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Abstract

To overcome the limitations of neoclassical economics, researchers have leveraged tools of

statistical physics to build novel theories. The idea was to elucidate the macroscopic fea-

tures of financial markets from the interaction of its microscopic constituents, the investors.

In this framework, the model of the financial agents has been kept separate from that of their

interaction. Here, instead, we explore the possibility of letting the interaction topology

emerge from the model of the agents’ behavior. Then, we investigate how the emerging cob-

web of relationship affects the overall market dynamics. To this aim, we leverage tools from

complex systems analysis and nonlinear dynamics, and model the network of mutual influ-

ence as the output of a dynamical system describing the edge evolution. In this work, the

driver of the link evolution is the relative reputation between possibly coupled agents. The

reputation is built differently depending on the extent of rationality of the investors. The con-

tinuous edge activation or deactivation induces the emergence of leaders and of peculiar

network structures, typical of real influence networks. The subsequent impact on the market

dynamics is investigated through extensive numerical simulations in selected scenarios

populated by partially rational investors.

Introduction

An interesting debate is taking place in the scientific community on a possible paradigm shift

from neoclassical economics [1]. The global economic crisis of 2008 was another evidence of

the incompleteness of the existing economic and financial models, which proved incapable of

providing warnings and explaining the deepest causes of the crisis [2, 3]. This fact further

spurred the interest of other scientific communities, whose contributions were welcomed by

the economists, as it is becoming a common belief that a thorough understanding of the intri-

cate dynamics taking place on financial markets requires the integration of tools and perspec-

tives from different disciplines [1, 4].

A key assumption of classical economic and financial models was the rational behavior of

the homo oeconomicus, but the real markets are inhabited by common people. Psychological

studies show that the decision-making process, which is the determinant of financial dynam-

ics, cannot be described as perfectly rational [5]. Indeed, it is imperfect due to the presence of
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uncertainties, approximation errors, emotions, and cognitive biases. Inspired by the early con-

cepts of the Prospect Theory [6, 7], and, thanks to the collaborative work of economists, psy-

chologists and sociologists, a new discipline, behavioral finance, was born with the goal of

investigating the reasoning patterns of the financial agents ultimately unraveling their mental

and emotional processes and the way they mutually influence their trading strategies [8]. A

pressing open problem is the development of quantitative models capable of translating the

principles of behavioral finance into helpful instruments that may inform policy makers, see

for instance [9]. Another community that showed remarkable interest in the analysis of finan-

cial markets was that of physicists, who looked at them as examples of complex systems that

can be studied through the tools of statistical physics [10–12]. Indeed, a novel discipline, econ-

ophysics, was born in 1995 [13] and tried to elucidate the macroscopic emerging features of

financial markets from the behavior of its micro constituents, i.e the financial agents. Using

tools from agent-based modeling [14–17], artificial financial markets were developed to repro-

duce and explain the so-called stylized facts observed in real markets [14, 18–26]. For instance,

in [23] the authors showed how scaling in finance arises from mutual interactions of market

participants, while in [24] a realistic trading mechanism for price formation is reproduced.

The study of financial markets represents an intriguing challenge for the engineering commu-

nity as well, which also started to contribute in this field, see for instance [24, 26, 27] and refer-

ences therein.

We wish to remark that, even though the effort of several scientific communities is produc-

ing noticeable work that is clarifying certain aspects of the market fluctuations, a thorough

understanding of the cause-effect relationship among the agents’ behavior, decision of policy

makers, and market dynamics is still missing. One of the unanswered questions is the impact

of the cobweb of relationship among the agents on the market evolution. Indeed, it is well

known that social influence biases individual decision making [28]. In the literature, social

influences have been often modeled through interaction networks that are either considered

static [29], time varying according to the rate of transmission of information [30], or randomly

generated at each iteration [31]. However, in real markets the influence among the agents may

be dynamic [32, 33] thus determining an adaptive topology whose evolution may be driven,

for instance, by the perceived successfulness of the agents, with some central nodes of the net-

work loosing their leadership in favor of other agents that are climbing the market [34–36].

