
 International Journal of 

Molecular Sciences

Review

Emerging Role of the Spleen in the Pharmacokinetics
of Monoclonal Antibodies, Nanoparticles
and Exosomes

Mauro Cataldi 1,2,*, Chiara Vigliotti 1, Teresa Mosca 2, MariaRosaria Cammarota 1 and
Domenico Capone 2

1 Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry,
Federico II University of Naples, 80131 Naples, Italy; chiara86.vigliotti@gmail.com (C.V.);
mariaro.cammarota@gmail.com (M.C.)

2 Section of Clinical Pharmacology, Integrated Care Department of Clinical Neurosciences,
Anesthesiology and Drug-Use, Federico II University Hospital, 80131 Naples, Italy;
teresa.mosca@unina.it (T.M.); docapone@unina.it (D.C.)

* Correspondence: cataldi@unina.it; Tel.: +39-081-7462102; Fax: +39-081-7463013

Academic Editor: Mateus Webba da Silva
Received: 7 April 2017; Accepted: 6 June 2017; Published: 10 June 2017

Abstract: After being absorbed, drugs distribute in the body in part to reach target tissues, in part to
be disposed in tissues where they do not exert clinically-relevant effects. Therapeutically-relevant
effects are usually terminated by drug metabolism and/or elimination. The role that has been
traditionally ascribed to the spleen in these fundamental pharmacokinetic processes was definitely
marginal. However, due to its high blood flow and to the characteristics of its microcirculation,
this organ would be expected to be significantly exposed to large, new generation drugs that can
hardly penetrate in other tissues with tight endothelial barriers. In the present review, we examine the
involvement of the spleen in the disposition of monoclonal antibodies, nanoparticles and exosomes
and the possible implications for their therapeutic efficacy and toxicity. The data that we will review
lead to the conclusion that a new role is emerging for the spleen in the pharmacokinetics of new
generation drugs, hence suggesting that this small, neglected organ will certainly deserve stronger
attention by pharmacologists in the future.

Keywords: spleen; monoclonal antibodies; nanoparticles; exosomes; accelerated blood clearance;
marginal zone

1. Introduction

“What does that do a spleen?” asked Charles Freck to Jim Barris in the famous novel “A Scanner
Darkly” by Philip K. Dick (1977), and this is the question that probably most of us would ask if
we were told that spleen could have something to do with drug action or disposition. The spleen
is, indeed, barely mentioned in pharmacology textbooks, and among the physiological roles of this
organ, such as immunological surveillance, removal of aged blood cells, hematopoiesis and the
regulation of blood volume [1], neither drug disposition, nor the involvement in pharmacological
drug action are ever mentioned. The little attention paid to the spleen in pharmacology was probably
due to the lack of evidence that it could have a major role in the disposition of the “classical” drugs.
However, as often happens when a new character appears in a novel and the perspective on the
story drastically changes, also our way of looking at the relationship between drugs and the spleen
is now changing as a consequence of the development of “new-generation” drugs. With the generic
term of “new-generation” drugs, we intend here to refer not only to really new drugs, such as to
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nanoparticle drugs (e.g., liposomes or nanotubes), but also to drugs that are not so new anymore, such
as biotechnological drugs (e.g., recombinant proteins and monoclonal antibodies). “New” generation
drugs differ from “classical” drugs for the much more complex chemical structure and for their larger
size, which make them more similar to the antigen particles to which spleen physiologically responds
than to traditional drugs. In the present review, we will go through the evidence showing that the
spleen may affect the disposition of monoclonal antibodies, nanoparticles and exosomes not only
contributing to their clearance, but also representing, in selected cases, an important target organ where
their pharmacological effects are exerted. Before addressing these points, we first have to examine the
microanatomy characteristics of the spleen that set the structural basis for drug-spleen interaction.

2. Spleen Microanatomy: The Pharmacologist Point of View

The spleen has a very special microanatomy that makes it very intriguing from a pharmacological
point of view. A systematic analysis of splenic structure is beyond our aims, and the interested
readers can find details on this issue in textbooks and in several excellent reviews [2–6]. Here, we will
explore the more salient aspects that give very specific properties to this organ from the perspective of
drug diffusion and, possibly, metabolism and action. We will address this point by starting with the
analysis of how the vasculature distributes inside the spleen because this is the easiest way to describe
the microanatomy of this complex organ. Once that the lineal artery enters the spleen through the
hilus of the spleen, it branches in arteries of progressively smaller caliber that run inside the fibrous
trabeculae originating from the splenic capsule till their end. Then, they become central arteries that
are surrounded by sheaths of lymphatic tissue often enlarging to form splenic follicles making up the
so-called white pulp. After exiting from the white pulp, the central arteries further branch to form
the penicillar arteries that enter the red pulp of the spleen. Whereas the white pulp of the spleen is
essentially made of lymphatic tissue, there are two main kinds of structures in the red pulp: the sinuses
and the splenic cords [7]. Splenic sinuses are unique structures different from conventional capillaries.
They are essentially cavities lined up by a discontinuous endothelium. Endothelial cells are disposed
in parallel, hence delimiting narrow slits that represent the anatomical site where the sieving activity
of the spleen is exerted (Figure 1A). Splenic sinuses continue in venules that anastomose to form veins
of progressively larger caliber. Splenic cords are cavities inside the stroma of the red pulp that are filled
up by red and white cells. Splenic cords are not lined by endothelium, but represent a specialization of
the stroma and, as such, are delimited by fibroblasts and extracellular matrix. Red blood cells in splenic
cords have to squeeze across the splits of the splenic sinusoids to return to the general circulation
(Figure 1A). Aged and diseased erythrocytes that are not deformable enough to cross these slits are
retained in the red pulp and destroyed [8]. As we will discuss later, this is also a mechanism involved
in nanoparticle sequestration by the spleen. There has been a long controversy on how the splenic
sinuses and cords are fed by the penicillary arteries in human spleen. For a long time, the prevalent
model has been that penicillary arteries open up in the red pulp with no direct continuity with the wall
of sinuses, hence making an open circulatory system in which blood may freely exit from the arterial
compartment [9,10]. Further studies suggested instead that penicillary arteries directly continue in
sinuses (closed circulation models), and combined models in which both open and closed circulation
coexist were proposed, as well. In 2011, Steiniger et al. reported a detailed 3D reconstruction of
red pulp vessels of the human spleen showing that virtually all of the circulation was of an open
type [7]. Furthermore, another area of controversy concerning the blood supply of the white pulp
has been recently addressed by 3D reconstruction studies. Kusumi et al. [11] showed that different
from what was suggested by previous evidence, the central arteries do not directly contribute to
the vascularization of the white pulp. The white pulp is, instead, irrorated by harpin loop arterioles
emerging from the penicillary artery; after that, it leaves the follicle or the lymphoid sheath surrounding
the central artery. An important contribution also comes from the central arteries of neighbor follicles.
The arterioles that emerge from the penicillary arteries and those that come from neighbor follicles
give rise to discontinuous capillary-like structures, the marginal sinuses, at the junction between the red
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and the white pulp (Figure 1B). This region known as the marginal zone (MZ) is well defined in rats
and mice, but not in humans [5]. MZ is populated by resident IgM+/IgD−memory B lymphocytes,
and it is easily identifiable in histological preparations, being demarcated by a uniform population of
metallophilic macrophages (Figure 1B). A second population of macrophages, the MZ macrophages,
is scattered throughout the entire MZ among lymphocytes. Both MZ metallophilic macrophages
and MZ macrophages express high levels of sialoadhesin, an adhesion molecule belonging to the
Sialic acid-binding ImmunoGlobulin-type LECtins (SIGLEC) family [12]. The structure of the MZ is
well suited for triggering early antibody response to blood-borne antigens because these molecules
may freely cross the marginal sinus and have access to macrophages that act as antigen-presenting
cells to memory B lymphocytes. The structure of human white pulp is quite different from that of
rodents because no clear MZ is observed at the junction of white and red pulp. Instead, a specialized
structure known as the perifollicular zone has been identified in humans [13]. This zone is viewed as an
extension of the sinuses of the red zone, as it is directly connected with this structure. As the rodent MZ,
it contains also sheathed capillaries and a population of sialoadhesin positive cells, but different from
rodents, not only IgM+/IgD−, but also IgD+ lymphocytes are commonly observed in the perifollicular
zone [14].
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from the publisher; (B) Structure of the microcirculation of the spleen. The drawing schematically 
illustrates how small vessels emerging from the penicillary artery form the marginal sinuses at the 
boundary between white and red pulp. The marginal zone with its specific cell populations such as 
metallophilic macrophages is represented, as well. Notice that in this pictorial representation, a model 
of open splenic circulation was adopted with penicillary arteries freely opening in red pulp. 
Reproduced from [15] with permission from the publisher. 

