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Abstract This note consists of two parts. Firstly, we bound the deficit in the logarithmic
Sobolev Inequality and in the Talagrand transport-entropy Inequality for the Gaussian mea-
sure, in any dimension, by means of a distance introduced by Bucur and Fragalà. Thereafter,
we investigate the stability issue with tools from Fourier analysis.
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1 Introduction

The log-Sobolev inequality asserts that, in any dimension n and for any smooth enough
function f : Rn → R

∗+ := (0, +∞), it holds

Entγn(f ) ≤ 1

2

∫
Rn

|∇f |2
f

dγn, (1.1)

where γn(dx) = ϕn(x)dx := (2π)− n
2 exp{− |x|2

2 }dx, x ∈ R
n, is the standard Gaus-

sian measure with density ϕn, |x| =
√∑n

i=1 x2
i stands for the Euclidean norm of x =

(x1, . . . , xn) (accordingly |∇f | is the Euclidean length of the gradient) and Entγn(f ) :=∫
Rn f log f dγn − ∫

Rn f dγn log
∫
Rn f dγn is the entropy of f with respect to γn. The con-

stant 1/2 is optimal. Moreover, equality holds in Eq. 1.1 if and only if f is the exponential
of a linear function, i.e. there exist a ∈ R

n, b ∈ R
n such that f (x) = exp{a ·x +b}, x ∈ R

n.
For simplicity we may write ϕ and γ for ϕ1 and γ1.

The log-Sobolev inequality above goes back to Stam [46] in the late fifties. Later Gross,
in his seminal paper [34], rediscovered the inequality and proved its fundamental equiv-
alence with the so-called hypercontractivity property, a notion used by Nelson [43] in
quantum filed theory. Since then the log-Sobolev inequality attracted a lot of attention with
many developments, applications and connections with other fields, including Geometry,
Analysis, Combinatorics, Probability Theory and Statistical Mechanics. We refer to the
monographs [1, 2, 35, 37, 41, 49] for an introduction. Finally, we mention that equality
cases, in Eq. 1.1, appear in the paper by Carlen [18].

Very recently there has been some interest in the study of the stability of the log-Sobolev
inequality (1.1). Namely the question is: can one bound the difference between the right and
left hand side of Eq. 1.1 in term of the distance (in a sense to be defined) between f and the
set of optimal functions? In other words, can one bound from below the deficit

δLS(f ) := 1

2

∫
Rn

|∇f |2
f

dγn − Entγn(f ) (1.2)

in some reasonable way which identifies minimizers? We refer to [12, 24, 26, 36] for various
results in this direction.

In this paper we are interested in estimates of the form δLS(f ) ≥ d(f,O), where O :=
{ea·x+b, a ∈ R

n, b ∈ R} is the set of functions achieving equality in Eq. 1.1 and where d is
some distance.

Our aim is to give some results in this direction via two different methods: the first
employs a distance introduced by Bucur and Fragalà in [17]; the second technique is based
on Fourier analysis.

2 LSI Stability via a Transportation Distance

Bucur and Fragalà’s Construction of a Distance Modulo Translation In this section
we recall the procedure of Bucur and Fragalà [17] to define a distance (modulo translation)
in dimension n starting with a distance (modulo translation) in dimension 1. We first give
the definition of a distance modulo translation.

Let Sn be some set of non-negative functions defined on R
n. A mapping m : Sn ×Sn →

R+ is said to be a distance modulo translation (on Sn) if (i) m is symmetric, (ii) it satisfies
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the triangular inequality and (iii) m(u, v) = 0 iff there exists a ∈ R
n such that v(x) =

u(x + a) for all x ∈ R
n.

Now, given a direction ξ ∈ S
n−1 (the unit sphere of Rn), let x = (x′, tξ) be the decom-

position of any point x ∈ R
n in the direct sum of the linear span of ξ and its orthogonal

hyperplane Hξ := {y ∈ R
n :< ξ, y >= 0} (here < ·, · > stands for the Euclidean scalar

product). Then, for all integrable function f : Rn → R, define fξ : R → R, t 
→ fξ (t) :=∫
Hξ

f (x′, tξ)dHn−1(x′) where Hn−1 is the (n−1)-dimensional Hausdorff measure on Hξ .
Given a distance m modulo translation on some set S of non-negative real functions, set

Sn := {f : Rn → R+ : fξ ∈ S for all ξ ∈ S
n−1}

and, for f, g ∈ Sn,
mn(f, g) := sup

ξ∈Sn−1
m(fξ , gξ ).