State-dependent probabilistic laws have been used to couple the evolution of the agents’ state

with network dynamics in socioeconomic phenomena, such as the diffusion of trust or techno-

logical expertise [37, 38]. Differently form the existing literature, we model network evolution

in financial markets though the dynamical systems paradigm, so as to reproduce the effect of

memory in social dynamics [39]. Specifically, we employ the edge snapping mechanism, firstly

introduced in [40] to model network evolution in complex networks, and to describe the vari-

able patterns of influence that determine the spontaneous election and decline of leading inves-

tors. In particular, we illustrate how leadership emerges in presence of different degrees of the

investors’ rationality and explore the impact on macroscopic observables, such as the wealth

distribution and the overall transaction volumes, by means of a thorough numerical analysis.

Methods

Leveraging tools from agent-based modeling and complex networks theory, we model the

investment market as an evolving dynamical network [41], where the node state variables

describe the current wealth and investing attitude of each financial agent, while the edge state

variables determine the dynamical evolution of the cobweb of influence relationship among

the agents. A schematic of the investment market is given in Fig 1. The state of each agent is
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described by its current wealth x and risk attitude α. In turn, the agent reputation is evaluated

as a function of its state and triggers the edge dynamics, which produce the time-varying adja-

cency matrix A(k). The latter describes the current influence among the agents and is fed back

to the node dynamics. In what follows, we describe in details node and edge dynamics, and

then focus on the forces driving network evolution.

Node dynamics

Let us consider a market populated by n financial agents, which may be individuals or corpora-

tions. The state of the j-th agent at the beginning of the k-th trading session is represented by a

financial and a behavioral variable, that is, its current wealth xj(k), and its current risk attitude

αj(k), respectively. In particular, the wealth at time k depends on the wealth at k − 1, and on the

agent investing strategy τj. Namely,

xjðkÞ ¼ �ðxjðk � 1Þ; tjðajðk � 1ÞÞÞ; ð1Þ

where the function ϕ accounts for the specific structure of the market. Every agent selects its

Fig 1. Schematic of the investment market.

doi:10.1371/journal.pone.0171891.g001
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investing strategy τj(k − 1) on the basis of its risk attitude αj(k − 1), which is updated as fol-

lows:

ajðkÞ ¼
ð1 � wÞajð0Þ þ w

N jðk� 1Þj j

PN

i¼1

aijðk � 1Þaiðk � 1Þ; if N jðk � 1Þ

�
�
�

�
�
� > 0

ajð0Þ otherwise

8
>><

>>:

ð2Þ

for all j = 1, . . ., n, where 0� w� 1 is an interaction weight, ajð0Þ ¼ aoj is the innate risk attitude

of the agent, aij(k) is the element (i, j) of the adjacency matrix A(k) defining the time-varying

influence network, which will be described in the next section, and N jðkÞ :¼ fi : aijðkÞ ¼ 1g is

the set of neighbors of node j at time k. We remark that the interaction topology is directed,

namely the existence of the link (i, j) does not imply the existence of the link (j, i).
During the trading sessions, the reputation of each agent rj(k), which is a time-varying attri-

bute conferred to j by the other agents, is built. To avoid an overly complex modeling, we con-

sider the reputation of the agent independent from the agent assessing it. Indeed, a relaxation

of this assumption does not impact on the results shown in this work, see S1 Supporting Infor-

mation. Here, the agent reputation is computed as a convex combination of its current wealth,

that is a measure of the effectiveness of its trading history, and the intensity cj of its charisma,

which is a personal quality that magnifies the capability of influencing its peers independently

from its trading skills. Namely,

rjðkÞ ¼ ð1 � nÞxjðkÞ þ ncj; j ¼ 1; . . . ; n; ð3Þ

where 0� ν� 1 is the irrationality coefficient that quantifies the extent of irrationality perme-

ating the market. Following [42], in this work we call the market irrational when the agents fail

to correctly evaluate the trading abilities of their peers, and start being influenced by incompe-

tent but charismatic peers. We emphasize that, as the level of irrationality in the market varies

depending on the coefficient ν, the reputation of an agent may be more or less influenced by

the intensity of its charisma.