Because of the structural characteristics that we quickly reviewed, the splenic microcirculation 
is fully permeable to blood-borne molecules. This property is potentially relevant from a 
pharmacokinetics point of view considering that it sets the premises for a significant distribution 
inside the splenic parenchyma also of drugs that are excluded from the majority of the other organs 
either because of their size or of their charge. As we will discuss with some detail later, this is 
especially relevant for large “new generation” drugs such as monoclonal antibodies, large proteins, 
liposomes and nanoparticles. Assuming that, because of these characteristics of splenic 
microcirculation, drugs may have free access to the splenic parenchyma, the obvious question is what 
will be their fate thereafter. Will they be rapidly cleared off or will they be captured and somehow 
“processed” inside the spleen? Furthermore, how important will be what happens in the spleen for 
the general fate of the drug in the body? Many of these questions remain still unresolved, and in the 
present review, we will go through the few data that are available at the moment. Just to start with 
some general considerations, we will recall that in a system such as the spleen where there is few or 
no sieving by the endothelial barrier, the amount of drug that will enter into the parenchyma will be 
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Figure 1. Microanatomy of the spleen circulation. (A) Structure of the splenic venous sinuses.
The drawing shows how venous sinuses of the splenic red pulp are delimited by endothelial cells
arranged in a barrel-like fashion making narrow slits that erythrocytes have to cross to return into the
venous circulation. As detailed in the text, aged or damaged cells that are too rigid to cross these slits
are retained in the red pulp and phagocytosed by macrophages. Reproduced from [1] with permission
from the publisher; (B) Structure of the microcirculation of the spleen. The drawing schematically
illustrates how small vessels emerging from the penicillary artery form the marginal sinuses at the
boundary between white and red pulp. The marginal zone with its specific cell populations such
as metallophilic macrophages is represented, as well. Notice that in this pictorial representation,
a model of open splenic circulation was adopted with penicillary arteries freely opening in red pulp.
Reproduced from [15] with permission from the publisher.

Because of the structural characteristics that we quickly reviewed, the splenic microcirculation
is fully permeable to blood-borne molecules. This property is potentially relevant from a
pharmacokinetics point of view considering that it sets the premises for a significant distribution inside
the splenic parenchyma also of drugs that are excluded from the majority of the other organs either
because of their size or of their charge. As we will discuss with some detail later, this is especially
relevant for large “new generation” drugs such as monoclonal antibodies, large proteins, liposomes and
nanoparticles. Assuming that, because of these characteristics of splenic microcirculation, drugs may
have free access to the splenic parenchyma, the obvious question is what will be their fate thereafter.
Will they be rapidly cleared off or will they be captured and somehow “processed” inside the spleen?
Furthermore, how important will be what happens in the spleen for the general fate of the drug in
the body? Many of these questions remain still unresolved, and in the present review, we will go
through the few data that are available at the moment. Just to start with some general considerations,
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we will recall that in a system such as the spleen where there is few or no sieving by the endothelial
barrier, the amount of drug that will enter into the parenchyma will be critically dependent on how
much drug enters into the spleen with the blood, i.e., on splenic blood flow. Splenic blood flow has
been quantified with several techniques in the past including ultrasonography also with microbubbles,
serial measurement of radioactivity in the splenic area with a scintillation counter after the inhalation
of radioactive gases such as 133X, capture of 111I-labeled platelets or measurement with PET of positron
emission after the intravenous injection of H2

15O [16–20]. These studies agree that the spleen has a
very high blood flow ranging around 170 mL/min/100 g, making it one of the most perfused organs
in the body. It has, however, to be mentioned that because of its small weight, the spleen only receives
about 4.8 ± 1.5% of cardiac output [21]; this clearly reduces the potential impact of the spleen in
the general economy of the process of drug distribution inside the body. As described above, after
entering the spleen, blood can be directed to two different destinations: it can perfuse the white pulp
through the marginal or the perifollicular zone, or it can enter the red pulp and go through the splenic
cords [22]. In physiological conditions, more than 90% of the splenic blood flow goes through the
white pulp bypassing the red pulp [22]. This finding not only highlights the prevalent role of spleen
as a lymphoid organ, but also suggests that blood-borne drugs will be predominantly directed to
the white pulp once that they enter the spleen, and this has relevant pharmacological implications
for several reasons. First, the rate of blood flow significantly slows down when entering the white
pulp at the MZ (or perifollicular zone in humans), and this has the extremely relevant consequence of
significantly increasing the persistence of blood-borne antigens (but also drugs) at the MZ facilitating
the interaction with macrophages and lymphocytes and their penetration though conduits into the
deeper white pulp [23]. We will come back to this point later on in the text to explain how it profoundly
affects the pharmacokinetics of nanoparticles. The blood filtered through splenic capillaries goes
out the spleen with the lymph. Very little is known about lymphatic flow through the spleen, but it
appears important not only to maintain convective flow through splenic capillaries, but also because it
represents a path for the efflux of activated lymphocytes and released cytokines from the spleen to the
general circulation [24].

Considering that the majority of splenic blood flow is directed to the white pulp, the cell types
that will be preferentially exposed to drugs coming into the splenic parenchyma from the blood will be
lymphocytes and macrophages. Drug interaction with these two cell types may have implications both
in terms of therapeutic or toxic activity and in terms of drug disposition. Macrophages and lymphocytes
are, indeed, target of clinically-relevant drug classes. For instance, fluoroquinolones and clofazimine
accumulate inside macrophages, and 6-mercaptopurine, cyclosporine and saquinavir-ritonavir act
on lymphocytes [25–29]. Much less is known about the possible involvement of macrophages and
lymphocytes in drug metabolism. It has been clearly demonstrated, however, that macrophages express
at very high levels a full array of drug transporters including concentrative nucleoside transporter
(CNT) 3, equilibrative nucleoside transporter 3, monocarboxylate transporter (MCT) 1, MCT4,
peptide/histidine transporter (PHT) 1, PHT2, organic anion transporting polypeptide transporter
2B1 and ABC pumps multidrug resistance protein (MRP) 1/ABCC1 and MRP3/ABCC3 [30]. These
transporters may have a role in intracellular transport of drugs acting on macrophages. Macrophages
also express drug-metabolizing enzymes of the cytochrome P450 superfamily [31], and evidence has
been reported of drug metabolism by macrophages [32,33]. Similarly, the expression of both drug
transporters and drug metabolizing enzymes has been demonstrated in lymphocytes [34,35]. All of
these data suggest that the spleen may capture and process classical drugs. This issue, however,
did not receive any significant attention in the literature. Conversely, other mechanisms such as the
internalization of opsonized small particles are emerging as primarily involved in the disposition of
“new generation” drugs. In the next sections, we will go through these other mechanisms by exploring
in some detail the role of the spleen in the pharmacology of monoclonal antibodies, nanoparticles
and exosomes.
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3. Role of the Spleen in the Disposition of Monoclonal Antibodies

Monoclonal antibodies are immunoglobulins that are produced form a single cell clone and as
such have a very high specificity being directed against a single epitope [36]. Monoclonal antibodies
are produced with different technologies and bear different degrees of similarities with human
immunoglobulins [36,37]. Besides highly specific antigen recognition that depends on their variable
regions, additional pharmacological properties such as opsonization or complement fixation are
conferred to these molecules by their constant Fc residues depending on the IgG class to which they
belong [37]. Because of their selectivity and specificity, monoclonal antibodies are an important tool
in the clinics being able to neutralize and/or trigger the immune destruction of very specific antigen
targets. At the beginning of 2017, more than sixty monoclonal antibodies were marketed for human
use (http://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process).

