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Abstract Sediment tends to accumulate inorganic and persis-
tent hydrophobic organic contaminants representing one of
the main sinks and sources of pollution. Generally, contami-
nated sediment poses medium- and long-term risks to humans
and ecosystem health; dredging activities or natural resuspen-
sion phenomena (i.e., strongly adverse weather conditions)
can remobilize pollution releasing it into the water column.
Thus, ex situ traditional remediation activities (i.e., dredging)
can be hazardous compared to in situ techniques that try to
keep to a minimum sediment mobilization, unless dredging is
compulsory to reach a desired bathymetric level. We reviewed
in situ physico-chemical (i.e., active mixing and thin capping,
solidification/stabilization, chemical oxidation, dechlorina-
tion, electrokinetic separation, and sediment flushing) and
bio-assisted treatments, including hybrid solutions (i.e., nano-
composite reactive capping, bioreactive capping, microbial
electrochemical technologies). We found that significant gaps
still remain into the knowledge about the application of in situ
contaminated sediment remediation techniques from the tech-
nical and the practical viewpoint. Only activated carbon-based
technologies are well developed and currently applied with

several available case studies. The environmental implication
of in situ remediation technologies was only shortly investi-
gated on a long-term basis after its application, so it is not clear
how they can really perform.

Keywords Marine environment . Sediment . In situ
technologies . Remediation . Toxicity . Activated carbon

Introduction

Marine sediment can accumulate persistent hydrophobic or-
ganic contaminants (HOCs) such as polychlorinated biphe-
nyls (PCBs), polycyclic aromatic hydrocarbons (PAHs),
dichloro-diphenyl-trichloroethane (DDT), and heavy metals
(Nikolaou et al. 2009a, 2009b; Lofrano et al. 2016). Sediment-
bound pollutants pose major concerns for human health and the
environment, showing combined effects that are still largely
unknown (USEPA, US Environmental Protection Agency
2005; Libralato et al. 2009, 2010a, 2010b; Mamindy-Pajany
et al. 2010; Hurel et al. 2016). As a result, remediation of con-
taminated sediments has raised a great deal of scientific and
public concern around the world representing a huge actual
challenge both under a technical and technological viewpoint.

Sediment remediation techniques are commonly classified
as in situ (i.e., treatments operating where the contamination is
present with no sediment dredging) and ex situ (i.e., treat-
ments including sediment dredging or resuspension phenom-
ena to some extent). Nevertheless, dredging still remains an
important issue; like for hotspots, dredging activities can
heavily remobilize sediment like as the associated pollution
via washing out events (Arizzi Novelli et al. 2006; Libralato
et al. 2008; Krull et al. 2014; Chakraborty et al. 2014).

From 26 dredging projects carried out by the National
Research Council (NRC, National Research Council 2007),
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systematic difficulties were observed in achieving target
cleanup thresholds in addition to the impairment of
sediment-associated benthic ecosystem. During the remedia-
tion of sediment in large-scale contaminated sites like Hunters
Point Naval Shipyard (San Francisco, CA, USA), ex situ tech-
niques were ineffective: economic, environmental, and tech-
nical goals were not met (Zimmerman et al. 2004).

The development of cost-effective sediment management
strategy requires a multi-approach assessment including in
situ treatment alternatives, unless dredging is compulsory to
reach a desired bathymetric level. Since they allow sediment
remediation avoiding excavation and transport, remediation
footprint and cost savings could be significantly optimized.
The main disadvantages are related to long-lasting procedures
(months or years), uncertainty about the treatment uniformity
due to the variability of sediment and aquifer characteristics,
and the overall efficiency of the process is more difficult to
verify.

This paper proposed an overview of existing in situ sedi-
ment remediation treatments: (i) providing a synthetic over-
view of the physico-chemical performance of contaminants’
reduction, (ii) refining papers on the basis of the description of
detailed experimental design and the application of standard-
ized methods, and (iii) supporting a Bmind-the-gap^ approach
stressing on missing data to support hazard assessment. A
special focus was devoted to three main technological clusters
identified for in situ remediation: (i) physical and chemical
treatments, (ii) biological treatments, and (iii) hybrid solu-
tions. Results were discussed considering the characteristics
of contaminants and their removal efficiency, how long the
remediation might last, the role of natural organic matter
(NOM) and of potential by-products, and their ecotoxicolog-
ical implications, including remediation design and general
costs as well.