Edge dynamics

To mimic the variable patterns of aggregation observed in financial markets [42], at every trad-

ing session, edges between agents can emerge or disappear. Namely, the topology of the influ-

ence network among the agents can evolve depending on the relative agent reputations.

Typically, each agent cannot interact with all the others: in real social networks the interaction

mechanism is selective and not all-to-all, as individuals have a finite communication capacity

[43–46]. Accordingly, we introduce the graph P ¼ fV; Epg defining the social capacity of every

agent, where V is the set of agents, and Ep is the set of edges (the relations) that can be activated.

To capture the evolutive dynamics of the mutual influence among financial agents, we

establish an analogy between the edge activation/deactivation and the motion of a mass in a

double-well potential. Being closer to the first (second) well determines the edge to be active

(inactive). In formal terms, the activation or deactivation of an edge ði; jÞ 2 Ep depends on the

value of the state variable sij 2 R associated to each potential edge in the network. Leveraging

the edge snapping mechanism proposed in [40], we model the edge evolution through the fol-

lowing set of differential equations:

€s ijðtÞ þ d _sijðtÞ þ
dVðsijðtÞÞ

dsijðtÞ
¼ uijðriðbtcÞ; rjðbtcÞÞ; ð4Þ
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for all ði; jÞ 2 Ep, where d is a damping parameter, V is a bistable potential, and uij :

R� R! R is a driving force, which is a function of the reputation of the agents’ pair. The

bistable potential V : R! R is

VðsijÞ ¼ bs2
ijðsij � 1Þ

2
; ð5Þ

where b sets the height of the barrier separating the two equilibrium points, see Fig 2.

The edge dynamics determine the adjacency matrix A(k) describing the active edges at time

k. Specifically, its element aij(k) is computed as follows:

aijðkÞ ¼
1 if ði; jÞ 2 Ep and sijðkÞ > 0:5

0 otherwise

(

ð6Þ

Indeed, at time k, the edge ði; jÞ 2 P is active if σij(k) > 0.5, while it is inactive otherwise, as

illustrated in Fig 2. The time varying matrix A(k) is associated to the graph GðkÞ ¼
fV; EðkÞg defining the influence network among the agents. Namely, (i, j) belongs to EðkÞ �
Ep if aij(k) = 1. Notice that the update of A(k) (and then of GðkÞ) has a direct influence on

the node dynamics, see Eq (2) and Fig 1.

The drivers of the edge evolution are embedded in the function uij in Eq (4), whose shape

may vary depending on the extent of irrationality in the market, as explained in the following.

Driving forces

There are multiple drivers determining the emergence and/or the dissolution of an influence

relation between financial agents [47]. Here, we assume that the link activation (or

Fig 2. Potential driving the edge evolution with b = 16. The red dotted arrow corresponds to an inactive edge, while the blue solid

arrow to an active one.

doi:10.1371/journal.pone.0171891.g002
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deactivation) depends on the relative reputation among the financial agents defined in Eq (3).

Accordingly, the force driving the edge evolution is selected as follows:

uijðkÞ ¼ ð� 1Þ
aijðkÞ maxf0; ð� 1Þ

aijðkÞðriðkÞ � rjðkÞÞg; ð7Þ

for all ði; jÞ 2 Ep. In simple words, the absence of the edge (i, j) at time k that is, aij(k) = 0,

implies that agent i does not influence agent j, although agent i belongs to the social network

of agent j. In that case, an input uij(k) = ri(k) − rj(k) may induce the activation of the edge (i, j)
in a future trading session only if the reputation of i is higher than that of j (ri> rj). Symmetri-

cally, if aij(k) = 1, an edge may be deactivated only when rj> ri. We emphasize that the edge

activation or deactivation is not instantaneous, as it is filtered by the dynamical system Eq (4),

which introduces inertia. This mimics the effect of memory in social dynamics [39]: a signifi-

cant difference of reputation has to persist for a sufficient time-span to determine a variation

in the network topology.