Monoclonal antibodies are highly polar molecules, and their molecular weight ranges around
150 kDa [36,38]. Because of these characteristics, they significantly differ from a pharmacokinetic point
of view from “classical” drugs, and their distribution behavior is considered more similar to that of
bacterial antigens or nanoparticles. More specifically, while in the case of “classical” drugs, a large
part of drug distribution across the endothelial barriers depends on simple diffusion, this process
is considered negligible in the case of monoclonal antibodies that penetrate into peripheral tissues,
mainly by convection [38]. This process is mainly driven by the differences in hydrostatic pressure
between capillary lumen and the interstitium, and as such, it depends on lymph efflux from the
interstitium itself. Convection bypasses the plasma-membranes of the endothelial cells as it takes
place through the intercellular space, and therefore, it is becomes more and more favored as the
intercellular junctions become looser and looser. While moving by convection through the intercellular
space, monoclonal antibodies, as any other protein, undergo a process of filtration. This sieving
is operated by the connective tissue of the lamina basalis and of the deeper layers of the capillary
wall and by the glycocalyx that oppose the transfer of proteins through the capillary wall [39,40].
The process of convective filtration through the capillary wall can be mathematically modeled using
the classical Starling equation or its more recent revisions. This equation includes a specific parameter,
the reflective coefficient, to account for the different leakiness of the intercellular sieve in the different
capillary beds [40]. While in most tissues, capillary barriers have reflective coefficients ranging around
0.95−0.98 and are almost impermeable to plasma proteins, the spleen capillaries are much looser, and
accordingly, their reflective coefficients have been estimated to range around 0.85 [41]. This finding is
in agreement with the evidence that splenic circulation is freely permeable to plasma proteins [42].
Therefore, a larger amount of monoclonal antibodies is expected to enter into the parenchyma of
spleen than in any other organ. This opens the question of what could be their fate thereafter. Very
simplistically, we could state that part of them will simply go through the parenchyma and be removed
by lymph, and part will be captured by the spleen either to be processed or to be returned unmodified
to the blood. Therefore, a deeper understanding of the role of spleen in the pharmacokinetics of
monoclonal antibodies requires that these different processes are better characterized and quantified
in the context of the whole body disposition of these drugs. Unfortunately, the data available to
address this point are still limited. What is clear is that a basic distinction has to be done between
monoclonal antibodies that can bind specifically to antigens expressed in cells populating the spleen,
and monoclonal antibodies that are directed, instead, against targets that are not present at a significant
level in this organ. In the first case, the monoclonal antibody will bind to its target, and the spleen will
represent a preferential site of its accumulation and pharmacological action, whereas in the second case,
less specific mechanisms of antibody capture will be involved. More specifically, immunoglobulins
are cleared from the circulation in a way that is independent from antigen recognition through the
interaction with the Fcγ receptors in macrophages, monocytes and neutrophils to be internalized
and destroyed [43]. This clearance mechanism is opposed by the immunoglobulin recycling through
the FcRn receptors [43]. Because immunoglobulin binding to these receptors is reversible upon
acidification, after being internalized, antibodies are released from FcRn in the acidic endosomal
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compartment and recycled to the plasma [44]. Therefore, FcRns critically control the circulating half-life
of immunoglobulins [45,46] that can be increased by targeted mutations of the FcRn interaction site [47].
Importantly, FcRn receptors are also expressed in the spleen where they could limit immunoglobulin
degradation by splenic macrophages [48]. This hypothesis is confirmed by data obtained in FcRn
knockout mice showing that, in the absence of the FcRn receptors, the liver and the spleen are the most
important sites for immunoglobulin accumulation, whereas in control wild-type mice, similar values
of tissue accumulation -measured as area under the curve from day 0 to day 7 (AUC0–7) of percentage
of injected dose per gram of tissue (%ID/g)—are observed in all of the organs [49].

Rituximab is probably the best example of a monoclonal antibody that targets specific splenic
antigens, and the analysis of its disposition will make evident how important is the spleen in tissue
distribution of this group of monoclonal antibodies. Rituximab binds to CD20 antigens that are
expressed in normal late-preB and B cells, including B-cell splenocytes and in neoplastic B lymphoma
cells [50]. Moreover, whereas bone marrow and lymph node plasma cells do not express CD20,
a significant expression of this antigen has been reported in a subpopulation of short-lived plasma
cells that reside in splenic white pulp [51]. Interestingly, these splenic plasma cells may produce
autoantibodies and be involved in autoimmune diseases [51]. Consistent with the ability of rituximab to
bind to B-cells and plasma cells in this organ, high absorbed doses were observed in the spleen after the
administration of radioactive derivatives of this antibody such as 131I-Tositumomab or 99mTc-rituximab,
indicating a significant splenic accumulation [52,53]. Importantly, in the spleen, bound rituximab exerts
its pharmacological effects on target cells by inducing a profound depletion of splenic B-cells [54].
This effect could account for therapeutic effects of this monoclonal antibody both as an antineoplastic
drug in splenic localization of B-cell neoplasms [55,56] and as an immunosuppressive agent in organ
transplantation recipients [57,58], as well as in patients with autoimmune diseases, such as autoimmune
thrombocytopenic purpura and systemic lupus erythematosus [59–63]. The relevance of rituximab
distribution in the spleen for its pharmacological effect as an immunosuppressant agent is highlighted
by the evidence that long-lived CD20+ plasma cells have been identified in the spleen of patients with
autoimmune thrombocytopenic purpura or with primary warm auto-immune hemolytic anemia that
are resistant to this monoclonal antibody [64,65]. This suggests that when rituximab does not deplete
plasma cells in the spleen, it is therapeutically ineffective. Although a detailed analysis of rituximab
pharmacodynamics in the spleen goes beyond the aim of this review, we would like to mention that this
monoclonal antibody could act in a much more complicated way than simply depleting splenic B-cell.
There is evidence, indeed, that by inducing important alterations in the white pulp microenvironment,
it could affect also T-cell function and the process of selection of auto-reactive B-cells [66–68].

While antigen binding is an obvious mechanism of selective accumulation in the spleen of
monoclonal antibodies directed against splenic antigens, the role of this organ in the disposition of
monoclonal antibodies that do not directly target splenic antigens is less clear. Studies performed
with antibodies labeled with radioactive probes showed that the spleen is a preferential site also for
the accumulation of these monoclonal antibodies. For a correct interpretation of studies involving
radioactive antibodies, it is important to remember that different radiotracers have different retention
times in the tissues where they are captured. Some radiotracers like 131I are released into the
bloodstream as soon as they are released from the degraded monoclonal antibody, whereas others such
as 111In accumulate inside the degrading cells: The former will give us a general idea on instantaneous
and the latter on cumulative tissue capture (and degradation) of the antibody [69]. Just to mention
some important examples of studies evaluating the splenic accumulation of radioactive monoclonal
antibodies, Nagengast et al. [70] labeled the anti-VEGF monoclonal antibody bevacizumab either with
the long-lived PET isotope 89Zr or with 111In and followed with a micro PET apparatus its distribution
in vivo in nude mice bearing SKOV-3 ovarian tumor xenografts (Figure 2A). They found that whereas
during the first 24 h after injection the tracer distributed in animal body with a pattern that paralleled
blood perfusion, after 72 h, it was preferentially located in the xenotumor, in the liver and in the
spleen. Spleen was also a preferential site of radioactivity accumulation of the anti-HER1-antibody
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111I-cetuximab in mice bearing subcutaneous HCT-116 colorectal tumor xenografts [71] and of the
anti-epidermal growth factor receptor 3 monoclonal antibody 89Zr-RG7116 in mice injected with human
NSCLC or head and neck carcinoma cell lines [72] (Figure 2B). A significant accumulation in the spleen
was also observed for trastuzumab, an anti-HER2 antibody that has a crucial role in the treatment
of HER2/neu-positive breast cancer in women [73] (Figure 2C). Remarkably, among all body tissues,
the spleen was second only to the blood in the percentage of the injected radioactive dose (%ID/g) that
was retained per gram of tissue [73]. The prevalent accumulation of radioactivity in spleen was also
observed with 212Pb-trastuzumab in mice with orthotopic prostate cancer (PC-3MM2) implantation [74].
Because of the recent enormous impact of this class of immune check point inhibitors in cancer therapy,
it is important to mention that a significant splenic accumulation has been recently documented also
for two anti-PD-L1 antibodies, 131I-labeled MPDL3280A and its derivative PRO304397 [75].