In [17, Corollary 2.3], it is proved that mn is a distance modulo translation on Sn.
Also, Bucur and Fragalà [17] introduce the following distance modulo translation that

we may use in the next sections. Set

B :=
{
u : R → R

∗+ : continuous and
∫
R

u(x) dx = 1

}
.

Given two probability measures μ(dx) = u(x)dx, and ν(dx) = v(x)dx, u, v ∈ B, set
T = F−1

ν ◦Fμ, where Fμ(x) := ∫ x

−∞ u(y)dy and Fν(x) := ∫ x

−∞ v(y)dy are the distribution
functions of μ and ν respectively (observe that, since u ∈ B, F−1

μ is well defined and so
does T ′ (note that T is increasing)). T is the transport map that pushes forward μ onto ν,
i.e. the mapping satisfying

∫
R

h(T ) dμ = ∫
R

h dν for all bounded continuous function h.
The following one is a distance modulo translation on B (see [17, Proposition 3.5])

d(u, v) :=
∫ |1 − T ′|

max(1, T ′)
dμ. (2.1)

We denote by dn and Bn the distance modulo translation and the set of functions constructed
by the above procedure, starting from d and B in dimension 1.

In order to state our main result of this section, we need first to give a precise statement
for Eq. 1.1 to hold.

It is well-known that Eq. 1.1 holds for any f such that
∫
Rn |f |dγn + ∫

Rn
|∇f |2

f
dγn <

∞, i.e. |f |1/2 ∈ H 1(γn), see e.g. [14, Chapter 1]. By a density argument one can restrict
(1.1), without loss, to all f positive (since |∇|f || = |∇f | almost everywhere), and by
homogeneity, we can assume furthermore that

∫
Rn f dγn = 1. We call An the set of C1

functions f : Rn → R
∗+ such that

∫
Rn f dγn = 1 and

∫
Rn

|∇f |2
f

dγn < ∞. It is dense in
the set of all functions satisfying the log-Sobolev Inequality (1.1) and is contained in Bn.
We observe that the set of extremal functions (with the proper normalization) {exp{a · x −
|a|2

2 }, a ∈ R
n} is contained in An.

We are now in position to state our main theorem in this section.

Theorem 2.1 For all n and all f ∈ An it holds

δLS(f ) ≥ 1

2
dn (f ϕn, ϕn)

2 .

Before moving to the proof of Theorem 2.1 which is very short and elementary, let us
comment on the above result.
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First, from the above result, we (partially) recover the cases of equality in the log-Sobolev
inequality for the Gaussian measure [18]. Indeed, f ∈ An achieves the equality in the log-

Sobolev inequality iff δLS(f ) = 0 iff f ϕn is a translation of ϕn iff f (x) = exp{−a ·x− |a|2
2 }

for some a ∈ R
n. This is only partial since Theorem 2.1 do not deal with all functions

satisfying the log-Sobolev inequality but only with f ∈ An. There is in fact some technical
issues here: the distance d is no more a distance modulo translation if F−1

μ (μ is the one
dimensional probability measure with density f ) is not absolutely continuous (a property
that is guaranteed by the fact that, in the definition of An, we impose the positivity of the
functions), see [17, Remark 3.6 (i)]. Hence, a result involving the distance dn cannot recover,
by essence, the full generality of Carlen’s equality cases [18]. However, An is very close to
cover the set of all functions satisfying the log-Sobolev inequality (in particular it is dense
in such a space) and, to the best of our knowledge, there is no result in the current literature
that gives a lower bound of the deficit involving a distance without any moment condition.