Looking at Eqs (3) and (7), we notice that by varying the value of ν in Eq (3), we can move

on what we call the spectrum of market rationality: its origin corresponds to a market popu-

lated by agents behaving as the homo oeconomicus (ν = 0), while at the end of the spectrum the

agents are solely inspired by their subjective perceptions (ν = 1). Indeed, in a perfectly rational

market, the relative reputation is measured by the wealth difference (ri − rj = xi − xj), which

becomes the only driver of the edge evolution through Eq (7). When irrationality dominates

the market, the different intensities of the agents’ charisma (ri − rj = ci − cj) determine the edge

evolution. We emphasize that low values of the irrationality coefficient could trigger a poten-

tially virtuous phenomenon of rational adaptation, in which the agents tend to account for the

investing strategies of the most wealthy investors. On the other hand, as irrationality pervades

the market, the agents start to follow charismatic leaders irrespectively of the trading outcome,

a scenario that we call irrational herding [48].

Trading mechanism and taxation

Following the work in [49], we focus on a simplified competitive market where the agents can

choose to invest on a set of alternative portfolios of financial assets, characterized by a limited

availability and different expected return and volatility. Specifically, at every trading session,

an agent, say j, based on its current risk attitude αj(k), selects the portfolio ℓj(k) to which it cur-

rently associates the highest expected utility, and invests in it a fraction δ of its current wealth

(see S1 Appendix for details). Moreover, the market is regulated by a taxation scheme that

redistributes the wealth while keeping its total unchanged. Hence, the generic wealth dynamics

in Eq (1) become

x�j ðkÞ ¼ xjðk � 1Þ þ bjðkÞdxjðk � 1Þða‘jðkÞ � 1Þ

� ð1 � bjðkÞÞdxjðk � 1Þð1 � b‘jðkÞÞ;
ð8Þ

xjðkÞ ¼ wðx�j ðkÞÞ; ð9Þ

where aℓj(k) and bℓj(k) are the win and loss rates associated to portfolio ℓj(k), respectively, βj(k) is

a realization of a uniform Bernoulli random variable B describing the output of the trade, and

χ is a function describing the considered taxation scheme.

The evolving cobweb of relations among partially rational investors
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Results and discussion

The potential impact of the edge dynamics on the market evolution is threefold: i) a first direct

impact is on the topological structure of the influence network GðkÞ; ii) then, the variation of

GðkÞ (and therefore of the associated adjacency matrix A(k)) induces a variation of the dynam-

ics of the risk attitudes, as from Eq (2); iii) finally, the change of the risk attitude αmay indeed

have an impact on the investing strategy τj, thus affecting the wealth distribution across the

agents, see Eq (1). Here, we investigate these three effects by means of a thorough numerical

analysis, which focuses first on the case of rational adaptation (ν = 0), and then accounts for

the presence of irrationality.

Numerical set up

We consider an artificial investment market populated by n = 1000 agents with average wealth

�x ¼ 100. At each trading session, they can choose among three alternative portfolios of invest-

ments. The agents are grouped in three classes (of equal size) depending on their innate risk

attitudes, which are uniformly distributed in the interval [0.5, 1] as in [49]. Namely, they are

classified as audacious if aoj 2 ½0:83; 1�, ordinary if aoj 2 ½0:67; 0:83Þ, and prudent otherwise.