As a whole, the results of the studies with radiolabeled monoclonal antibodies showed that
they significantly distribute inside the spleen reaching in this organ concentrations higher than in the
majority of the other body organs. Being directed against antigens that are not specifically expressed
in the spleen, these monoclonal antibodies are not expected to have any direct impact on splenic
function. Drug-conjugated monoclonal antibodies (ADCs) may represent an important exception to
this rule. These monoclonal antibodies bear conjugated drugs, usually antitumor chemotherapeutics
that are released upon internalization in target cells where they may exert their therapeutic or toxic
effects [76]. Under many respects, the pharmacokinetics of ADCs is dominated by the antibody
component, and therefore, they are expected to accumulate, be degraded and release their conjugated
drugs in the spleen [76]. This could explain why splenic toxicity with hypertrophy and vacuolation of
reticuloendothelial system (RES) cells and necrosis and degeneration of lymphocytes have been
observed both in rats and in cynomolgus monkeys in preclinical studies with the trastuzumab
emtansine conjugate also known as Trastuzumab-DM1 T-DM1 [77]. Interestingly, splenic enlargement
has been recently observed at magnetic resonance imaging (MRI) in 92% of the patients treated
with T-DM1 for metastatic breast cancer [78] (Figure 2D). Under these premises, the issue of splenic
distribution of ADCs and of its possible impact on splenic function will certainly deserve further
attention with the larger use in therapy of these drugs [79].

Whereas the data reviewed so far convincingly show that monoclonal antibodies may accumulate
in the spleen by the interaction either with specific splenic antigens or with unspecific Ig clearance
mechanisms, they do not clarify how important splenic capture is for whole body disposition
of these molecules. This point received little attention in the past, and most of the information
nowadays available comes from physiologically-based pharmacokinetic (PBPK) modeling studies.
In PBPK models, the body is described as composed by a definite number of compartments each
of which contributes to drug disposition in a way that can be predicted on the basis of known or
estimated physiological parameters such as afferent blood flow or venous return [80]. The first PBPK
models of monoclonal antibody disposition did not include FcRn receptors. Using a similar approach,
Covell et al. [81] estimated that the spleen is the third most important site for monoclonal antibody
degradation after the gut and the liver contributing to 3.6% of whole body disposal. In more recent
PBPK models such as the model developed by Garg and Balthasar [82], also FcRn receptors were
included. When the role of FcRn was considered, the spleen only marginally contributed to monoclonal
antibody catabolism that was mainly operated by skin, muscle, liver and gut (33, 24, 16 and 12% of
the total, respectively) [82]. The main reason for the limited involvement of the spleen in the process
was that, whilst being highly perfused, this organ receives only a minor fraction of cardiac output,
because of its small size. Indeed, in normal adults, it weighs on average 139 g (range, 43–344 g), which
represents only about 0.18 of total body weight [83], and it receives about 4.8 + 1.5% of total cardiac
output [21]. A predominant role of skin and muscle in the catabolism of monoclonal antibodies was
also found by Ferl et al. [84] whose model included FcRn, but was not validated in FcRn-ko mice. More
recently, Shah and Betts [85] published a new PBPK model intended to serve as a platform for the
pharmacokinetic analysis of new monoclonal antibodies. Different from Garg and Balthasar [82] who
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gave the same value of 0.95 to vascular reflection coefficient in all organs, Shah and Betts [41] used the
data of Sarin [85] on paracellular pore size to calculate the reflection coefficients in different tissues and
came out with the values of 0.95 for lung, heart, muscle, skin, adipose, 0.9 for kidney, thymus, small
intestine and pancreas, 0.85 for the spleen and 0.84 and for tumors [41]. Despite this substantial change
in parameters used for modeling that is expected to increase the estimate of the splenic uptake of
monoclonal antibodies, the calculated contribution of the spleen remained low. The model predicted,
indeed, a value for the antibody distribution coefficient (i.e., the proportionality constant between
blood and tissue concentration) of about 12.8 for the spleen, very close to that of other organs, such as
the skin, the gut or the liver, where it ranged between 4% and 16% [41]. Given the similar values of the
distribution coefficient, monoclonal antibodies will be expected to accumulate in different organs in
amounts proportional to organ weight, and therefore, splenic contribution will be small.
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Figure 2. Distribution of monoclonal antibodies into the spleen. (A) Tissue distribution of
89Zr-bevacizumab (black bars) and of 89Zr-IgG (white bars) measured ex vivo as the percent of the
injected dose per gram of weight (%ID/g) in different mouse organs collected 168 h after injection.
* p ≤ 0.05 vs. 89Zr-IgG.Reproduced from [70] with open permission; (B) Distribution of 111In-cetuximab
and of diethylenetriaminepentaacetic acid (DTPA) measured ex vivo as %ID/g in organs and in
metastatic colorectal tumor radioactivity levels 72 h after the injection. Reproduced from [71] under a
Creative Commons Attribution 3.0 License; (C) Whole body PET images obtained 1, 24 and 48 h after
the injection of 64Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-trastuzumab in a
patient with HER2-positive breast cancer. Notice the strong accumulation of the labeled antibody in the
spleen at all of the time points. Reproduced under a Creative Commons Attribution License from [86];
(D) Splenic enlargement in a patient receiving trastuzumab emtansine for the treatment of metastatic
breast cancer. Whole body MRI images obtained in a 59-year-old patient with metastatic breast cancer
at baseline (time point 1: TP1) and after eight (time point 2: TP2) and 12 cycles (time point 3: TP3)
of treatment with trastuzumab emtansine. Notice the progressive enlargement of the spleen whose
estimated volume increased from 92.3 cm3 at baseline up to 214.9 cm3 at TP3. The arrows indicate the
primary breat cancer and bone metastases. Reproduced from [78] with permission from the publisher.

In conclusion, monoclonal antibodies may accumulate in the spleen either by interacting with
specific antigens, as in the case of rituximab, or being specifically captured by splenic macrophages.
Because of its small size and of the fact that, consequently, it receives only a small fraction of cardiac
output, the spleen does not play a major role in monoclonal antibody disposition with the only
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possible exception of antibodies not interacting with FcRn receptors. However, splenic localization of
monoclonal antibodies may cause an important local effect in this organ especially in the case of ADCs.