Techniques and technologies for in situ sediment
remediation

Apart from the no-action in situ approach, like monitored
matural attenuation/recovery (MNA/R) (USEPA, US
Environmental Protection Agency 2014), only direct or active
interventions might produce a significant reduction in sedi-
ment contamination level in a reasonable time (e.g., from
months to few years).

Physical and chemical treatments

In situ amendment: active mixing and thin capping

Two main approaches could be used to remediate contaminat-
ed sediment: (i) active mixing and (ii) thin capping. Active
mixing consists of mixing contaminated sediments with

natural substrates or other inert materials. In both cases, the
bioactive surface layer of sediment is able to transfer contam-
inants from sediment to strongly binding sorbent particles,
reducing their bioavailability to benthic organisms and con-
taminant flux into the water column and thus the potential
general accumulation in the aquatic food web (Ghosh et al.
2011).

Thin capping consists of one or more layers of amendment
(e.g., sand and NOMs) actively reducing the overall cap thick-
ness required, for example when compared to conventional
sand cap (Wessels Perelo 2010).

In the last two decades, several authors evaluated in situ
amendment introducing various sorbents such as activated
carbon (AC), organoclay, apatite, biochar, coke, zeolites, and
zerovalent iron (ZVI) into contaminated sediments (USEPA,
US Environmental Protection Agency 2013a). Amendments
tend tomodify sediment geochemistry increasing contaminant
binding and stability in order to reduce its risk to human health
and the environment. Among all, AC, organoclay, and apatite
were identified as particularly promising sorptive amend-
ments for in situ sediment remediation (USEPA, US
Environmental Protection Agency 2013b). But several data
about their potential side effects are still missing. Except for
AC and ZVI, (eco-)toxicity data are scarce or still unavailable.

As shown in Tables 1 and 2, most studies are referred to AC
administration. Several laboratory experiments and recent
field studies demonstrated that AC showed significant reduc-
tions in chemical concentration and biological availability of
polychlorinated biphenyls (PCBs) (Zimmerman et al. 2004;
Werner et al. 2005; Cho et al. 2009; Beckingham and Ghosh
2011; Cho et al. 2012), polyaromatic hydrocarbons (PAHs)
(Hale et al. 2010; Cornelissen et al. 2011; Hale et al. 2012;
Meynet et al. 2012), and dichlorodiphenyltrichloroethane
(DDT) (Tomaszewski et al. 2007) by active mixing and thin
capping.

Considering a series of differentially polluted sediment
samples, Hale et al. (2010) and Hale and Werner (2010)
highlighted that 1–5% AC can reduce the pore water concen-
tration of PCBs, PAHs, DDT, dioxins, and furans from 70 up
to 99%. Organoclay effectively removed soluble organics and
non-aqueous phase liquids (NAPLs) such as oils, chlorinated
solvents, and PAHs (Alther 2002a, 2002b). Apatite facilitated
the immobilization of metals including Cu, Pb, and Zn (Knox
et al. 2008). Laboratory results demonstrated that the effec-
tiveness of sorbents in lowering contaminant bioavailability
increased with decreasing amendment particle size, growing
dose, greater mixing, and contact time (Zimmerman et al.
2005; Ghosh et al. 2011), but it could vary for various amend-
ments with similar surface areas (Tomaszewski et al. 2007).

As shown in Table 3, some patented commercial products
are available yet and some of them were applied at full-scale
remediation projects like for capping (Table 2), but every
technological approach must be considered on a case-by-
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case basis. In fact, organoclay® MRM (Table 3) can enhance
the production of methyl mercury in presence of sulfate-
reducing bacteria. Short-, medium-, and long-term monitoring
surveys should be carried out after remediation activities to
verify the amendment stability in sediment within real expo-
sure scenarios.

Considering the Hunters Point Shipyard case study
(Table 1), Choi et al. (2016) focused on the importance of
developing and applying decision-making frameworks for in
situ sediment AC remediation, including a modeling approach
supporting long-term prediction and engineering design. The
modeling framework compared various design alternatives for
treatment optimization and estimation of long-term effective-
ness over 10–20 years under slow mass transfer condition in
order to identify the best efficient and cost-effective solution
for HOC-contaminated sediment treatment.

Solidification/stabilization

In situ solidification/stabilization (S/S) treatment involves the
addition of chemicals and/or cements to encapsulate contam-
inated sediment and/or convert pollutants into less soluble,
less mobile, or less toxic forms (Scanferla et al. 2009; Wang
et al. 2015). Unless Portland cement and quicklime are the
most commonly used materials for S/S, recently, new addi-
tives are available from the market (Table 3). The mixture of
reagents and additives used for S/S is commonly referred as
the binder and can range from a single compound to a multi-
component system.