These three agent classes are chosen so that the prudent agent will only consider investing in

the less risky portfolio, the ordinary will also consider the averagely risky portfolio, while the

audacious agents will invest in the riskiest one as well. The selected taxation scheme is Tobin-

like, see S1 Appendix for further details. Also, we set a poverty threshold xp = 20, below which

the agents do not invest and exploit the redistributive effect of the tax. We stress that the poor

agents’ wealth is perceived as negligible by its neighbors when evaluating its reputation, with

Eq (3) becoming rj(k) = νcj.
As for the parameters defining the edge dynamics, the intensity of the agents’ charisma is

randomly selected from an exponential distribution of parameter λ = 1. The mean of this dis-

tribution is amplified of a factor 100 to coincide with the expected value of the wealth: in this

way, the share of reputation determined by the charisma is given by the irrationality parameter

ν. We point out that the results illustrated in what follows also hold for alternative charisma

distributions, such as the uniform and the Gaussian ones, see S1 Supporting Information for

further details. As for the social capacity topology P, it is randomly generated by applying a

degree-preserving rewiring algorithm to a nearest neighbor graph with average degree hki =

52. The impact of the snapping dynamics on the market will be tested for increasing values of

the irrationality coefficient ν. In this context, the extent of rationality in the market refers to

the way the agents evaluate their reputation. Accordingly, we select ν = 0 and ν = 1 to model

the purely rational and irrational investment markets, respectively, while we choose ν = 0.75 as

a representative example of partially rational market. We randomly select initial conditions for

all the σij such that ði; jÞ 2 Ep and let the investment market evolve for a sufficient time span

(T = 15000 trading sessions) so that a steady-state wealth distribution is achieved. To isolate

the effect of the snapping evolution from that of other possible drivers, as for instance the

selected taxation scheme, we evaluate the results against two reference scenarios: i) a market

with non-interacting agents and ii) a market where the interaction is triggered on an Erdös

and Rènyi (ER) random undirected topology [50]. All the results reported below are averaged

over 100 repetitions for each value of ν.

Rational market evolution (ν = 0)

In what we called a perfectly rational market, subjective factors like the agent charisma should

not affect the edge evolution. We model this scenario by setting the irrationality coefficient ν

The evolving cobweb of relations among partially rational investors
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to zero so that the reputation of each agent is solely determined by its current wealth, that is,

rj(k) = xj(k). In what follows, we explain the effect of perfect rationality on market dynamics.

Impact on the network topology. In a perfectly rational market, the reputation of the

agents, which drives the edge dynamics, is quantified by an objective and measurable variable,

that is, their wealth. As the agents’ wealth persistently changes, because of the stochastic nature

of the investment outcome (see the variable βj(k) in Eq (8)), the network topology will persis-

tently vary along the trading sessions. To quantify these variations, we defined the network var-
iability η(k) as the fraction of potential edges activated or deactivated at every session, that is,

ZðkÞ :¼
kAðkÞ � Aðk � 1Þk1

Ep

�
�
�

�
�
�

:

As illustrated in Fig 3, η(k) is persistently greater than zero at every trading session, with an

average value of 0.01.

However, while the network continues to change, some topological properties remain

almost unchanged throughout the evolution. For instance, it is interesting to discuss the

steady-state distribution of the indegree (similar considerations hold for the outdegree distri-

bution). At the onset of the network evolution, as the initial conditions are randomly selected,

the indegree distribution is Poisson-like, see the left panel of Fig 4. Then, after a transient, the

indegree distribution settles, and, averaging the distribution in the 100 simulations, we observe

an almost uniform distribution in the interval [0 52], right panel of Fig 4. This distribution

shows striking similarities with the degree distribution of the corporate elite network in the

Fig 3. Network variability η(k) in the rational market.

doi:10.1371/journal.pone.0171891.g003
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US, which was also shown to be close to the uniform [51]. A possible explanation of this com-

mon behaviour is that in networks of influence, like the one considered in this work or the real

corporate elite network studied in [51], the nodes are ranked based on what we call, in this

paper, reputation, and the links almost always point from nodes with a higher reputation (the

influencers) to nodes with a lower reputation (the followers). In case this unwritten rule were

always followed, and every link could be in principle activated, a perfectly uniform degree dis-

tribution would be obtained, as for the graph illustrated in Fig 5. However, in real influence

networks, this rule is less compelling, and the interaction is selective, that is, not every link in

the network may be activated [44], thus leading to a moderate deviation from a perfectly uni-

form distribution. Our edge snapping mechanism is capable of reproducing this second, and

more realistic, degree distribution. Indeed, the topology is not instantly updated, as its

Fig 4. Indegree distribution P(kin) of the network in the rational market at k = 1 (a) and at k = 15000 (b).

doi:10.1371/journal.pone.0171891.g004

Fig 5. Example of graph with uniform indegree and outdegree distributions.

doi:10.1371/journal.pone.0171891.g005
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evolution is filtered by the dynamical system Eq (2), which adds inertia to the activation or

deactivation of links. Therefore, a higher reputation of node i compared to that of node j
implies a higher likelihood of edge (i, j) compared to (j, i), but does not guarantee its activation.