4. Role of the Spleen in the Pharmacokinetics of Nanoparticle Drugs

The progress in the field of nanotechnology opened the way toward the development of new
generation drugs differing from classical drugs because of their dimensions in the nanoscale range.
Although still very small, these particles are several orders of magnitude larger than classical
drugs and represent an important advancement in drug therapy because they can be assembled as
multimolecular complexes including not only pharmacologically-active molecules, but also molecules
for selective targeting to specific tissues. Therefore, with the help of nanotechnology, conventional
drugs, biotechnological and nucleic acid drugs can be incorporated into nanoparticles for selective
targeting to specific tissues and to increase their half-life. According to the International Union of
Pure and Applied Chemistry (IUPAC), the term “nanoparticles” applies to particles with a size in
the range of 10–100 nm [87]. However, as acknowledged by the FDA in its “Guidance for Industry
on Considering whether an FDA-regulated product involves the application of nanotechnology”
(2004) (https://www.fda.gov/regulatoryinformation/guidances/ucm257698.htm#_ftn10), particles
for use in human therapy larger than 100 nm may sometimes have functional characteristics similar
to nanoparticles and be considered bona fide nanotechnological drugs. Nanoparticle structure is
highly heterogeneous and encompasses entities as different as small lipid vesicles, like liposomes,
or semiconductors, like quantum dots. Since the early days of nanoparticle development, it appeared
clear that the spleen had an important role in their pharmacokinetics. It was found that unmodified
nanoparticles disappear from the blood in seconds or minutes after their injection. Renal filtration has
a significant role in this process if their size is smaller than 15 nm, whereas for nanoparticles larger
than 40 nm, disappearance from the blood is mainly dependent on their accumulation in cells of the
RES [88–90]. This significantly reduces nanoparticle half-life and represents a major barrier for the
implementation of their clinical use. Moreover, it can lead to phagocyte activation and trigger an
inflammatory response that can be responsible of unwanted effects and toxicity [91]. Nanoparticle
uptake is mainly operated by liver Kupffer cells, but splenic macrophages also have a significant
role [89,92–96]. It is noteworthy that the mechanisms responsible for nanoparticle removal from
blood are similar for nanoparticles with very different structures such as liposomes and polymer
nanoparticles [97]. The first and most important among these mechanisms is the internalization of
opsonized nanoparticles. Opsonization is due to the deposition on nanoparticle surface of opsonins,
a heterogeneous group of proteins or protein fragments including C3, C4 and C5 and immunoglobulins,
fibronectin and apolipoproteins [98,99] that interact with a number of different surface receptors on
RES cells including complement, Fc and fibronectin receptors [100]. Opsonins are not the only plasma
proteins that accumulate on the nanoparticle surface. A heterogeneous group of other plasma proteins
summing up to tens or hundreds may get loosely bound to nanoparticles’ surface, making up a protein
corona that can be recognized by scavenger receptors [97,101]. This represents an additional mechanism
responsible for nanoparticle clearance by RES. There has been a certain interest in determining precisely
where nanoparticle uptake does take place in the spleen. Using slices of living splenic tissue to
test ex vivo the ability of splenic cells to capture nanoparticle, Demoy et al. [102] showed that MZ
macrophages can internalize polystyrene nanoparticles and that this internalization process does not
involve lectin-like receptors, but scavenger receptors and the albumin coating of the nanoparticles.
Furthermore small liposomes (100–200 nm) tend to be selectively internalized by MZ macrophages.
This tendency to accumulate in MZ macrophages has been exploited in studies on spleen physiology
as a tool to selectively deplete this cell population by using clodronate-loaded liposomes [103–105].

Capture by MZ macrophages is not the only fate that nanoparticles can have in the spleen.
Indeed, it has been demonstrated that particles larger than 100–200 nm, being incapable of crossing
the endothelial slit of splenic sinuses, can be filtered off and retained in the red pulp where they are
internalized by red pulp macrophages and slowly destroyed [106,107]. By one hour from the injection,
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almost all of the large nanoparticles are in the red pulp outside macrophages, whereas they are found
inside macrophages by 4 h after being administered [106]. Particle removal by splenic filtration tends
to increase with size and is maximal for particles larger than 400 nm [95,102,107,108]. Interestingly,
as nanoparticle size increases, Kupffer cell capture decreases, and splenic capture is enhanced. As we
will discuss later, it has been proposed that the tendency of larger nanoparticles to be retained in splenic
red pulp could represent the basis to develop splenotropic agent for diagnostic or therapeutic purposes.
In conclusion, very small (15<nm) unmodified nanoparticles are filtered by the kidney; nanoparticles
larger than 15 nm and smaller than 200 nm are captured by Kupffer cells and splenic MZ macrophages;
whereas particles larger than 200 nm are retained in the red pulp of the spleen [107]. Therefore, a first
strategy that is to be used to minimize splenic capture of nanoparticles and increase their circulating
half-life consists of keeping their size small, usually in a size range between 100 and 200 nm. In addition,
specific strategies have been developed to prevent nanoparticle interaction with the macrophagic
receptors involved in their recognition and capture. To this aim, the nanoparticle surface was covered
with different kinds of stealth coating [109]. Surface PEGylation remains the most widely-used of these
strategies [110], although a number of alternative stealth coatings based on other polymeric compounds
such as poly-N-vinylpyrrolidone, poly(amino acid)s, or poly[N-(2-hydroxypropyl)methacrylamide]
have been also developed [111,112]. An enormous amount of experimental work has been performed
to optimize stealth coating with the aim, for instance, of obtaining intelligent nanoparticles whose
stealth does not hamper tissue penetration in tumors [113,114]. The analysis of this issue goes beyond
the scope of this review, and we will just focus on the “splenic” side of the story by emphasizing that
the original expectations that, by stealth coating and a careful control of nanoparticle size, all of the
problems related to splenic capture would have been solved, were partially betrayed. It was indeed
observed that upon repeated administration, the half-life of nanoparticles progressively decreases [115].
This phenomenon was called accelerated blood clearance (ABC), and as we will discuss later, spleen
has an important role in its genesis. The first report on ABC was by Dams et al. [116] who, more than
15 years ago, observed a progressive decrease in the half-life of 99mTc-PEG liposomes after repeated
administration in rats and monkeys (Figure 3). Thereafter, ABC was observed with other PEGylated
liposome preparations [117,118] and, also, with other non-liposomal PEG-containing-nanoparticles,
such as microemulsions, polymeric micelles, polymeric nanoparticles and PEGylated proteins [117].

Int. J. Mol. Sci. 2017, 18, 1249 10 of 24 

 

Interestingly, as nanoparticle size increases, Kupffer cell capture decreases, and splenic capture is 
enhanced. As we will discuss later, it has been proposed that the tendency of larger nanoparticles to 
be retained in splenic red pulp could represent the basis to develop splenotropic agent for diagnostic 
or therapeutic purposes. In conclusion, very small (15<nm) unmodified nanoparticles are filtered by 
the kidney; nanoparticles larger than 15 nm and smaller than 200 nm are captured by Kupffer cells 
and splenic MZ macrophages; whereas particles larger than 200 nm are retained in the red pulp of 
the spleen [107]. Therefore, a first strategy that is to be used to minimize splenic capture of 
nanoparticles and increase their circulating half-life consists of keeping their size small, usually in a 
size range between 100 and 200 nm. In addition, specific strategies have been developed to prevent 
nanoparticle interaction with the macrophagic receptors involved in their recognition and capture. 
To this aim, the nanoparticle surface was covered with different kinds of stealth coating [109]. Surface 
PEGylation remains the most widely-used of these strategies [110], although a number of alternative 
stealth coatings based on other polymeric compounds such as poly-N-vinylpyrrolidone,  
poly(amino acid)s, or poly[N-(2-hydroxypropyl)methacrylamide] have been also developed 
[111,112]. An enormous amount of experimental work has been performed to optimize stealth coating 
with the aim, for instance, of obtaining intelligent nanoparticles whose stealth does not hamper tissue 
penetration in tumors [113,114]. The analysis of this issue goes beyond the scope of this review, and 
we will just focus on the “splenic” side of the story by emphasizing that the original expectations 
that, by stealth coating and a careful control of nanoparticle size, all of the problems related to splenic 
capture would have been solved, were partially betrayed. It was indeed observed that upon repeated 
administration, the half-life of nanoparticles progressively decreases [115]. This phenomenon was 
called accelerated blood clearance (ABC), and as we will discuss later, spleen has an important role 
in its genesis. The first report on ABC was by Dams et al. [116] who, more than 15 years ago, observed 
a progressive decrease in the half-life of 99mTc-PEG liposomes after repeated administration in rats 
and monkeys (Figure 3). Thereafter, ABC was observed with other PEGylated liposome preparations 
[117,118] and, also, with other non-liposomal PEG-containing-nanoparticles, such as microemulsions, 
polymeric micelles, polymeric nanoparticles and PEGylated proteins [117]. 