The S/S process proved to be efficient for treating sedi-
ments contaminated with heavy metals, PAHs, and PCBs
(EPA 2009). S/S is most often selected for metals including
lead, arsenic, and chromium because these contaminants form
insoluble compounds when combined with appropriate addi-
tives. In applying S/S for treating organics, the use of some
kind of organophilic clay and AC, either as pre-treatment or as
additives in cement, can improve contaminant immobiliza-
tion. Generally, the depth of contaminated sediment can limit
its application. A series of bench tests should be performed
stabilizing the best mix design capable of reducing the
leaching of contaminants from the solidified mass. Mixing
conditions, pH, water/binder ratio, and curing temperature
were identified as the principal factors influencing solidified
sediment strength and leaching behavior (Malviya and
Chaudhary 2006). Since mixing and temperature are difficult
to control in situ, the process can be less effective than other in
situ treatments. Few examples of full-scale in situ S/S of con-
taminated sediments were reported (Robb et al. 2015). Small-
scale immobilization has been used at Manitowoc harbor in
Wisconsin (USA), where cement and fly ash slurry were
added to sediment using a proprietary mixing tool and slurry
injector (EPA 1994). The in situ mixing of cement with sedi-
ment for enhancing primarily compressive strength has not

been proved or accepted for treatment of contaminated marine
sediments in USA (EPA 1993). The use of in situ S/S process
should be carefully evaluated since the treated site character-
istics could be significantly modified. Some processes might
result in substantial volume increase up to two times the orig-
inal one. No data are available about the ability of the process
to keep contaminants immobilized over time in real environ-
mental conditions. A generalized lack of aging effects of the
technology was evidenced.

Chemical oxidation

In situ chemical oxidation involves the introduction of chem-
ical oxidant agents into the subsurface in order to transform
sediment contaminants into less harmful chemical species.
Contaminants amenable to treatment by chemical oxidation
include benzene, toluene, ethylbenzene, and xylenes
(BTEX); methyl tert-butyl ether (MTBE); total petroleum hy-
drocarbons (TPH); chlorinated solvents (ethenes and ethanes);
PAHs; polychlorinated biphenyls (PCBs); chlorinated ben-
zenes (CBs); phenols; organic pesticides (insecticides and her-
b i c i d e s ) ; a n d m u n i t i o n s c o n s t i t u e n t s ( e . g . ,
cyclotrimethylenetrinitramine, trinitrotoluene, octahydro-
1,3,5,7-tetranitro-1,3,5,7-tetrazocine) (Flotron et al. 2005;
Brosillon et al. 2015; Shih et al. 2016).

The most commonly employed chemical oxidants include
hydrogen peroxide, ozone, sodium permanganate, and sodium
persulfate (Shih et al. 2016). These oxidants have been able to
cause rapid and complete chemical destruction of many toxic
organic chemicals; other organics are amenable to partial deg-
radation as an aid to subsequent bioremediation.

So far, most applications focused on ex situ treatments but
presenting limited potentiality for in situ activities due to the
difficulty related to direct addition of chemicals to sediment
and the consequent environmental side effects.

Dechlorination

Nanoscale zero-valent iron (nZVI) can reduce some organic
contaminants to less toxic by-products. Laboratory studies
evidenced that also micrometer-scale ZVI effectively promot-
ed sediment reductive dechlorination of PCBs, but including
PCB congeners potentially more toxic than the parent com-
pounds and increasing degradation time for larger congeners
(Gardner 2004; USEPA, US Environmental Protection
Agency 2013a). Additional limitations related to ZVI can in-
clude alterations to sediment geochemistry, passivation of iron
by the formation of a thin layer of iron oxide, and the high cost
of microscale and nanoscale iron. At now, the use of ZVI to
treat contaminated sediment is limited to bench-scale studies
with no pilot- or full-scale applications for in situ sediment
remediation to the best of our knowledge.
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Electrokinetic separation