In combination with the selective interaction due to limited social capacity of the agents, this

allows the model to display moderate deviations from a uniform distribution, thus making it

closer to a real influence network.

As the degree distribution is determined by the snapping mechanism, a question naturally

arises: what is the cause of the persistent network variability shown in Fig 3? We argue that the

variability of the network topology is an indirect measure of the chances that the wealth rank-

ing among the agents changes. Indeed, due to the stochastic nature of the investments and the

redistributive effect of Tobin-like taxation schemes [52], the poorest nodes may increase their

wealth, thus climbing the pyramidal network structure: in the limit example of Fig 5, one or

more nodes climbing the market would only correspond to a relabeling of the nodes, but

would have no effect on the network structure. Different market structures, which would

translate into different shapes of the function ϕ in Eq (1), may hinder agent recovery from pov-

erty, thus reducing the network variability. A striking example can be obtained by considering

the impact of a less fair taxation scheme. For instance, we report in Fig 6 the outcome of a sin-

gle run of the market simulation, in which at time 5000 the taxation scheme is changed to a flat

tax (see S1 Appendix for details on this scheme), and then is switched back to a Tobin-like tax

at time 10000. Differently from the Tobin-like tax, the flat tax has no redistributive effect, as

the rate of the tax is independent from the agents’ wealth [53]. This dramatically reduces the

opportunities for an agent to climb the wealth rankings. Accordingly, the network variability

strongly decreases when the flat tax is introduced, and then slowly returns to oscillating in the

usual range when the Tobin-like tax is introduced again.

Fig 6. Network variability η(k) in the rational market under variable taxation schemes.

doi:10.1371/journal.pone.0171891.g006
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Impact on the risk attitudes. The evolution of the influence network has a direct impact

on the risk attitude of the agents. Indeed, Eq (2) implies that the risk attitude of the j-th agent

is updated through a weighted average between its innate attitude and the current average atti-

tude of the set N jðkÞ of its neighbors (the set of nodes with outgoing connections towards j), if

the latter is non-empty. Namely, Eq (2) can be rewritten as

ajðkÞ ¼
ð1 � wÞajð0Þ þ w

N jðk� 1Þj j

P

i2N jðk� 1Þ

aiðk � 1Þ; if N jðk � 1Þ

�
�
�

�
�
� > 0

ajð0Þ otherwise

8
>><

>>:

ð10Þ

Therefore, as the edge states evolve, aij(k) is updated, with the effect of a persistent variation of

the set N jðkÞ, which in turn implies that risk attitude dynamics never settle. Moreover, we

observe that the average risk attitude decreases if compared with the case of no interaction

among the agents, and with the case of an ER undirected random influence topology, in which

it remains constant, see Fig 7. Indeed, in a rational market the reputation is built based only on

the agents’ wealth: when a Tobin-like tax is considered, the prudent agents are favored [49],

and therefore the edge snapping dynamics steer the agents attitude towards prudence, with the

poorest agents trying to emulate the successful strategy of the richest ones. We emphasize that,

when ν = 0, the snapping dynamics are also capable of adapting to possible variation in the

trading mechanism: for instance, we observe that, when the taxation scheme changes, the most

effective investing strategy changes, and the risk attitudes start drifting accordingly, see Fig 8.