The assumption f of class C1, in the definition of An can certainly be relaxed. Indeed,
one only needs, in dimension 1, that F−1

μ is an absolutely continuous function [17, Propo-
sition 3.5] (for dμ(x) = f (x)ϕ(x)dx, x ∈ R). In dimension n, such a property should hold
for all directions ξ ∈ S

n−1. For this reason, and as mentioned above, there is no hope to
obtain the whole family of functions satisfying the log-Sobolev Inequality. Hence, we opted
for an easy and clean presentation rather than for a more technical one (a weaker assumption
on f would have led us to technical approximations in many places, that, to our opinion,
play no essential role).

We also observe that our result does not capture the product character of the log-
Sobolev inequality. Indeed, if one considers, on R

n, a function of the form f (x) =
h(x1)h(x2) . . . h(xn), x = (x1, . . . , xn), with h : R → R

∗+, then it is not difficult to see that
δLS(f ) is of order n thanks to the tensorisation property of Eq. 1.1 (see e.g. [1, Chapter 1]),
while dn (f ϕn, ϕn) is of order 1. This mainly comes from our use of Bucur and Fragalà’s
quantitative Prekopa-Leindler Inequality which is also, by construction, 1 dimensional. See
below for some results based on the tensorisation property of the log-Sobolev inequality.

Proof of Theorem 2.1 The proof is based on the approach of Bobkov and Ledoux [13] to
the log-Sobolev inequality by mean of the Prékopa-Leindler Inequality, together with an
improved version of the Prékopa-Leindler Inequality of Bucur and Fragalà [17]. Our starting
point is the following result (see [17, Proposition 3.5]): given a triple u, v,w : Rn → R+
with u, v ∈ Bn and λ ∈ [0, 1] that satisfy w(λx + (1 − λ)y) ≥ u(x)λv(y)1−λ for all
x, y ∈ R

n, it holds

∫
Rn

w(x)dx − 1 ≥ 1

2
λ1+λ(1 − λ)2−λdn(u, v)2. (2.2)

We stress that the constant λ in the right hand side of the latter is not given explicitly in
[17], but the reader can easily recover such a bound following carefully the proof of [17,
Proposition 3.5]. (Inequality (2.2) goes back to the seventies [39, 45] and has numerous
applications in convex geometry and functional analysis. We refer to the monographs [6,
27, 49] for an introduction. We further mention that equality cases are given in [23], and
refer to Ball and Böröczky [3, 4] for related results on the stability of the Prékopa-Leindler
Inequality).

Our aim is to apply (2.2) to a proper choice of triple u, v, w. Following [13], let f = eg

with g sufficiently smooth (say with compact support with
∫
Rn f dγn = 1), λ ∈ (0, 1), and
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set

uλ(x) = e
g(x)
1−λ ϕn(x)∫

Rn e
g

1−λ dγn

, v(y) = ϕn(y) and wλ(z) = egλ(z)ϕn(z)

with

gλ(z) := sup
x,y:

(1−λ)x+λy=z

(
g(x) − λ(1 − λ)

2
|x − y|2

)
− (1 − λ) log

∫
Rn

e
g

1−λ dγn.

The function gλ is the optimal function such that it holds wλ((1 − λ)x + λy) ≥
uλ(x)1−λv(y)λ. Set hλ(z) := sup x,y:

(1−λ)x+λy=z

(
g(x) − λ(1−λ)

2 |x − y|2
)

. Then, by Eq. 2.2

above, we get
∫
Rn

ehλ dγn ≥
(∫

Rn

e
g

1−λ dγn

)1−λ (
1 + 1

2
λ1+λ(1 − λ)2−λdn(uλ, v)2

)

The aim is to take the limit λ → 0. We observe that (see [13] for details), as λ tends to zero
(∫

Rn

e
g

1−λ dγn

)1−λ

=
∫
Rn

egdγn + λ Entγn(e
g) + o(λ)

and ∫
Rn

ehλ dγn =
∫
Rn

egdγn + λ

2(1 − λ)

∫
Rn

|∇g|2eg dγn + o(λ).

Therefore, dividing by λ, and taking the limit, we end up with

lim inf
λ→0

1

2
λλ(1 − λ)2−λdn(uλ, v)2 + Entγn(e

g) ≤ 1

2

∫
Rn

|∇g|2egdγn.