 

Figure 3. Accelerated blood clearance (ABC) of 99mTc-labeled HYNIC-PEG liposomes. (A) Time course 
of the blood levels of 99mTc-labeled N-hydroxysuccinimidyl hydrazino nicotinate hydrochloride 
(HYNIC)-PEG liposomes measured as the percentage of the injected dose at different times after two 
consecutive intravenous injections performed in rats with a one-week interval. Notice that whereas 
blood radioactivity declined slowly after the first injection (black circles), it decreased very rapidly 
after the second (white circles), hence showing the accelerated blood clearance phenomenon. 
Reproduced with slight modifications from [116] with permission from the publisher; (B) Whole body 
scintigraphic images obtained in a rhesus monkey after four consecutive intravenous injections of 
99mTc-labeled HYNIC-PEG liposomes performed on Day 0, Day 7, Day 21 and Day 35 of the study as 
indicated. Each image was obtained four hours after each intravenous injection of labeled liposomes. 
Notice that the spleen is strongly labeled at all time points and that signal intensity over the liver area 
strongly increases at the second injection performed seven days after the first one. → indicates the 
heart, ⇒ the liver, and ∗ the spleen region. Reproduced from [116] with permission from the publisher. 

Figure 3. Accelerated blood clearance (ABC) of 99mTc-labeled HYNIC-PEG liposomes. (A) Time
course of the blood levels of 99mTc-labeled N-hydroxysuccinimidyl hydrazino nicotinate hydrochloride
(HYNIC)-PEG liposomes measured as the percentage of the injected dose at different times after two
consecutive intravenous injections performed in rats with a one-week interval. Notice that whereas
blood radioactivity declined slowly after the first injection (black circles), it decreased very rapidly after
the second (white circles), hence showing the accelerated blood clearance phenomenon. Reproduced
with slight modifications from [116] with permission from the publisher; (B) Whole body scintigraphic
images obtained in a rhesus monkey after four consecutive intravenous injections of 99mTc-labeled
HYNIC-PEG liposomes performed on Day 0, Day 7, Day 21 and Day 35 of the study as indicated.
Each image was obtained four hours after each intravenous injection of labeled liposomes. Notice that
the spleen is strongly labeled at all time points and that signal intensity over the liver area strongly
increases at the second injection performed seven days after the first one. → indicates the heart,⇒ the
liver, and ∗ the spleen region. Reproduced from [116] with permission from the publisher.
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In the seminal paper by Dams et al. [116], it was observed that ABC can be transferred through
serum transfusion from animals repeatedly exposed to PEGylated nanoparticles to never treated
animals. It was also observed that the serum factor involved was a protein with a molecular weight
of about 150 kD whose identity remained, however, undetermined. Based on the observation that
anti-PEG IgM are produced in animals exposed to PEG-conjugated proteins and contribute to their
clearance [119,120], Ishida et al. proposed that also the ABC phenomenon could be dependent
on IgM generation [121]. By Western blot analysis and HPLC-MS/MS, they showed that the main
proteins from the serum of animals that developed ABC that were able to bind liposomes in vitro were
anti-PEG IgM [121]. Importantly, upon binding to the liposome surface, these immunoglobulins could
also activate the complement, hence providing a mechanism for clearance by macrophages. These
observations led to a model that assumed that the ABC consists in a first induction phase that takes
place after the first challenges with the nanoparticle and during which IgM are produced, and of a
second, effectuation phase that occurs at the following challenges when IgM bind to nanoparticle,
activate the complement and promote opsonization by Kupffer cells in the liver [122].

The role of the spleen in ABC was firmly established by the evidence that this process can
be prevented if animals are splenectomized [123]. Splenectomy is effective till three days after the
challenge with the PEGylated nanoparticles and becomes ineffective thereafter. This suggests that
the spleen takes part in the induction phase of ABC. In agreement with this hypothesis, it was also
observed that upon exposure to PEGylated nanoparticles, IgM concentrations in plasma do not
increase in splenectomized animals as in control animals and that their concentration on the surface of
liposomes is also lower [123]. These findings suggested that the spleen could be responsible for the
IgM response to PEGylated nanoparticles playing a role similar to its involvement in immunological
surveillance against blood-borne microorganisms and parasites that elicit a first, rapid IgM response
before triggering a more persistent immune response. Several lines of evidence supported the
conclusion that ABC induction was due to a T-cell independent activation of MZ B lymphocytes.
It was observed, indeed, that the ABC response induced by empty PEG-liposomes was still present
in athymic animals and in BALB/c nu/nu mice that lack T-cells, whereas it was impaired in animals
whose MZ B lymphocytes had been depleted with cyclophosphamide and in BALB/c SCID mice that
lack both T- and B-cells [124,125]. In addition, empty PEG-liposomes failed to induce splenic T-cell
proliferation in vitro [124], whereas B lymphocytes isolated from the spleen of animals showing the
ABC phenomenon released anti-PEG IgM when challenged in vitro with PEGylated liposomes [117].
This splenic IgM response can be, therefore, classified as a T-independent type 2 response (TI-2) [126].
Using fluorescent PEGylated liposomes, the intrasplenic distribution of these particles was followed
over time, and it was observed that immediately after the first injection, they preferentially localize
inside MZ B-cells, whereas they are absent in the follicular zone of the white pulp [127]. However, quite
early, these liposome-carrying B lymphocytes started to migrate from the MZ to enter the follicular
zone passing through the marginal sinus (Figure 4A). Fluorescence was already appreciable in the
follicular zone two hours after injection, and after 24 h, it was totally localized in this region and
completely absent from the MZ [127] (Figure 4B).

Whereas the ABC phenomenon cannot represent a problem when the use of nanoparticle drugs is
planned for a very short time, it could be a major obstacle in the case of long-lasting therapies involving
multiple administrations [117]. The case of tumor therapy with nanoparticle carrying chemotherapeutic
drugs is especially exemplificative in this perspective. Nanoparticles can be used both in the context
of classical chemotherapy protocols involving drug administration at high dosages in short cycles
or they can be given as a tool for metronomic therapies that involve repeated administration of low
dosages for long times. In the first case, ABC could hardly represent a problem also considering
that once those nanoparticles have been internalized in splenic macrophages, the chemotherapeutic
drug that they carry may exert its immunosuppressive activity and halt the development of the
ABC phenomenon itself. This has been demonstrated for doxorubicin [128] that has been used as a
PEGylated liposomal form for more than 20 years with no clinical evidence of tolerance developing by
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ABC [129]. Conversely, a significant ABC phenomenon was observed with the continued repeated
administration of nanoparticles containing low doses of several chemotherapeutic drugs, such as
doxorubicin [130], epirubicin [118] or topotecan [131].

Int. J. Mol. Sci. 2017, 18, 1249 12 of 24 

 

the continued repeated administration of nanoparticles containing low doses of several 
chemotherapeutic drugs, such as doxorubicin [130], epirubicin [118] or topotecan [131]. 

 

Figure 4. Kinetics of nanoparticle diffusion into the spleen during the accelerated blood clearance 
(ABC) phenomenon. (A) Migration of PEGylated liposomes from the marginal to the follicular zone 
during the accelerated blood clearance (ABC) phenomenon. The left part of the panel shows 
fluorescence images obtained 10 min, 30 min, 2 h and 24 h after the injection of fluorescent green 
PEGylated liposomes in rats in which ABC had been induced by previous administration of  
non-fluorescent PEGylated liposomes. The middle of the panel shows in the red marginal zone 
macrophages at the same times, whereas on the right, the merging of the green and red images is 
reported. Notice that green fluorescence moves from the marginal into the follicular zone where it is 
almost completely located after 24 h; (B) PEGylated liposomes injected at different times 
independently migrate from the marginal to the follicular zone. After inducing ABC with the injection 
of a first dose of PEGylated liposomes, a second and a third dose were injected four hours, one apart 
from the other. To independently track liposomes from the two injections, red and green fluorescent 
liposomes were used for the second and for the third injection, respectively. Images in the right and 
in the middle of the panel were obtained 10 min, 1 h and 4 h from the injection of the second and of 
the third dose as indicated, whereas, on the right, the merging of these images is reported. Notice that 
both after the second and after the third dose, fluorescent liposomes migrate from the marginal to the 
follicular zone. In addition, merged images show that when green liposomes from the third injection 
start accumulating into the marginal zone, those from the second injection (red) are already in the 
follicular zone. This suggests that the migration process is quick and that liposomes from different 
injections migrate independently inside splenic white pulp. Images in the bottom of the panel show 
that when red and green PEGylated liposomes are injected simultaneously, they migrate at the same 
time from the marginal into the follicular zone. (A,B) are both reproduced from [127] with permission 
from the publisher. 