Electrokinetic separation is an emerging technology relying
on the application of a low-voltage direct current through sed-
iment to separate and extract heavy metals, radionuclides, and
organic contaminants (SMOCS 2012; Hahladakis et al. 2013;
Iannelli et al. 2015). The promotion of electro-migration in-
volves (i) positively charged chemical species (e.g., metals,
ammonium ions, and some organic compounds) moving to-
ward the cathode and (ii) negatively charged chemicals (e.g.,
chloride, cyanide, fluoride, nitrate, and negatively charged
organic species) migrating toward the anode. Enhancing
agents (e.g., surfactants reducing the interfacial tension) and
co-solvents could be used in order to increase the reduction
performance (Wan et al. 2009). The addition of solubilizing
agents can change the characteristics of sediment particles as
well as of pore water, potentially affecting the electro-osmotic
flow and, consequently, the removal process of contaminants.
Cyclodextrins are frequently used being biodegradable and
non-toxic increasing the solubility of contaminants like
PAHs by lowering their sorption at the same time
(Hahladakis et al. 2013). Inert electrodes, such as carbon or
graphite, or platinum, must be used since metallic electrodes
may dissolve as a result of electrolysis introducing further
contamination into sediment (Hahladakis et al. 2013).

Sediment flushing

In situ sediment flushing treatment removes harmful
chemicals by injecting water or chemicals into sediment wash-
ing it out and conveying hydrophilic contaminants toward the
extraction wells. Elutriates are pumped and treated in on-site
was t ewa t e r t r e a tmen t p l a n t s ( SMOCS 2012 ) .
Environmentally sustainable surfactants could be used to in-
crease the solubility of organic compounds, the flushing solu-
tion could significantly alter the physico-chemical properties
of sediment. This technology can offer the potentiality of re-
covering metals mobilizing a wide range of organic and inor-
ganic contaminants especially from coarse-grained soils, but it
could be highly non-effective in presence of heterogeneous
mixtures of contaminants because no universal flushing solu-
tion is available: a case-by-case basis approach is strongly
required. The flushing technique could be effective, but cur-
rent in situ applications are mainly related to soil (SMOCS
2012).

Bioremediation

Bioremediation consists of biologically driven processes to
remove and/or detoxify environmental pollutants.
Frequently, the complexity of sediment-water ecosystem can
limit the effectiveness of in situ bioremediation, which is gen-
erally more successful when environmental conditions are

carefully controlled and adequately adjusted to enhance bio-
transformation processes. Under this viewpoint, ex situ treat-
ments are easier to manage.

Several treatment approaches are included in contaminated
sediment bioremediation (Wessels Perelo 2010) like (i) mon-
itored natural attenuation/recovery (NA/NR) (i.e., the action is
Bno action^meaning that no other activities than environmen-
tal monitoring are required leaving natural remediation to oc-
cur), (ii) biostimulation (i.e., indigenous populations eliminat-
ing pollutants are stimulated removing the factors limiting
their growth), (iii) bioaugmentation (i.e., introduction of
allocthonous species for the degradation of contaminants,
and (iv) phytoremediation (i.e., using macrophytes and/or al-
gae to degrade and/or remove contaminants from sediment).
Wessels Perelo (2010) reviewed in situ bioremediation of or-
ganic pollutants in sediment evidencing how it is promising
(i.e., lower impact and more cost-efficient) than traditional
management strategies, but with some major drawbacks. In
situ bioremediation takes longer (from months to several
years) and is less predictable than traditional methods being
valuable only to treat low-risk sites with low level or diffuse
contamination not immediately impairing human health and
the environment (Magar and Wenning 2006). Akcil et al.
(2015) stated that when considering how to reduce the risk
of contaminated sediment, it is important to recognize the
capacity of natural processes to achieve remediation objec-
tives without human intervention.

NA processes could reduce pollutants under different envi-
ronmental conditions (i.e., pH and nutrient levels) (Röling and
van Verseveld 2002). Frequently, NA is driven by physical
mechanisms such as mixing and in-place burial of contami-
nated sediment with progressively cleaner sediment delivered
by the watershed. Natural sedimentation process can reduce
contaminants’ (bio)availability of environmental concern
(CEC) limiting their downstream transport as well.

Other potentially significant mechanisms include chemical
processes such as adsorption and redox reactions coupled with
biodegradation. According to Wang and Tam (2012), no sig-
nificant decline in total PAHs, TBT, heavy metals, and con-
tamination Bhotspots^ could be detected 1 year after the re-
moval of an old floating dock in Hong Kong SAR (South
China). However, the profile of 16 PAHs changed 6 months
in the impacted stations after the dock removal showing a
decrease of some low-molecular-weight PAHs suggesting
the presence of on-going in situ biodegradation events.