Fig 7. Average risk attitude αðkÞ of the network in the reference scenarios (magenta line) and in the rational market (blue line).

doi:10.1371/journal.pone.0171891.g007

The evolving cobweb of relations among partially rational investors
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Indeed, when the flat tax, which rewards more audacious traders [49], replaces the original tax-

ation scheme, the average risk attitude starts to increase, with this tendency reversed when the

Tobin-like tax is reintroduced.

Impact on the wealth distribution. The modification of the risk attitude induced by the

introduction of the snapping mechanism has an impact on the overall dynamics of the market,

and in particular on the wealth distribution. To quantify the extent of the inequalities among

the agents, we used the Gini coefficient, introduced by Corrado Gini in [54], which can vary

between 0 (perfect equality among the agents’ wealth) and 1 (all the wealth belongs to one

agent). As expected, because of the learning mechanism, the topological adaptation is benefi-

cial and induces wealth redistribution in the market: from Fig 9 we notice that the Gini coeffi-

cient decreases if compared with both the reference scenarios.

The onset of irrationality (ν > 0)

As irrationality pervades the market, the reputation of each agent becomes more and more

influenced by a subjective variable, that is, the innate intensity of its charisma. An analysis of

the steady-state degree distribution demonstrates that it is approximately uniform regardless

of the level of irrationality in the market, see Figs 4 and 10. Although the structural properties

of the graph do not change, the ranking of the nodes in the hierarchical structure of Fig 5

becomes less and less related to the agents’ wealth as the irrationality increases. To clearly illus-

trate this point, in Fig 11 we report the average wealth of an agent as a function of its indegree

(symmetrical considerations hold for the outdegree), and we observe that the dependence

between the two quantities becomes weaker and weaker as ν gets closer to 1. Indeed, a higher

indegree means that the agent is influenced by a large fraction of its neighbors. In the presence

Fig 8. Average risk attitude αðkÞ in the rational market under variable taxation schemes.

doi:10.1371/journal.pone.0171891.g008
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of rationality, this happens when it is significantly poorer than its neighbors. This is not the

case when irrationality increases. An interesting common denominator across all the levels of

irrationality is that the nodes with very low indegree (and high outdegree), tend to have a

wealth that is remarkably higher than the average. This can be easily explained in a rational

Fig 9. Evolution of the Gini coefficient G(k) in a market without interaction (black line), in a market with random interaction

(magenta line), and in the rational market (blue line).

doi:10.1371/journal.pone.0171891.g009

Fig 10. Indegree distribution P(kin) in the partially rational market (a) and in the irrational market (b) at k = 15000.

doi:10.1371/journal.pone.0171891.g010
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market, in which the edge dynamics are driven by the wealth difference, and then the absence

of ingoing links is associated to the richest nodes. When ν approaches to one, the explanation

is less trivial, and can be obtained by observing that only low indegree agents preserve a rele-

vant fraction of agents with the best (prudent) attitude, see Fig 12. Indeed, the random interac-

tion taking place when ν = 1 has the main effect of averaging the attitudes, dramatically

increasing the fraction of ordinary nodes. The nodes that are less affected by this effect are the

most charismatic, who maintain their initial investing strategies regardless of what the others

do. In other words, this means that when irrationality pervades the artificial market, herding is

in general of no use, and may also become detrimental.

The reduced rationality also impacts on the investing strategies selected by the agents: com-

pared with the perfectly rational case, the average risk attitude increases and, when ν = 1,

becomes equivalent to the innate one, see Fig 13. Accordingly, the distribution of the investing

strategies is not anymore steered towards the more prudent (and rewarded) ones, and becomes

comparable to that obtained with a random undirected ER influence network. Consistently,

we observe that the redistributive effect of rational adaptation illustrated in Fig 9 is hampered

as irrationality increases, giving place to what we call irrational herding, where the potential

Fig 11. Average wealth of an agent as a function of its indegree in the rational market at k = 1 (a) and at k = 15000 (b), and in the

partially rational market (c) and irrational market (d) at k = 15000.

doi:10.1371/journal.pone.0171891.g011
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benefits of the interaction are ruled out by its randomness, see Fig 14. On the other hand, the

increased irrationality mitigates one of the known drawbacks of the introduction of Tobin-like

tax schemes, that is, the reduction of the trading volumes [52]. Indeed, the irrationality leads

to the permanence of a relevant fraction of audacious agents, thus increasing the total volume

of trades, see Fig 15.