The ability of chemotherapeutic drugs to suppress the ABC phenomenon when given at high 
doses could be used as a tool to prevent its development in therapeutic protocols involving the 
repeated administration of PEGylated nanoparticles. For instance, it has been shown that when a first 
high-dose doxorubicin nanoparticle administration is given before the repeated administration of 
low dose doxorubicin-containing nanoparticles, ABC is totally prevented [132]. Similarly, it has been 
demonstrated that oxaliplatin containing PEGylated liposomes prevent the production of anti-PEG 
IgM and the consequent ABC response in the so-called SOXL (S1-OXaliplatinum-Liposomes) 
regimen, a chemotherapy protocol based on the combined use of metronomic S1 and PEGylated 
oxaliplatin-containing liposomes [132]. Additional strategies have been developed in the effort of 
minimizing the ABC phenomenon with mixed results such as the use of poly-glycerol, of zwitterionic 
poly(carboxybetaine), or of other polymeric stealth coatings instead of PEG, or of red blood cell 
membrane as a biomimetic nanocoating [113,133–135]. 

Figure 4. Kinetics of nanoparticle diffusion into the spleen during the accelerated blood clearance (ABC)
phenomenon. (A) Migration of PEGylated liposomes from the marginal to the follicular zone during the
accelerated blood clearance (ABC) phenomenon. The left part of the panel shows fluorescence images
obtained 10 min, 30 min, 2 h and 24 h after the injection of fluorescent green PEGylated liposomes in rats
in which ABC had been induced by previous administration of non-fluorescent PEGylated liposomes.
The middle of the panel shows in the red marginal zone macrophages at the same times, whereas on the
right, the merging of the green and red images is reported. Notice that green fluorescence moves from
the marginal into the follicular zone where it is almost completely located after 24 h; (B) PEGylated
liposomes injected at different times independently migrate from the marginal to the follicular zone.
After inducing ABC with the injection of a first dose of PEGylated liposomes, a second and a third dose
were injected four hours, one apart from the other. To independently track liposomes from the two
injections, red and green fluorescent liposomes were used for the second and for the third injection,
respectively. Images in the right and in the middle of the panel were obtained 10 min, 1 h and 4 h
from the injection of the second and of the third dose as indicated, whereas, on the right, the merging
of these images is reported. Notice that both after the second and after the third dose, fluorescent
liposomes migrate from the marginal to the follicular zone. In addition, merged images show that
when green liposomes from the third injection start accumulating into the marginal zone, those from
the second injection (red) are already in the follicular zone. This suggests that the migration process is
quick and that liposomes from different injections migrate independently inside splenic white pulp.
Images in the bottom of the panel show that when red and green PEGylated liposomes are injected
simultaneously, they migrate at the same time from the marginal into the follicular zone. (A,B) are both
reproduced from [127] with permission from the publisher.

The ability of chemotherapeutic drugs to suppress the ABC phenomenon when given at high
doses could be used as a tool to prevent its development in therapeutic protocols involving the
repeated administration of PEGylated nanoparticles. For instance, it has been shown that when a
first high-dose doxorubicin nanoparticle administration is given before the repeated administration of
low dose doxorubicin-containing nanoparticles, ABC is totally prevented [132]. Similarly, it has
been demonstrated that oxaliplatin containing PEGylated liposomes prevent the production of
anti-PEG IgM and the consequent ABC response in the so-called SOXL (S1-OXaliplatinum-Liposomes)
regimen, a chemotherapy protocol based on the combined use of metronomic S1 and PEGylated
oxaliplatin-containing liposomes [132]. Additional strategies have been developed in the effort of
minimizing the ABC phenomenon with mixed results such as the use of poly-glycerol, of zwitterionic
poly(carboxybetaine), or of other polymeric stealth coatings instead of PEG, or of red blood cell
membrane as a biomimetic nanocoating [113,133–135].
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Splenic capture can be used to selectively deliver old drugs to the spleen. The evidence that we
reviewed so far suggests that spleen capture is a limiting factor in nanoparticle pharmacokinetics and
that it has to be overridden in order to optimize their therapeutic effects. However, before closing
this section, we want to mention that in selected circumstances, the tendency of nanoparticles to
be captured by the RES may actually represent a significant advantage when a selective activity
in splenic macrophages or in Kupffer cells is desired. In this perspective, drugs can be loaded
in nanoparticles to modify their pharmacokinetic profile and deliberately increase their clearance
by splenic macrophages [136]. Polycyanoacrylate nanoparticles were among the first nanoparticles
proposed for splenic targeting [137], and they were used to deliver ampicillin into the cytoplasm
of macrophages. Because of its poor intracellular distribution, this antibiotic has a limited efficacy
against intracellular pathogens that could be increased upon incorporation in nanoparticles. This
was demonstrated with ampicillin-loaded polyisohexylcyanoacrylate (PIHCA) nanoparticles in
experimental infections in mice with Listeria monocytogenes or Salmonella typhimurium [138,139].
Similar results were obtained with ampicillin containing liposomes [140]. Importantly, an enhanced
splenic localization of the drug was demonstrated in these studies. Using a variety of nanoparticles
antibacterial, antitubercular and antifungal drugs, such as doxycycline, econazole, ethionamide,
gentamycin, moxifloxacin, streptomycin and rifampicin, have been intracellularly delivered in splenic
macrophages [141–148]. A clinical condition that attracted much interest for a splenic macrophage
targeting is the acquired immunodeficiency syndrome (AIDS) due to HIV-1 infection. Indeed, in this
disease, viral accumulation and replication also take place in macrophages and macrophage-like cells
that represent a reservoir for the virus and, in some cases, such as microglia in the brain, the primarily
infected cell type. Therefore, targeting the macrophages may be helpful for the treatment of this
disease. To this aim, several antiretroviral compounds have been targeted to macrophages also
including splenic macrophages by incorporation in nanoparticles. For instance, Dutta and Jain [149]
prepared dendrimers loaded with the nucleoside analogue reverse transcriptase inhibitor lamivudine
and showed its selective macrophagic uptake in vitro, whereas Gajbhiye et al. [150] incorporated
another member of this drug family, zidovudine, in dendrimers and studied its tissue distribution
in rat. Interestingly, they found a very significant increase in zidovudine accumulation, not only in
lymph nodes and in the lungs, but also in the spleen. By comparing different classes of dendrimers
differing in their surface coating, including dendrimers coated with sialic acid (sialic acid conjugated
polypropylenimine (PPI) dendrimers (SPPI)), with mannose (mannose conjugated PPI dendrimers
(MPPI)) or with both sialic acid and mannose (sialic acid conjugated-mannosylated PPI dendrimers
(SMPPI)), they concluded that both sialic acid and mannose receptors cooperate in macrophagic uptake
of these nanoparticles with additive effects. Macrophagic accumulation and high disposition in the
spleen have been demonstrated also for the protease inhibitors lopinavir loaded in modified pullulan
nanoparticles [151] and for nanoformulated atazanavir [152].

In conclusion, splenic capture is a potentially major problem for the implementation of therapeutic
uses of nanoparticles unless a splenotropic effect is desired. The use of stealth coating may minimize
this problem, but, if PEG is used, the production of anti-PEG antibodies in the spleen may lead
to the development of the ABC phenomenon and to the loss of stealth protection from splenic
nanoparticle capture.