In confined hydrocarbon-rich environments, anoxic condi-
tions tend to prevail already few centimeters below the water-
sediment and the increase of oxygen availability would sup-
port biodegradation processes. The use of oxygen-releasing
compounds (ORC) based on Ca or Mg peroxide has been
proposed to ensure long-lasting release of oxygen in contam-
inated subsurface environments (Bellagamba et al. 2016). But
drawbacks are present such as (i) the poor control of the
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oxygen rate released and the resulting oxygen availability, (ii)
the need for repeated injections due to oxygen consumption/
scavenging by biotic and abiotic side reactions, and (iii) ORC
could have secondary harmful effects on aquatic biota
(Abdallah et al. 2009). Apart from several case studies (Yu
et al. 2011; Akcil et al. 2015; Matturro et al. 2015), no great
additional information is available after Wessels Perelo (2010)
investigation of in situ sediment bioremediation.

Hybrid solutions

Nanocomposite reactive capping

In order to enhance current capping technologies, Choi et al.
(2009) focused on the development of granular AC (GAC)
impregnated with reactive iron/palladium (Fe/Pd) bi-metallic
nanoparticles (NPs) (i.e., reactive AC (RAC)). RAC is a smart
composite for dechlorination of PCBs. Due to its high adsorp-
tion capacity, RAC actively attracts hydrophobic PCBs from
sediment matrix. The concept of a Breactive^ cap/barrier com-
posed of RAC pellets contained between thin geo-textile
membranes is proposed in Fig. 1.

In 2 days, 5 g/L of RAC achieved 86% dechlorination of 2-
chlorobiphenyl (2-ClBP, 4.08 mg/L), while almost complete
dechlorination was achieved in just 1 day at 20 and 100 g/L of
RAC. Its scale-up and field application will take some time

due to the high cost of RAC mainly due to Pd doping and
synthesis time. In general, GAC showed PCB adsorption ca-
pacity in presence of ZVI as a strong reducer, while Pd speeds
up the dechlorination kinetic. Critical issues like Fe and Pd
leaching, adsorption, and dechlorination capacity and yield of
RAC, as well as their aging and oxidation, are still under
investigation along with the initial demonstration of PCB-
contaminated sediment remediation using RAC (Choi et al.
2009).

Bioreactive capping

The use of physico-chemical active caps is a promising op-
tion, but possible limitations (e.g., high material costs, sorp-
tion, and reaction capacities) lead to the consideration of in
situ bio-reactive caps. Specifically, biotransformation of con-
taminants is designed to occur within the cap matrix produc-
ing environmentally friendly reaction by-products.
Biologically based active caps have the potential to keep re-
activity over long time periods serving as potentially sustain-
able remedial options especially when degrading microorgan-
isms are present and the necessary metabolic requirements are
met (Himmelheber et al. 2011). Previous studies about the
activity of microbial populations within a sediment cap dem-
onstrated that indigenous microorganisms in the underlying
sediment, including organisms capable of contaminant

Fig. 1 Conceptual diagram of
Breactive^ capping barrier
composed of GAC impregnated
with Fe/Pd bimetallic particles
(noted as RAC) for the adsorption
and simultaneous dechlorination
of PCBs in sediment (Choi et al.
2009)
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biotransformation, could colonize the overlying cap and, pos-
sibly, participate to contaminant bioattenuation process
(Himmelheber et al. 2009).

Some recent examples of bioreactive capping were related
to ZVI (Sun et al. 2010) and AC (Wang et al. 2014). An
integrated ZVI–sorbent–microorganism remediation system
as an in situ active capping technique was proposed to reme-
diate nitrobenzene-contaminated (NB-contaminated) sedi-
ment; NB was reduced by ZVI to aniline that is more biode-
gradable than the parental compound (Sun et al. 2010). A
novel bio-reactive capping barrier composed of polysulfone/
GAC (PS/GAC) hybrid membrane immobilized with micro-
organism was developed to remediate NB-polluted sediment
(Wang et al. 2014).

Microbial electrochemical technologies

Microbial electrochemical technologies (METs) are increas-
ingly considered for remediating contaminated sediment.
They rely on the capability of microorganisms to use (directly
or indirectly) solid electrodes; suitably deployed in the con-
taminated environment, they seemed to require low mainte-
nance and being virtually an inexhaustible source of electron
donors/acceptors for the reductive/oxidative degradation of
contaminants (Aulenta et al. 2011; Li and Yu 2015; Wen-
Wei and Han-Qing 2015; Majone et al. 2015; Bellagamba
et al. 2016) suggesting the creation of benthic microbial fuel
cells (BMFC) (Wen-Wei and Han-Qing 2015).