We are left with the study of lim infλ→0 dn(uλ, v)2 since limλ→0 λλ(1 − λ)2−λ = 1. For
simplicity set u := u0 (i.e. u is the function uλ defined above with λ = 0). By the mono-
tone convergence Theorem and the Lebesgue Theorem we observe that, for any direction
ξ ∈ S

n−1, limλ→0(uλ)ξ = uξ . Hence, using the Lebesgue Theorem (observe that, in the
definition of d, |1 − T ′|/ max(1, T ′) ≤ 1)

lim inf
λ→0

dn(uλ, v) ≥ sup
ξ∈Sn−1

lim inf
λ→0

d((uλ)ξ , vξ ) = sup
ξ∈Sn−1

dn(uξ , (ϕn)ξ ) = dn(e
gϕn, ϕn).

The expected result follows for g sufficiently smooth. The result for a general f ∈ An fol-
lows by an easy approximation argument (using again the monotone convergence Theorem
and the Lebesgue Theorem), details are left to the reader.

Next we derive from Theorem 2.1 a lower bound on the log-Sobolev inequality, in dimen-
sion n, that involves n times the one dimensional distance d. Such a result will capture on
one hand the product structure of the inequality, but the other hand the deficit will no more
be bounded by a distance (modulo translation).

We need some notation. Given x = (x1, . . . , xn) ∈ R
n, i ∈ {1, . . . , n} and yi ∈ R, set

x̄i := (x1, . . . , xi−1, xx+1, . . . , xn) and x̄iyi := (x1, . . . , xi−1, yi, xi+1, . . . , xn) (so that
x̄ixi = x). Then, for all functions f : Rn → R and all x ∈ R

n, we denote by fx̄i : R → R

the one dimensional function defined by fx̄i (yi) := f (x̄iyi), yi ∈ R (obviously fx̄i (xi) =
f (x)).

We may prove the following result.
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Corollary 2.2 For all n and all f ∈ An it holds

δLS(f ) ≥ 1

2

n∑
i=1

∫
Rn−1

d
(
fx̄i ϕ, ϕ

)2
dγn−1(x̄

i ).

Now, by construction, if f (x) = h(x1)h(x2) . . . h(xn), x = (x1, . . . , xn), with h : R →
R

∗+, then both δLS(f ) and the right hand side of the latter are of (the correct) order n.

Proof The proof uses the tensorisation property of the entropy. It is well known (see e.g.
[1, Chapter 1]) that for any f : Rn → R, it holds

Entγn(f ) ≤
n∑

i=1

∫
Rn−1

Entγ (fx̄i )dγn−1(x̄
i ).

Hence, applying Theorem 2.1 n times, we get (since f ′
x̄i (xi) = ∂f

∂xi
(x))

2 Entγn(f ) ≤
n∑

i=1

∫
Rn−1

∫
R

f ′
x̄i

2
(xi)

fx̄i (xi)
dγ (xi)dγn−1(x̄

i ) −
n∑

i=1

∫
Rn−1

d(fx̄i ϕ, ϕ)2dγn−1(x̄
i )

=
∫
Rn

|∇f |2
f

dγn −
n∑

i=1

∫
Rn−1

d(fx̄i ϕ, ϕ)2dγn−1(x̄
i ).

The expected result follows.

3 Stability of the Talagrand Transport-Entropy Inequality

In this section we bound the deficit in the so-called Talagrand inequality, using again the
distance dn introduced by Bucur and Fragalà. Recall that (see e.g. [48]) the Kantorovich-
Wasserstein distance W2 is defined as

W2(ν, μ) := inf
π

(∫∫
|x − y|2π(dx, dy)

) 1
2

where the infimum runs over all couplings π on R
n × R

n with first marginal ν and second
marginal μ (i.e. π(Rn, dy) = μ(dy) and π(dx,Rn) = ν(dx)). Talagrand, in his seminal
paper [47], proved the following inequality: for all probability measure ν on R

n, absolutely
continuous with respect to γn, it holds

W 2
2 (ν, γn) ≤ 2H(ν|γn), (3.1)

where H(ν|γn) := ∫
R

log dν
dγn

dν if ν << γn (whose density is denoted by dν/dγn) and
H(ν|γ ) = +∞ otherwise, is the relative entropy of ν with respect to γn. Such an inequality,
that is usually called Talagrand transport-entropy inequality, is related to Gaussian concen-
tration in infinite dimension [29, 42, 47] (see the monographs [30, 38] for an introduction).
It is known, since the celebrated work by Otto and Villani [44], that the log-Sobolev inequal-
ity (1.1) implies the Talagrand inequality (3.1) (in any dimension, see [5, 11, 28, 31–33, 40,
50] for alternative proofs and extensions).

