajishengallis, Yang, & Lambris, 2010). The

interaction of Complement components with receptors present on macro-

phages leads to modulation of cytokine production and induction of inflam-

matory responses. The myelomonocytic cell lineage expresses Complement

receptors which mediate pathogen phagocytosis (e.g., C1qR (s), CR1,

CR3, CR4, and CRIg) or induce inflammatory responses (e.g., C3aR,

C5aR1, and C5aR2; Bohlson, O’Conner, Hulsebus, Ho, & Fraser, 2014;

Fig. 1). C3a and C5a mediate macrophage activation through different

signaling mechanisms. For instance, C3a activates NLRP3 inflammasome

C3b

CR1
CR3
CR4
CRIgC1q

MBL
Ficolins

Pentraxins
C1qR(s)

Pathogen
opsonization

and recognition

Inflammatory
processes

associated to
cancer

C3a

C5a
C3aR

C5aR1
C5aR2

IL-1

CCL2

MDSC recruitment

T-cell suppression 

T-reg generation

PTX3 – Factor H

C3 C5

(Bonavita et al., 2015)

(Asgari et al., 2013)

(Piao et al., 2015)

(Markiewski et al., 2008)

(Vadrevu et al., Res 2014)

Macrophage

Figure 1 Macrophages and the interplay with humoral innate immunity in the regula-
tion of inflammation and cancer. For explanation, see text.
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increasing ATP release and favoring IL-1β production (Asgari et al., 2013).

C5a has been correlated with IL-6 induction and development of inflamma-

tory Th17 response (Fang, Zhang, Miwa, & Song, 2009).

During neoplastic transformation, tumor cells can acquire new morpho-

logical changes that render them susceptible to Complement attack. The

high number of genetic alterations associated with carcinogenesis dramati-

cally changes the composition of the cell membrane. For example, an altered

glycosylation is considered a hallmark of cancer cells (Hanahan &Weinberg,

2011), and progression of epithelial cells from a normal to malignant phe-

notype is associated with an aberrant metabolism of membrane phospho-

lipids affecting signal transduction pathways (Pio, Corrales, & Lambris,

2014). However, in comparison to normal counterpart, tumor cells have

also been shown to express higher levels of membrane-bound regulatory

proteins and soluble Complement inhibitors, including CD21, CD35,

CD46, CD55, CD59, and Factor H, which could be responsible of hindered

Complement cytotoxicity (Bellone et al., 2012; Gelderman, Tomlinson,

Ross, & Gorter, 2004; H€orl et al., 2013).
Although no formal evidence supports the existence of an effective

immune surveillance mediated by Complement during carcinogenesis,

changes in the composition of cell membrane may target tumor cells for

Complement recognition. Several observations support Complement-

mediated recognition of malignant cells and Complement activation in

many cancers. Elevated levels of C3a are present in the ascitic fluid of

patients with ovarian cancer (Bjorge et al., 2005). C3c and C4 levels are ele-

vated in lung cancer patients and their concentration is directly correlated

with tumor volume (Ajona et al., 2013, 2015). The lectin pathway of Com-

plement is more activated in colorectal cancer patients in comparison to

healthy individuals, and systemic levels of MASP-2 have been reported to

be an independent prognostic marker for poor survival (Ytting, Jarle

Christensen, Thiel, Jensenius, & Nielsen, 2005). The activation of the clas-

sical pathway of Complement has also been found in patients affected by

mucosa-associated lymphoid tissue lymphoma (Bu, Zheng, Wang, & Yu,

2007). Moreover, Complement-dependent cytotoxicity was necessary for

immunotherapeutic response to rituximab in central nervous system

(CNS) lymphomas (Kadoch et al., 2014) and chronic lymphocytic leukemia

(Middleton et al., 2015).