Apart from creating an efficient electron transport route for
bridging the natural redox reactions, BMFC can be used to
directly supply electron donors or acceptors to sediment
through tuning the local electrode potential. Thus, in some
cases, the cathode can also be buried into the sediment, while
an external voltage can be applied to provide the desired elec-
trode potential for contaminant removal (Aulenta et al. 2007;
Chun et al. 2013).

Bellagamba et al. (2016) explored the possibility to elec-
trochemically manipulate the redox potential of a crude oil-
contaminated marine sediment establishing in situ conductive
conditions to contaminants’ biodegradation by autochthonous
microbial communities. They showed that low-voltage elec-
trolysis (2 V) applied continuously or intermittently acceler-
ated (up to 3 times) the biodegradation of hydrocarbons from
crude oil in marine sediment.

Discussion

Factors affecting technology selection should generally in-
clude (i) contaminant characteristics; (ii) removal of target
contaminants (i.e., performance criteria); (iii) contaminant
transformation and release; (iv) material/reagent placement,

time, mechanisms, physical and chemical stability, and mon-
itoring; (v) ecotoxicological implications; and (vi) costs.

Characteristics of contaminants

Metals and metalloids according to sediment geochemical
fraction can significantly change their mobility. Since sedi-
ment composition varies from site to site due to geological,
hydrographical, climatic, and socio-economic characteristics,
metals and metalloids can distribute among various geochem-
ical phases with various grades of adsorption and retention.
Thus, their partitioning must be determined on a case-by-case
basis before any intervention (Akcil et al. 2015). Organic pol-
lutants may associate temporarily to the particulate matter,
establishing equilibrium relations at the water-sediment inter-
face. These sorption and desorption processes can substantial-
ly influence compound bioavailability (Viganò 2000). The
direct transfer of chemicals from sediments to organisms is
now considered to be a major route of exposure for many
species. To evaluate the contaminant release from sediment
through desorption processes, both the characteristics of sed-
iment and overlying water column must be considered
(Zoumis et al. 2001).

Over limited concentration ranges, the partitioning of
HOCs between sediment and water can be described in simple
terms according to a solid-water distribution coefficient (Kd)
based on the assumption that partitioning depends primarily
upon sediment total organic carbon (TOC) as stated in Eq. 1:

Cs

Cw
¼ Kd ¼ f ocKoc ð1Þ

where Cs = sediment contaminant concentration (mg/kg),
Cw = water contaminant concentration (mg/L), Kd = solid-wa-
ter distribution coefficient (L/kg), foc = fraction of sediment
OC, and Koc = OC-normalized partition coefficient (L/kg
OC). For HOCs, Koc is often correlated with octanol-water
partition coefficient (Kow) of pollutants.

Removal of target contaminants

Remediation technologies should be evaluated on the basis of
their compliance with site-specific goals on a site-specific ba-
sis. Due to the complexity of field activities and the lack of
proper controls, like as temporal or spatial replicates, incom-
plete results are available for in situ treatment of contaminated
marine sediment (Mayer-Pinto et al. 2010). Additional fo-
cused field-scale demonstrations would be helpful to evaluate
site-specific HOCs such as dioxins, furans, and methyl mer-
cury whose treatment effectiveness has been either variable or
slow to develop (Patmont et al. 2014).

Environ Sci Pollut Res



Technological efficiency

The effectiveness of in situ remediation technologies can vary
on the basis of the selected technological options. Generally,
physico-chemical processes are quicker (from months to
years), but with a potential immediate environmental impact,
while bioremediation is slower (from years to decades) having
a little impact that is diluted over time.

Sediment treated with 3.4% AC showed a decrease of the
total aqueous PCB concentrations up to 87 and 92% for 1- and
6-month contact times, respectively. With active mixing, the
effect of AC addition to sediment on PCB aqueous equilibri-
um concentration is manifested relatively quickly and is not
lost with time. Similarly, adding AC to sediment reduced the
water equilibrium of total PAH by 74 and 84% for 1- and 6-
month contact periods, respectively (Zimmerman et al. 2004).