The stability of Eq. 3.1 is also studied in [12, 15, 21, 24, 36]. We may obtain that, as
a direct consequence of the transport of mass approach of Eq. 3.1 by Cordero-Erausquin
[20] and of the tensorisation property, one can bound from below, as for the log-Sobolev
inequality, the deficit in Eq. 3.1 by the distance dn defined by Bucur and Fragalà.
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Theorem 3.1 For all probability measure ν on R
n with continuous and positive density f

with respect to the Gaussian measure γ , it holds

δT al(f ) := 2H(ν|γn) − W 2
2 (ν, γn) ≥ 1

2
dn(f ϕn, ϕn)

2. (3.2)

The same comments that for Theorem (2.1) apply: the result is valid only for a subclass of
probability measures ν, but there is no assumption involving moments of ν. The above result
together with theorem (2.1) somehow justify the use of the distance dn. As for Theorem 2.1
the bound on the deficit is one dimensional and thus not of the correct order. This fact may
become clear to the reader through the proof: we use some tensorisation property but apply
a bound on the deficit only to one single coordinate.

Proof The proof goes in two steps : we first prove the lower bound of the deficit in
dimension 1, then we use a tensorisation procedure.

From [20] we can extract the following one dimensional inequality (here f : R → R
∗+)

δT al(f ) ≥
∫
R

[T ′ − 1 − log T ′] dγ,

where T = F−1
ν ◦Fγ is the push forward of γ onto ν. Using that s−1−log s ≥ 1

2

(
1−s

max(1,s)

)2

and the Cauchy-Schwartz Inequality, we can conclude that

δT al(f ) ≥ 1

2

∫
R

(
1 − T ′

max(1, T ′)

)2

dγ ≥ 1

2

(∫
R

|1 − T ′|
max(1, T ′)

dγ

)2

= 1

2
d(ϕ, f ϕ)2,

which ends the proof of the first step (since d is symmetric).
Next, recall the tensorisation property of the Kantorovich-Wasserstein metric and of the

relative entropy: for f : Rn → R, ν(dx) = f (x)dx, we have

W 2
2 (ν, γn) ≤ W 2

2 (ν1, γ ) +
n−1∑
i=1

∫
Ri

W 2
2 (νx1,...,xi

, γ )dγi(x1, . . . , xi);

and

H(ν|γn) = H(ν1|γ ) +
n−1∑
i=1

∫
Ri

H (νx1,...,xi
|γ )dγi(x1, . . . , xi)

where we used the disintegration formula

ν(dx1, . . . , dxn) = ν1(dx1)νx1(dx2)νx1,x2(dx3) × · · · × νx1,...,xn−1(dxn).

Now the supremum defining dn(f ϕn, ϕn) is reached at some ξ ∈ S
n−1 that we may assume

for simplicity and without loss of generality (since γn is invariant by rotation) to be the
first unit vector of the canonical basis (1, 0, . . . , 0). Using the tensorisation formulas above,
applying the result we obtained in dimension 1, and Eq. 3.1 n − 1 times, we thus get

W 2
2 (ν, γn) ≤ W 2

2 (ν1, γ ) +
n−1∑
i=1

∫
Ri

W 2
2 (νx1,...,xi

, γ )dγi(x1, . . . , xi)

≤ 2H(ν1|γ ) − 1

2
d(f1ϕ, ϕ)2 + 2

n−1∑
i=1

∫
Ri

H (νx1,...,xi
|γ )dγi(x1, . . . , xi)

= 2H(ν|γ ) − 1

2
d(f1ϕ, ϕ)2 = 2H(ν|γ ) − 1

2
dn(f ϕn, ϕn)

2
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where we set f1 for the density of ν1 with respect to γ . By construction ν1 is the first
marginal of ν so that f1ϕ = (f ϕn)ξ . This ends the proof.