Conclusions

In this paper, we explored the interplay between the evolution of the cobweb of relations

among financial agents and the overall market dynamics. Taking a new perspective, we

exploited the edge snapping mechanism, firstly introduced in [40], to model the coevolu-

tion of the influence network with agent dynamics: each link is viewed as a mass moving

in a double-well potential, with the first well corresponding to an inactive link and the

second to an active one. The driver of link evolution is the relative reputation between pos-

sibly coupled agents. Depending on the extent of rationality in the market, the agent reputa-

tion may depend more on the its wealth (rationality prevails in the market) or on the

intensity of its charisma (irrationality is predominant). Our numerical analyses have shown

that:

• The network topology at steady state displays a fairly uniform indegree distribution. This

result is due to the fact that the snapping dynamics tend to assign an indegree which is

Fig 12. Average fraction of prudent agents as a function of their indegree for different values of ν at k = 15000.

doi:10.1371/journal.pone.0171891.g012
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inversely proportional to the agents’ reputation (the opposite happens for the outdegree).

This result is consistent with the typical structure of influence networks, in which the agents

are ranked based on their reputation, see for instance the network of corporate elite in the

US [51].

• The indegree distribution is not significantly affected by the degree of rationality. Indeed,

the extent of rationality only impacts on the way the reputation is evaluated and ranked, but

not on the network structure. In simple words, the plot of the graph describing the topology

remains mostly unchanged, with only the labels identifying the agents reassigned according

to the new reputation ranking.

• The rate of the network variability, defined as the number of edges activated or deactivated

at each trading session, quantifies the permeability of the market to agents climbing the rep-

utation ranking. Indeed, in a rational market less fair taxation schemes, such as the flax tax,

hamper wealth redistribution, thus reducing network variability. As irrationality pervades

the market, the reputation is prevalently determined by the agents’ innate charisma, and

therefore this also hinders the network variability as modifications of the agents’ wealth have

little impact on their reputation.

• Rational adaptation is beneficial for the market stability. Indeed, it favors wealth redistribu-

tion and steers the investing strategies towards the most efficient one. Moreover, it confers

to the agents the capability of learning from the environment: they react to variations of the

Fig 13. Average risk attitude αðkÞ in the rational (in blue), partially rational (in green) and irrational (in red) markets.

doi:10.1371/journal.pone.0171891.g013
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market scenario (e.g. changes in the regulations) and adapt their investing strategies

accordingly.

• On the other hand, irrational herding fosters inequalities, nullifying the potential benefits of

mutual interactions. Indeed, the agents start to follow the strategies of the most charismatic

agents, which are not necessarily those with the most effective investing strategies. Interest-

ingly, the nodes with the lowest indegree, that are the charismatic market leaders, who refuse

to herd, show a significantly higher average wealth. This means that in an irrational market

herding can be detrimental and it is better to be an influencer rather than a follower, which

is in accordance with the empirical findings that illustrate how bubbles may appear in con-

junction with irrational herding [55].

Coevolving networks have been recently used in social sciences as a useful tool to model sit-

uations in which the a feedback mechanism modifies the structure of the network in depen-

dence of the state of the nodes, see for instance [31, 37, 38, 56–60]. On the ground of our

numerical results, and supported by the encouraging matching between the outcome of our

model, common sense intuition, and a typical influence network, we envision that the coevolv-

ing dynamical networks paradigm, might represent a useful tool to generate more realistic

models also in the analysis of financial markets. In particular it could turn out to be particu-

larly useful to embody behavioral economic models and investigate the impact of social inter-

action on market evolution, such as the emergence of leadership and its consequences on

global market observables.

Fig 14. Evolution of the Gini coefficient G(k) in the rational (blue line), partially rational (green line), and irrational (red line)

markets.

doi:10.1371/journal.pone.0171891.g014
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