Adsorption kinetic studies of NB onto pure polysulfone
and polysulfone/GAC hybrid membranes at 20 mg/L initial
concentration showed that most NB adsorption rapidly occurs
in the first 2 h, reaching the adsorption equilibrium after 6 h
(Wang et al. 2014). This was due to the fact that adsorbents get
adsorbed into the meso-pores during the initial stages; adsor-
bents need to move deeper into the pores encountering larger
resistance (Himmelheber et al. 2011).

Microbial reductive dechlorination of PCBs in contaminat-
ed sediment is characterized by long lag periods and low rates
ranging frommonths to years (Wiegel andWu 2000). This is a
significant difficulty to use anaerobic bioremediation as sedi-
ment cleanup technology. However, it has been proved that
the direct addition of controlled amounts of ZVI to sediment
could be an effective way to reduce the lag period prior to
dechlorination at PCB-impacted sites (Wessels Perelo 2010).

Influence of natural organic matter

The content of NOM can seriously affect the performance of
in situ treatments. In laboratory trials, some authors demon-
strated a decrease in sorbent capacity due to NOM (Koelmans
et al. 2009; To et al. 2008; Cho et al. 2012). Moreover, there
could be an influence of NOM from the surrounding test area
such as from overlying water and deposited sediment (Cho
et al. 2009). Additional NOM could also be formed in inter-
tidal sediment under field conditions from algae biomass de-
cay. The adsorption of pollutant molecules by sorbent could
result in greater competition for the finite number of sorption
sites over time. Long-term effects and fouling mechanisms
need to be further evaluated especially under field conditions.

Chemical oxidation treatments are also sensitive to NOM.
Ozone decomposes back to oxygen rapidly in presence of
OM. In general, OM reduces the efficiency of chemical oxi-
dation processes scavenging considerable amounts of non-
selective oxidants (Cho et al. 2009).

By-products

All in situ chemical methods have the potential to generate
secondary impacts with the application of treatment reagents
considering their direct related toxicity and generated post-
treatment by-products. Consequently, in situ chemical treat-
ments could be applied when the contaminated area is
contained while operating or water flow can be diverted for
the whole treatment duration.

Ecotoxicological assessments

Current knowledge about in situ sediment remediation tech-
niques lacks principally of their ecotoxicological implica-
tions (Libralato et al. 2008; Han et al. 2015; Libralato et al.
2016).

Several bioindicators were used to assess the potential eco-
toxicological implications of AC like bacteria, annelids,
molluscs, and crustaceans. Van der Mei et al. (2008) exposed
Escherichia coli and Raoultella terrigena observing cell via-
bility as endpoint. After 30 min, mortality ranged between 83
and 96 and 54–56% for acid and basic AC, respectively, and
between 76 and 78 and 32–37% for positively and negatively
charged AC, in that order. Jonker et al. (2009) did not observe
any adverse effect on the structure of microbiological commu-
nities after exposing them to freshwater and marine sediment
treated with AC (2, 4, 10, and 20% w/w). Jonker et al. (2009)
demonstrated that powdered ACs can exert adverse effects to
aquatic invertebrates (Lumbriculus variegatus, Daphnia
magna, and Corophium volutator) based on different mecha-
nisms stating that it should be preferably washed prior to their
application as well as removed, when exhausted, preventing
pollutants to be released back to the environment.

Millward et al. (2005) investigated AC (3.4 and 8.5%)
effect to the marine polychaete Neanthes arenaceodentata
observing an average body weight reduction of approximately
50% caused by the ingested AC interfering with nutrients’
uptake due to its affinity to lipids, carbohydrates, and proteins.
At the same time, AC showed a great ability to sequester PCB.
Indeed, the average PCB content in N. arenaceodentata was
reduced by 82% after 1 month and 87% after 6 months of
contact time. In the case of the marine polychaete Nereis
diversicolor, Cornelissen et al. (2006a,b) evidenced that 2%
AC reduced the PAH biota-sediment accumulation factor by
6.7-fold after 28 days. Similarly, no or slight effects were
evidenced by Ho et al. (2004), McLeod et al. (2007, 2008),
and Janssen et al. (2012) considering other species.

The potential effects of organo-clay, apatite, and biopoly-
mers were investigated with several biological models like
annelids (Paller and Knox 2010; Rosen et al. 2011), molluscs
(Paller and Knox 2010), crustaceans (Paller and Knox 2010;
Rosen et al. 2011), and fish (Rosen et al. 2011). Adverse
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effects were absent or slight, but sometimes measurable when
in presence of biopolymers.