4 LSI Stability via Fourier Analysis

In this section we investigate the stability of the log-Sobolev inequality (1.1) by means
of Fourier analysis. To this aim it will be convenient to deal with the following modified
version of the standard Gaussian measure γn: let

dm := 2n/2e−2π |x|2dx.

Then, we observe that, given a function g, fg(x) := g
1
2 (2

√
πx) satisfies (by a simple

change of variables)∫
Rn

f 2
g dm =

∫
Rn

g dγn,

∫
Rn

f 2
g log f 2

g dm =
∫
Rn

g log gdγn,

and
1

2π

∫
Rn

|∇fg|2dm = 1

2

∫
Rn

|∇g|2
g

dγn.

Thus,

δLS(g) = 1

2

∫
Rn

|∇g|2
g

dγn − Entγn(g) = 1

2π

∫
Rn

|∇fg|2dm − Entm(f 2
g ).

and it is therefore natural to deal with the following modified version of the deficit: for
normalized f ∈ L2(Rn, dm) (i.e.

∫
Rn f 2dm = 1) set

δc(f ) := 1

2π

∫
Rn

|∇f |2dm −
∫
Rn

|f |2 log |f |2dm

(and observe that, with this definition, δc(fg) = δLS(g)). We need some more definitions.
Consider the unitary operator

U : h ∈ L2(Rn, dx) → Uh ∈ L2(Rn, dm),

where Uh(x) := 2−n/4eπ |x|2h(x), and the Fourier transform

Ff (x) :=
∫
Rn

e−2πix·yf (y)dy.

Lastly, let
W := UFU∗

denote the Wiener transform acting on L2(Rn, dm), where U∗ is the adjoint of U . With this
in mind, Carlen [18] proved the following inequality for normalized f ∈ L2(Rn, dm):

δc(f ) ≥
∫
Rn

|Wf |2 log |Wf |2dm.

In fact, Carlen realized that the above inequality is equivalent to the Beckner-Hirschman
entropic uncertainty principle which was established via Beckner’s sharp Hausdorff-Young
inequality [7]. Moreover when f ≥ 0 and δc(f ) = 0, Carlen showed that f is one of the
functions

fa = e2π(a·x−|a|2/2).

We utilize the above inequality to show the following general convolution inequality involv-
ing the logarithmic Sobolev deficit with respect to the measure dm. Unless otherwise stated,
|| · ||Lp will denote the usual Lp norm for Lebesgue measure on R

n.
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Theorem 4.1 For every θ ∈ (0, 1
2 ) there exists a constant c (that depends on θ and n) such

that for all f ∈ L2(Rn, dm) normalized it holds∫
Rn

|ψf ∗ ψf̃ − ψ ∗ ψ |2dx ≤ cδc(f )θ (||ψ(f − 1)||2Lq + ||ψ(f − 1)||L2)
2−2θ ,

where ψ(x) = 2n/4e−π |x|2 , f̃ (x) := f (−x), x ∈ R
n and q = 4(1 − θ)/(3 − 2θ).

By Cramer’s theorem [22], if the convolution of two non-negative integrable functions
is Gaussian, each of the functions must be Gaussian. Therefore, the previous result states
that if the deficit is small, then in some configuration, the convolution of the factors is close
to Gaussian. Nevertheless, it is not clear whether the function itself will consequently be
close to an optimizer in Lp without additional assumptions. In fact there is an interesting
issue here. The main question one would like to address is to bound from below the deficit
in the log-Sobolev inequality by a strong norm (such as Lp). Such a question is still open
and might be false. A weaker question would be to prove that, if the deficit is small, then
the Lp norm (of f to Gaussian functions) is also small. Corollary 4.2 below is a partial
result in this direction. In view of Theorem 4.1 above, a possible route would be to use a
quantitative form of the Cramer Theorem. Quantitative version of Cramer’s theorem can be
found in the literature and we refer to the recent paper by Bobkov, Chistyakov and Götze
[10] for a historical presentation of the problem and references. However, if the deficit in
Cramer’s theorem is small in the total variation distance, then there exist examples which
illustrate that the individual factors will not be close to Gaussians in total variation [8,
9]. This makes the problem (both of bounding the deficit in Cramer’s theorem and in the
log-Sobolev inequality) very sensitive and delicate.