In recent years,many studies have identified new andunexpected roles for

Complement activation within the tumor microenvironment challenging

the classical view of the Complement system as an anticancer mechanism

(Bonavita et al., 2015) Complement elements can promote growth of
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transplanted tumors in the context of chronic inflammation (Markiewski

et al., 2008). Notably, mice deficient in C3 or C5aR show decreased tumor

growth inmodels of transplantable tumors, in comparison towild-typemice,

suggesting that the Complement system somehow promotes tumor growth

(Rutkowski, Sughrue, Kane, Mills, & Parsa, 2010). In line with this view,

several studies have demonstrated a protumorigenic role for activated

Complement components in all stages of carcinogenesis. The genetic

abrogation of C3 significantly reduced tumor incidence in models

of 3-methylcholanthrene- and 7,12-dimethylbenz [a] anthracene/

terephthalic acid (DMBA/TPA)-induced carcinogenesis (Bonavita et al.,

2015). Moreover C3 deficiency was associated with reduced tumor macro-

phages infiltration (Bonavita et al., 2015). Complement activation promoted

azoxymethane/dextran sodium sulphate (AOM/DSS)-induced carcinogen-

esis in IL-1β/IL-17A-dependent manner and C3-deficient mice developed

significantly less colonic lesions (Ning et al., 2015).Complement can suppress

antitumoral immunity via C5a that is a potent chemoattractant for myeloid-

derived suppressor cells (MDSCs), which inhibit cytotoxic T limphocytes

(CTL) (Markiewski et al., 2008). In a preclinical model of breast cancer,

C5aR engagement facilitated metastasis by suppressing effectors CD8 and

CD4 T-cell responses in the lungs (Vadrevu et al., 2014). In addition, C5a

favored liver metastasis by promoting tumor inflammation. Indeed, genetic

deficiency of C5aR leads to impaired production of CCL2 (Piao et al.,

2015). Finally, data obtained studying pathologies not related to cancer

raise the possibility that Complement proteins may enhance Epithelial–

mesenchymal transition (EMT), provide chemotactic stimuli (i.e., C5a and

C3a; Pasinetti et al., 1996), and induce production of growth factors (i.e.,

VEGF and TGF-β; Nozaki et al., 2006), which prime and encourage tumor

invasion and migration (Christofori, 2006).

Although several lines of evidence sustain a protumoral role for Comple-

ment, this system can play different roles in different tumor contexts. For

instance, C3 deficiency did not affect tumor incidence in a model of skin

carcinogenesis driven by HPV16 (de Visser, Korets, & Coussens, 2004),

or even promoted tumor formation in the case of Her2/neu breast tumors

(Bandini et al., 2013). Collectively, these data suggest that Complement

activation has a dual role in cancer: it has the potential to kill cancer cells,

but Complement elements can modulate macrophage functions promoting

cancer-related inflammation and tumor progression.

Modulation of Complement activation is a common feature of

pentraxins. The short pentraxins C-reactive protein (CRP) and serum

amyloid P component recognize different Complement components.
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The interaction between CRP and C1q leads to the formation of C3 con-

vertase and thus to the activation of the classical pathway (Sjoberg, Trouw,

McGrath, Hack, & Blom, 2006). Surface-bound CRP inhibits alternative

pathway amplification through a specific interaction with Factor H, the

main soluble regulator of this pathway. In addition, CRP and SAP bind

C4b-binding protein (C4BP), a soluble regulator of the classical and lectin

pathways (Inforzato et al., 2013).

Similarly, the prototype of long pentraxins PTX3 has a dual role in Com-

plement activation. The first protein identified as PTX3 ligand was C1q, the

activator of the classical pathway (Bottazzi et al., 1997). The interaction

between PTX3 and the globular head of C1q occurs in a calcium-dependent

manner and depending on the way it is presented leads either to activation or

inhibition of the Complement cascade (Doni et al., 2012). PTX3 has also

been shown to interact with three members of the lectin pathway, namely

ficolin-1, ficolin-2, and mannose-binding lectin (MBL; Gout et al., 2011).