Also, nZVI was investigated several times (Libralato et al.
2016), including bacteria (Lee et al. 2008; Diao and Yao
2009), fungi, yeasts (Diao and Yao 2009; Otero-González
et al., 2013), algae (Keller et al. 2012), rotifers (Nogueira
et al. 2015), molluscs (Kadar et al. 2009, 2010), crustacean
(Libralato 2014), and fish (Li et al. 2009), but effect data on in
situ treated soil or sediment are substantially absent. Results
are very case specific, generally with slight effects at the con-
sidered exposure concentrations.

Technology footprint and general costs

The way in which amending agents are administered in
situ is of extreme importance to optimize the whole reme-
diation performance (Cho et al. 2012). Amendments can
be contained in a mat, applied in bulk onto the sediment
surface, mixed into the sediment, or added as part of a
sand cap or as a layer within a sand cap (USEPA, US
Environmental Protection Agency, 2013a, b). When
amendments are mixed into the sediment, heavy equip-
ment has to be used, potentially producing stressing events
to benthic communities along with high handling costs
during placement. Analogously, when applying in situ
chemical treatments, it is necessary to ensure that treat-
ment reagents are completely mixed with the contaminated
sediment layer by the introduction of one or more re-
agents, additives, and/or nutrients onto the sediment by
spreading and settling or injecting them inside it through
tubes, pipes, or other devices. Further methods to admin-
ister in situ treatments consist in isolating sediment from
the surrounding environment especially when reagents or
process conditions used can be harmful to the
environment.

In general, using in situ treatment appears to be less expen-
sive than ex situ treatment or disposal of contaminated sedi-
ment. It has already been estimated that the cost of a typical
AC treatment is at least an order of magnitude lower than
sediment dredging and disposal (Ghosh et al. 2011).
However, the full technological cost must be evaluated
through pilot studies on a case-by-case basis.

The cost of passive and reactive supplies depends on the
type of material, purity, size, delivery, source, material
processing needs, and means of application. McDonough
et al. (2007) reported that cap placement costs for large-scale
site (circa 405 ha) at about 25/0.836 $/m2, excluding the ma-
terial cost. The breakup of cap placement costs is approxi-
mately as follows: (a) mobilization/demobilization 1/0.836
$/m2, (b) cap placement 10/0.836 $/m2, (c) project manage-
ment 2/0.836 $/m2, (d) monitoring 10/0.836 $/m2, and (e)
miscellaneous (site preparation, construction management,
design, and permit) 2/0.836 $/m2.

Conclusions

Apart from the kind of amendment potentially useful in active
capping or mixing, little is known regarding amendment ap-
plication techniques, application rates, and amendment com-
binations that could maximize the immobilization of contam-
inants. As with other remedial alternatives (such as capping
and dredging), the long-term permanence of amendments and
their ability to retain contaminants over time are not well un-
derstood. Significant gaps remain between the current under-
standing of the in situ technology and the level of engineering
know-how necessary for widespread implementation as an
alternative remedial action mainly related to contaminant re-
duction efficiency under a spatial and temporal scale. Most of
the times, due to the lack of real scale applications, costs are
not available like as the full range of drawbacks.

The effectiveness of some amendments, such as AC and
Organoclay™, has been demonstrated just in a small number
of field applications, while other amendments, such as
zerovalent iron (ZVI), phosphate additives, and biopolymers,
are still in the bench-scale or pilot-testing phase. Even though
some of these materials have been used in other environmental
applications, such as groundwater and off-gas treatments,
there are a limited number of projects and available perfor-
mance data on their effectiveness in treating contaminated
sediments.

The use of physico-chemical-based active barriers seems to
be promising; however, the adsorption and/or reaction capac-
ities of reactive materials are limited, and the contaminants
cannot be completely removed from the environment.
Capped sediment can also represent a future risk by excessive
contaminant breakthrough due to diffusion or advection.
Hence, the enhancement of biodegradation by effective mi-
croorganisms into the capping system is necessary.
Biologically based active caps could have the potential to
maintain reactivity over long periods of time serving as a
sustainable remedial option also hosting microorganisms able
to biotransform contaminants.

Future research efforts should (i) investigate long-term ef-
fects of treatment activities (i.e., years after the end of the
remediation); (ii) develop database about pros and cons of
adsorptive materials considering both their physico-chemical
and ecotoxicological implications coupling contaminant re-
moval and environmental compatibility issues; potentially,
the database should be extended to all new proposed in situ
remediation technologies; and (iii) provide cost-benefit anal-
ysis considering life cycle impact analysis as well.
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