5. Role of the Spleen in the Pharmacokinetics of Exosomes

Exosomes are nanosized vesicular structures released by a variety of cells in physiological
conditions or in disease states [153,154]. Despite the similar size range (30–100 nm), exosomes are
profoundly different from liposomes. Indeed, they are not produced in the laboratory, but they
are released from cells at the end of a complex biosynthetic process that involves the formation
of multilamellar bodies inside endosomes and the sorting through a specific cargo machinery,
the endosomal sorting complex required for transport (ESCRT) [155]. As such, exosomes have a
complex lipid composition similar to plasma membranes, and they also contain integral proteins
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and glycoproteins some of which like the tetraspanins CD63, CD81 and CD9 are considered quite
specific markers of these structures, and others, such as adhesion molecules and complement receptors,
could be involved in their capture by the tissues [156]. Moreover, before being released from the
cell, exosomes are loaded with signaling molecules, mainly miRNAs and proteins, that they will
transport to distant target sites. This is because exosomes have physiological functions related to
cell-cell communication. Exosomes that can be easily prepared by purification from the culture media
of different types of donor cells, such as HEK293, HeLa or mesenchymal stem cells [156], attracted a
considerable interest as tools for pharmacological interventions [157]. First and foremost, they can be
loaded with pharmacologically-active compounds including not only siRNAs and miRNAs, but also
conventional drugs, such as doxorubicin. The main advantage of using exosomes as drug delivery
tools relies on the high efficiency of their internalization by target cells. In addition, exosomes may
have interesting pharmacological activity by themselves as part of their intrinsic extracellular signaling
physiological roles. For instance, specific exosomes have been demonstrated to boost the immune
response to parasites, or to decrease new vessel formation in tumors, or to promote tissue regeneration
in the infarcted heart [158]. Under the premises that exosomes could be used as pharmacological
tools, the problem emerges of their in vivo disposition. Considering their similarity with liposomes
and their size, which is relatively small and in a range in which liposome capture by the RES is
minimized, it was originally supposed that tissue disposition would not be an issue. However,
when pharmacokinetic studies were performed, it appeared clear that a significant portion of the
administered exosomes does not reach their target tissues, because it is sequestered elsewhere, and that
the spleen has an important role in this process. Sun et al. [159] evaluated the tissue distribution of
fluorescent curcumin-loaded exosomes in mice. They found that as early as 1 h after the intraperitoneal
injection of these vesicles, there was a significant accumulation of fluorescence in the live in the lung
and in the spleen. However, a detailed pharmacokinetic analysis is precluded when using fluorescent
exosomes because of sensitivity limitations. Therefore, alternative methods were developed to address
this question. Takahashi et al. [160] transfected murine melanoma B16-BL6 cells with a plasmid
encoding for a fusion protein made by Gaussia luciferase (gLuc), a reporter protein that emits light
in the presence of its substrate coelenterazine, and lactadherin, an integral protein of the exosome
membrane. The exosomes released by these transfected cells do express the fusion protein and will
emit light in vitro in luciferase assays giving hence the opportunity to measure their concentration
with high sensitivity. Using this approach, Takahashi et al. [160] showed that after being intravenously
administered to mice, these luciferase-expressing exosomes disappeared from blood very quickly with
a half-life of about 2 min because they were largely sequestered in tissues, mainly in the lungs and in
the spleen (Figure 5). A preferential accumulation in the liver and in the spleen was also observed by
Hwang et al. [161] who injected 99mTc- hexamethylpropyleneamine oxime (HMPAO)-labeled exosomes
into mice. The differential disposition of exosomes in tissues was measured by Morishita et al. [162]
using 125l-labeled exosomes. More specifically, they collected the exosomes released by B16-BL6 cells
transfected with constructs encoding for a fusion protein of streptavidin and lactadherin. Then, these
exosomes were made radioactive by the incubation with 125l-labeled norbiotinamide and intravenously
injected in mice. After 4 h 28%, 1.6% and 7% of the radioactivity was detected in the liver, spleen and
lung, respectively.

Evidence was obtained that exosomes were mainly captured by macrophages because tissue
sequestration was significantly reduced when the mice were pretreated with clodronate-containing
liposomes, an experimental procedure that selectively depletes MZ macrophages in the spleen [163].
It has been demonstrated that phagocytosis is the principal mechanism of exosome internalization,
and different mechanisms for exosome endocytosis in macrophages have been described [164,165].
A role in exosome capture has been identified for integrins and for lactadherin that binds to
αvβ3/β5 integrins and is expressed in exosomes from dendritic cells [166]. Exosome internalization by
macrophages may also be induced by the deposition of fragments of the complement protein C3 on
their surface [167], and evidence has been reported that the lectin galectin-5 is involved in macrophagic
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capture of red cell-derived exosomes [168]. Saunderson et al. [169] reported convincing evidence that
exosomes could be captured by a specific subpopulation of macrophages, the CD169+ macrophages,
via their interaction with the sialylated protein receptor CD169. CD169+ macrophages are selectively
located in splenic MZ and in the subcapsular sinus and medulla of lymph nodes. Their physiological
functions are still ill defined, although CD169+ macrophages could be involved in filtering particulate
antigens entering the spleen or the lymph nodes, in antigen presentations or in the transfer of antigens
to antigen-presenting cells [170]. The CD169 antigen that characterizes these cells belongs to the
SIGLEC superfamily and binds sialylated proteins. Saunderson et al. [169] showed that the main
ligand of this receptor, α2,3-linked sialic acid, is highly expressed in the exosome membrane and that
exosome disposition is markedly altered in CD169 knockout mice as compared with their wild-type
littermates. Indeed, although exosomes showed a similar circulating half-life in these two groups of
animals, in CD169 knock-out mice, they penetrated deeper regions with respect to wild-type controls
both in the lymph nodes and in the spleen where they reached the outer marginal zone and the red
pulp. Importantly, the immunologic response to antigen pulsed exosomes was also enhanced in CD169
knockout mice in comparison with wild-type mice, hence suggesting that upon sequestering by CD169
macrophages, exosomes become ineffective and are probably destroyed.

In conclusion, the spleen is a key anatomical station for miRNA and exosome sequestration, and a
thorough understanding of the mechanisms involved in this process will be demanded to develop
modified versions of these vesicles with the final aim of escaping their splenic capture and increasing
their biological activity.
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Figure 5. Tissue distribution of exosomes after intravenous administration in mice. (A) Tissue
distribution of exosomes derived from luciferase expressing B16-BL6 melanoma cells visualized
in vivo at different times after intravenous injection in mice. Exosomes were visualized by measuring
bioluminescence emission by luciferase after injection of its substrate coelenterazine. The intensity in
light emission is represented in pseudocolor; (B) Intensity of light emission by luciferase-expressing
exosomes measured in arbitrary units in the liver (closed triangle), lung (closed square), kidney (open
square) and spleen (open triangle) at different after intravenous injection; (C) Time course of luciferase
activity in the serum measured as the percent of injected dose per mL (%ID/mL); (D) Exosome
concentration measured in different organs as the percent of injected dose per gram of tissue four hours
after the intravenous injection. Reproduced from [160] with permission from the publisher.
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6. General Conclusions

The data that we reviewed in the present paper clearly indicate that because of its anatomical
characteristics, such as its high blood flow and loose capillaries, the spleen is highly exposed to
circulating drugs. Whereas it is unlikely that the spleen could significantly impact systemic disposition
of classical drugs, splenic capture of new generation drugs may have important implications by
different mechanisms. More specifically, monoclonal antibodies directed against antigens expressed in
the spleen directly affect the function of this organ, whereas drug-conjugated monoclonal antibodies
exert a local toxic effect upon release of their conjugated chemotherapeutic drugs. Moreover,
the spleen represents an important clearance site for exosomes and nanoparticles and may direct
immune responses against their PEG stealth. In conclusion, the spleen, this small, neglected organ,
continues to surprise us with unexpected physiological roles: after having been recently linked to the
pathophysiology of non-alcoholic fatty liver disease [171], a new role is emerging for the spleen in the
pharmacokinetics of new generation drugs with possible relevant implications on their efficacy and
toxicity, and this small, neglected organ will certainly deserve stronger attention by pharmacologists
in the future.
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