PTX3 enhances ficolin-1, ficolin-2, and MBL-dependent Complement

deposition on the surface ofAspergillus fumigatus andCandida albicans, respec-

tively, favoring Complement-mediated innate immune responses (Ma et al.,

2013). In addition, the formation of a complex ficolin-1/PTX3 on the sur-

face of apoptotic cell facilitated the clearance of apoptotic cells down-

regulating in parallel the release of IL-8 by macrophages (Ma et al.,

2013). Finally, PTX3 interacts with Factor H, favoring its deposition on

PTX3-coated surface and limiting an exacerbated activation of the Comple-

ment cascade (Deban et al., 2008). In atypical hemolytic uremic syndrome,

mutations observed in Factor H reduced the interaction with PTX3 and lead

to enhanced inflammation and Complement-mediated damage

(Okemefuna, Nan, Miller, Gor, & Perkins, 2010). PTX3 has also been

shown to interact with C4BP, which inhibits Complement activation by

acting as a cofactor for factor I in the cleavage and inactivation of C4b

(Braunschweig & Jozsi, 2011). This interaction promoted the recruitment

of C4BP on late-apoptotic cells and extracellular matrix, suggesting negative

modulation of local Complement activation that would otherwise lead to

inflammation and tissue damage.

In a model of 3-methylcholanthrene-induced carcinogenesis, PTX3

deficiency was associated to increased susceptibility to cancer, higher

proinflammatory mediator release (i.e., CCL2), and gene instability. Tumor

tissues from PTX3-deficient mice were characterized by significantly higher

C3 deposition in comparison to wild-type tumors because of defective

Factor H recruitment. Deficiency of C3 in PTX3 gene-targeted mice

was sufficient to rescue the increased susceptibility to tumor growth and
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macrophage recruitment. Higher tumor incidence in PTX3-deficient mice

was also associated with increased C5a levels and the pharmacological block-

ing of C5aR in vivo reduced tumor frequency (Bonavita et al., 2015). Thus,

PTX3 deficiency unleashes unrestrained Complement activation with pro-

duction of C5a, CCL2, and enhanced recruitment of tumor-promoting

macrophages. These results indicate that an essential component of the

humoral arm of innate immunity and regulator of Complement activation

acts as an extrinsic oncosuppressor by acting at the level of Complement-

mediated, macrophage-sustained, tumor-promoting inflammation.

4. THE YIN YANG OF TAMs IN ANTICANCER THERAPY

The evidence and consensus about the role of TAMs in tumor-

promoting inflammation (Hanahan & Weinberg, 2011) raise the issue of

their involvement in current treatment modalities and of their potential as

therapeutic targets. In general, two main approaches have been used: direct

depletion of macrophages or inhibition of monocyte recruitment and

restimulation of their cytotoxic function (reeducation of TAMs; Beatty

et al., 2011; Edwards & Emens, 2010; Germano et al., 2013;

Mantovani & Allavena, 2015; Rozel et al., 2009; Xin et al., 2009). As men-

tioned above, cancer cell-centered therapeutic strategies and immunother-

apy profoundly influence the function of TAMs by directly modulating their

function or by affecting components of the tumor microenvironment (e.g.,

effective adaptive immune responses). In turn, TAMs can contribute to the

ultimate efficacy of anticancer strategies or retain and amplify their tumor-

promoting function by orchestrating a misdirected tissue repair response.

The role of TAMs in anticancer therapy has recently been reviewed

(Mantovani & Allavena, 2015). Evidence suggests that in conventional cyto-

toxic therapeutic strategies (chemotherapy and radiotherapy), TAMs can

have a dual role. Chemotherapy and radiotherapy can elicit a misdirected

macrophage-orchestrated tissue repair response and thus rescue and protect

tumor cells including CSCs.On the other hand, TAMs can contribute to the

antitumor activity of selected anticancer drugs and low-dose radiotherapy

(Mantovani & Allavena, 2015).Moreover, TAMsmay play a role in targeted

therapies and in checkpoint blockade inhibiting antibodies (Mantovani &

Allavena, 2015). Finally, following extensive preclinical testing, there is

now proof of principle that targeting TAMs can have antitumor activity

in human tumors (Germano et al., 2013). In particular, there is evidence that

Trabectedin, approved for clinical use in Europe for sarcomas and ovarian
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carcinoma, acts at least in part by depleting tumor-promoting monocytes

(Germano et al., 2013).

5. NEUTROPHILS AND CANCER

Neutrophils represent the most abundant leukocyte subpopulation in

human peripheral blood and play a primary role in host defence against path-

ogens during the earliest phases of the inflammatory responses. The role of

neutrophils in tumor development has long been underestimated due to

their short half-life and terminally differentiated phenotype. In the last

decade, the advent of new technical tools allowed to better characterize

these cells, thus challenging this limited classical point of view. Indeed, evi-

dences propose emerging roles for neutrophils in coordinating many aspects

of the inflammatory response and tumor development. Similarly to TAMs,

tumor-associated neutrophils (TANs) can exert both antitumoral and

protumoral functions and experimental animal models suggest that neutro-

phils are characterized by a surprising plasticity (Fridlender et al., 2009;

Mantovani, 2009; Fig. 2).

5.1 Neutrophil Recruitment and Their Prognostic
Significance in Tumors

Within the tumor microenvironment, a number of CXC chemokines (e.g.,

CXCL1, CXCL2, CXCL3, CXCL5, CXCL8), known for their neutrophil

Figure 2 Neutrophils potentially impact key aspects of cancer. For explanation, see text.
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chemoattractant properties, are produced by tumor and stromal cells and

have been related to cancer initiation, to the promotion of tumor angiogen-

esis, and metastasis (Keeley et al., 2010; Lazennec & Richmond, 2010;

Mantovani et al., 2011). For example, evidence derived frommurinemodels

described an important role for the CXCR2 signaling pathway in lung and

pancreatic cancer promotion (Ijichi et al., 2011; Keane, Belperio, Xue,

Burdick, & Strieter, 2004). In various murine models of cancers

(inflammation-associated skin cancer, colitis-associated or spontaneous

intestinal cancer), CXCR2 abrogation or neutrophil depletion inhibited

both inflammation-induced and spontaneous carcinogenesis ( Jamieson

et al., 2012). Moreover, in a murine model of graft tumor, CXCL17 pro-

moted the recruitment of myeloid CD11b+Gr1+F4/80! cells within the

tumor, favoring tumor growth, angiogenesis, and metastatic behavior

(Matsui et al., 2012). In humans, HCC cells and head and neck squamous

cell carcinoma (HNSCC) cell lines recruited neutrophils in a CXCR2-

dependent manner through the production of CXCL8 (Kuang et al.,

2011) and macrophage-inhibiting factor (MIF; Dumitru et al., 2011;

Trellakis, Farjah, et al., 2011). Moreover, in a wide cohort of HCC tumors,

correlations between increased CXCL5 expression, neutrophil infiltration,

and poor patients’ survival were found (Zhou et al., 2012). In addition, in a

murine model of lung cancer determined by K-ras activation and p53 abro-

gation, TAM and TAN precursors relocated from the spleen to the tumor

and splenectomy significantly reduced the infiltration of myeloid cells within

the tumor (Cortez-Retamozo et al., 2012). In addition, Angiotensin II was

identified as a pivotal factor in the amplification of hematopoietic

self-renewal (Cortez-Retamozo et al., 2013).

Various epidemiological evidences described a negative correlation

between TANs and patient clinical outcome inmetastatic and localized renal

cell carcinoma, bronchioloalveolar carcinoma, HCC, colorectal cancer, and

head and neck cancer (Donskov, 2013; Jensen et al., 2009; Kuang et al.,

2011; Rao et al., 2012; Trellakis, Bruderek, et al., 2011; Wislez et al.,

2003). Moreover, higher tumor-infiltrating neutrophil density was associ-

ated with higher histological grade in glioma (Fossati et al., 1999) and more

aggressive pancreatic cancer (Reid et al., 2011). In contrast, the association

between neutrophil infiltration and patients’ clinical outcome remains

controversial for some tumor types, such as gastric and colorectal cancer

(Caruso et al., 2002; Hirt et al., 2013). These controversial evidences may

be due to variability in the methods used to identify neutrophils within

tumors (e.g., immunohistochemistry, hematoxylin–eosin staining), as well

as the choice of patient datasets and outcomes.
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5.2 Neutrophils in Tumor Initiation and Progression
The association between neutrophil-derived reactive oxygen species (ROS)

and carcinogenesis has been described already 30 years ago (Weitzman,

Weitberg, Clark, & Stossel, 1985). Accordingly, neutrophil-derived ROS

and related products, such as myeloperoxidase-mediated HOCl, induced

genetic instability, an emerging hallmark of cancer, due to DNA point

mutations (Gungor et al., 2010; Hanahan & Weinberg, 2011).

Neutrophil-derived granule proteins can also play dual roles in tumor

progression. For instance, neutrophil elastase (NE) can favor tumor cell pro-

liferation via the alteration of the platelet-derived growth factor receptor

(PDGFR) intracellular signaling and epithelial-to-mesenchymal transition

(Grosse-Steffen et al., 2012; Houghton et al., 2010). In contrast, NE can

be taken up by cancer cells, leading to alteration of self-antigens and activa-

tion of a CTL-mediated antitumor response (Mittendorf et al., 2012).

Neutrophils also produce a number of cytokines, which play important

roles in cancer (Tecchio, Scapini, Pizzolo, & Cassatella, 2013). For instance,

stimulated neutrophils secrete Oncostatin M, which stimulates cancer cells

to produce VEGF, thus enhancing tumor cell invasive behavior (Queen,

Ryan, Holzer, Keller-Peck, & Jorcyk, 2005). In addition, neutrophil-

derived hepatocyte growth factor (HGF) promoted the invasive behavior

of cholangiocellular and hepatocellular cell lines in vitro (Imai et al.,

2005). In bronchoalveolar carcinoma patients, an association between neu-

trophil infiltration, poor patients’ prognosis, and levels of HGF in

bronchoalveolar lavage fluid was described (Wislez et al., 2003). In HNSCC

patients, a correlation between tumor-infiltrating neutrophils and the

expression of CORTACTIN, a protein involved in cellular migration,

was found (Dumitru et al., 2013). Moreover, tumor-infiltrating neutrophils

and CORTACTIN were associated with poor patients’ outcome (Dumitru

et al., 2013). In contrast, neutrophil-derived molecules can also display

antitumoral functions. For instance, neutrophils are an important source

of TNF-related apoptosis-inducing ligand (TRAIL), which displays

antitumoral activities (Cassatella, 2006; Hewish, Lord, Martin,

Cunningham, & Ashworth, 2010). Indeed, Mycobacterium bovis Bacillus

Calmette–Guerin (BCG) induced the release of TRAIL from neutrophils,

suggesting a role for neutrophils in mediating the anticancer effects of BCG

in bladder cancer (Kemp et al., 2005). Moreover, neutrophil-derived

TRAIL promoted apoptosis of leukemic cells in chronic myeloid leukemia

patients (Tanaka, Ito, Kyo, & Kimura, 2007; Tecchio et al., 2004). In
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addition, in lung cancer patients, TANs present an activated phenotype,

characterized by high expression levels of proinflammatory mediators

(i.e., CCL2, CCL3, CXCL8). These activated TANs efficiently stimulate

T-cell proliferation and IFN-γ release through a cell contact-dependent

manner (Eruslanov et al., 2014). This cross-talk enhanced the expression

of costimulatory molecules in neutrophils, sustaining a positive-feedback

loop and supporting an antitumoral role for TANs in early stages of human

lung cancers (Eruslanov et al., 2014).

5.3 Neutrophils in Tumor Progression: Angiogenesis
and Metastatic Behavior Modulation

Neutrophils play a dual role in modulating angiogenesis and metastatic

behavior of tumors. Neutrophils express various angiogenic factors, such

as VEGF-A, which is also the main mediator of the CXCL1-induced angio-

genic activity (Scapini et al., 2004). In murine models of subcutaneous mel-

anoma and fibrosarcoma, in the absence of IFN-β, TANs acquired

proangiogenic features, such as increased expression of CXCR4, VEGF-

A, and MMP-9 ( Jablonska, Leschner, Westphal, Lienenklaus, & Weiss,

2010). MMP-9 is a well-known proangiogenic factor, inducing the release

of the active form of VEGF-A from the ECM (Nozawa, Chiu, &

Hanahan, 2006).

Bv8 (also known as prokineticin-2) is known to promote neutrophil

mobilization and angiogenesis. In a tumor xenograft model, G-CSF induced

the expression of Bv8 in neutrophils and blocking Bv8 impaired neutrophil

recruitment, tumor growth, and angiogenesis (Shojaei et al., 2007). Interest-

ingly, tumors resistant to anti-VEGF therapy displayed high neutrophil infil-

tration, and resistance to anti-VEGF treatment was due to G-CSF-induced

Bv8 expression. Indeed, blocking G-CSF or Bv8 impaired tumor growth

and angiogenesis (Shojaei, Singh, Thompson, & Ferrara, 2008; Shojaei

et al., 2009). In contrast, neutrophils also display antiangiogenic properties.

For instance, NE itself degraded VEGF and FGF-2 and in vitro-generated

angiostatin-like fragments from plasminogen, which suppressed VEGF-

and FGF-2-mediated angiogenesis (Ai et al., 2007; Scapini et al., 2002).

Neutrophils play many roles in modifying the tumor metastatic behavior.

Melanoma-derived CXCL8 increased the expression of β2-integrin on

neutrophils, which engaged ICAM-1 expressed on melanoma cells, thus

favoring the interaction between neutrophils and melanoma cells. This dan-

gerous interaction allowed melanoma cells to transit across the endothelium,

157Phagocytes as Corrupted Policemen

Author's personal copy



giving rise to distant metastasis (Huh, Liang, Sharma, Dong, & Robertson,

2010). In addition, neutrophil extracellular traps were able to capture circu-

lating tumor cells and promoted their engraftment to distant organ sites

(Cools-Lartigue et al., 2013). In contrast, in an in vivomodel of breast cancer,

under the influence of G-CSF and tumor-derived CCL2, neutrophils accu-

mulated in the premetastatic lung and inhibited metastatic engraftment

through the release of H2O2. Accordingly, following neutrophil depletion,

the metastatic load was significantly enhanced (Granot et al., 2011).

Recently, a role for type I IFN signaling in reducing the metastatic load

has been described. More in detail, in a model of breast cancer, Ifnar1-

deficient mice displayed an increased metastatic load together with increased

neutrophil infiltration in the premetastatic lung, compared to the wild-type

mice. Ifnar1!/! neutrophils displayed altered killing activity and increased

CXCR2 expression, responsible for their homing in the premetastatic lungs

(Wu et al., 2015).

5.4 Neutrophil Plasticity and Heterogeneity in Cancer
In contrast with the classical point of view, neutrophils appear as cells end-

owed with unsuspected plasticity. In murine models of mesothelioma and

lung cancer, neutrophils acquired a protumoral phenotype under the influ-

ence of TGF-β (Fridlender et al., 2009). Accordingly, neutrophils recruited
in TGF-β-blocking conditions displayed increased antitumor cytotoxic

activity, high expression of TNF-α, CCL3, and ICAM-1, and low levels

of arginase-1, a well-known T-cell inhibitory factor. TGF-β neutralization

also enhanced a T-cell mediated antitumor response, in which neutrophils

played a role as effector cells (Fridlender et al., 2009). In contrast, type

I interferon signaling has been involved in the acquisition of an antitumoral

phenotype in neutrophils. Therefore, in mice lacking type I IFN signals,

neutrophils displayed proangiogenic and prometastatic features ( Jablonska

et al., 2010; Wu et al., 2015). Thus, similarly to the Th1–Th2 and

M1–M2 paradigms, a new paradigm has been proposed in which neutrophils

can be polarized toward an antitumor N1 or a protumor N2 phenotype in

response to signals derived from the microenvironment.

5.5 Neutrophils, TANs, and MDSCs
During cancer development, a heterogeneous population of myeloid cells

appears in peripheral blood of tumor-bearingmice and cancer patients. These

cells, namely MDSCs, display immunosuppressive and cancer-promoting
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properties and are divided into monocytic (Mo-MDSCs) and granulocytic

(G-MDSCs) cells, on the basis of distinct morphological and phenotypical

aspects (Youn & Gabrilovich, 2010).

The distinction between G-MDSCs and TANs is not so clear. Indeed,

neutrophils and G-MDSCs display the same membrane markers (CD11b,

Gr1, and Ly6G), similar morphology, and immunosuppressive properties

via arginase-1 production (Gabrilovich, Ostrand-Rosenberg, & Bronte,

2012). Accordingly and recently, in a murine model of breast cancer, atyp-

ical CD11b+Ly6G+Rb1low neutrophils appeared during tumor progression

in peripheral tissues, but not in the primary tumors. This neutrophil subpop-

ulation suppressed T-cell-mediated immune response through the produc-

tion of ROS. Hematopoietic stem cell differentiation toward the myeloid

lineage in bone marrow was found to be driven by tumor-derived

G-CSF (Casbon et al., 2015).

In patients with renal cancer, a subset of activated neutrophils in periph-

eral blood was identified, able to induce T-cell immunosuppression through

the production of arginase-1 (Rodriguez et al., 2009; Schmielau & Finn,

2001). Therefore, in this view, these activated neutrophils were considered

as G-MDSCs due to their immunosuppressive phenotype. In contrast,

MDSCs have been also referred as immature neutrophils (Solito et al.,

2011; Trellakis, Farjah, et al., 2011). Indeed, in a genetic conditional lung

adenocarcinoma model, TAN precursors physically relocated from spleen

to tumors and, since MDSCs accumulated in the spleen of tumor-bearing

animals, TAN activities were at least in part attributed to MDSCs

(Cortez-Retamozo et al., 2012). Accordingly, G-MDSCs acquired pheno-

typical and functional aspects of neutrophils, under the influence of

GM-CSF, supporting the theory by which G-MDSCs are immature neu-

trophils (Youn, Collazo, Shalova, Biswas, & Gabrilovich, 2012). Immature

neutrophilic MDSCs have also been described in peripheral blood of cancer

patients and correlated with poor clinical outcome (Trellakis, Farjah,

et al., 2011).

In contrast with these evidences, Fridlender and colleagues performed a

transcriptomic analysis on peripheral neutrophils, TANs, and G-MDSCs in

tumor-bearing mice, and found that TANs and G-MDSCs are distinct

populations of cells and that naı̈ve neutrophils and G-MDSCs are more

closely related to each other than to TANs (Fridlender et al., 2012). Accord-

ingly and quite recently, a heterogeneous population of low-density neutro-

phils (LDNs) has been identified in peripheral blood of tumor-bearing mice

and cancer patients (Sagiv et al., 2015). Compared to mature high-density

neutrophils (HDNs), LDNs displayed reduced chemotactic activity,
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phagocytosis, and oxidative burst as well as lower expression of chemokines

(i.e., CXCL1, CXCL2, CXCL10) and chemokine receptors (i.e.,

CXCR2). From the functional point of view, LDNs impaired CD8+

T-cell proliferation. Thus, in contrast to HDNs, LDNs displayed

protumoral activities, which were mainly driven by TGF-β. In addition,

within LDNs, two populations of neutrophils were identified, which

displayed similar immunosuppressive properties, but different maturation

stages. Thus, finally, three distinct populations of neutrophils can be

distinguished. The first one consists of HDNs, previously referred as N1

neutrophils, which displayed a mature phenotype together with cytotoxic

and antitumor activities. The second and third populations are found within

LDNs and consist of immature cells, previously described as G-MDSCs

and mature cells, previously described as N2 neutrophils, both sharing

immunosuppressive and tumor-promoting functions (Sagiv et al., 2015).

Therefore, this increasing body of evidence emphasizes the high versatility

of neutrophils in different pathophysiological settings and paves the way

for new therapeutic approaches based on their multifaceted biological

aspects.

6. CONCLUDING REMARKS

Cells of the myelomonocytic lineage have emerged as a key feature of

cancer-related inflammation. They are important players both in the extrin-

sic pathway connecting inflammation and cancer, consisting of inflamma-

tory conditions which predispose to cancerogenesis, and of the

oncogene-driven tumorigenesis process. Macrophage and neutrophils are

a major source of humoral fluid-phase pattern recognition molecules such

as the long pentraxin PTX3, and their recruitment and function is regulated

by the humoral arm of innate immunity. Recent work has highlighted

(Bonavita et al., 2015) that Complement and its regulation by PTX3 are

an important component of the inflammatory microenvironment and that

PTX3 acts as a bona fide cancer suppressor gene in mouse and human tumors.

There is evidence that targeting TAMs has antitumor activity in human can-

cer and these preclinical and clinical results are likely to pave the way to

innovative therapeutic strategies.
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