Proof Fix θ ∈ (0, 1
2 ). Combining Carlen’s theorem with Pinsker’s inequality, it follows

that, for all f ∈ L2(Rn, dm) normalized,

δc(f ) ≥
∫
Rn

|Wf |2 log |Wf |2dm ≥ 1

2

( ∫
Rn

||Wf |2 − 1|dm
)2

= 1

2

( ∫
Rn

||FU∗f (x)|2 − 2n/2e−2π |x|2 |dx
)2 = 1

2
||φ||2

L1 (4.1)

where φ(x) := |FU∗f (x)|2 − 2n/2e−2π |x|2 . Our aim is to bound from below the L1-norm
of φ by its L2-norm and to use Plancherel’s theorem. Observe that, by the Riesz-Thorin
interpolation Inequality, we have

||φ||L2 ≤ ||φ||θ
L1 ||φ||1−θ

Lp ,

with p := 1−θ
1
2 −θ

> 2. Since, by the Plancharel Theorem,

||φ||2
L2 =

∫
Rn

||FU∗f |2 − 2n/2e−2π |x|2 |2dx =
∫
Rn

|ψf ∗ ψf̃ − ψ ∗ ψ |2dx

we get ∫
Rn

|ψf ∗ ψf̃ − ψ ∗ ψ |2dx = ||φ||2
L2 ≤ 2θ δc(f )θ ||φ||2(1−θ)

Lp

and we are left with the study of ||φ||Lp = |||FU∗f (x)|2 −2n/2e−2π |x|2 ||Lp = |||Fψf |2 −
ψ2||Lp . Our aim is to get rid of the Fourier transform. Utilizing the Hausdorff-Young
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inequality1, Young’s convolution inequality, and that ψ is the fixed point for F it follows
that

|||Fψf |2 − g2||Lp = |||Fψ(f − 1)|2 + 2Re(ψFψ(f − 1))||Lp

≤ |||Fψ(f − 1)|2||Lp + 2||gFψ(f − 1))||Lp

= ||Fψ(f − 1)||2
L2p + 2||F(ψ(f − 1) ∗ g)||Lp

≤ ||ψ(f − 1)||2Lq + 2||ψ(f − 1) ∗ ψ ||Lq̃

≤ ||ψ(f − 1)||2Lq + 2||ψ(f − 1)||L2 ||ψ ||Lr ,

where q = 2p/(2p−1), q̃ = p/p−1 and r = 2q̃/(2−q̃). The expected result follows.

Our next result asserts that under additional assumptions on f , if the deficit is small,
then f must be close to an optimizer in some Lp-norm and is obtained by combining the
previous result with a quantitative version of Young’s convolution inequality obtained by
Christ [19]. By a Gaussian function we mean a function having the form e−|L(x−x0)|2 where
L is an affine endomorphism of Rn and x0 ∈ R

n.

Corollary 4.2 Let ψ(x) = 2n/4e−π |x|2 , x ∈ R
n, and f ∈ L2(Rn, dm) be normalized.

Assume f ψ ∈ Lq for some q ∈
(

1, 4
3

)
and ||f ψ ||L4/3 ≤ cn :=

(
27
16

)n/8
. Then for all ε > 0

there exists η > 0 such that if

δc(f ) < η,

then

||ψf − F ||L4/3 < ε.

for a Gaussian function F .

Remark 4.3 Given a normalized f ∈ L2(dm) it follows that ||f ψ ||L2 = 1. To satisfy
||f ψ ||L4/3 ≤ cn, note that since cn > 1 we can consider functions f with small enough
support (one can see this by breaking up the integral where f ψ < 1 and where f ψ ≥ 1). We
observe that the functions fa = e2π(a·x−|a|2/2) for any a ∈ R

n also satisfy this constraint.

Proof Our aim is to use a quantitative form of Young’s convolution inequality obtained by
Christ [19] together with Theorem 4.1 above. Let A := 2n/33n/4 be the sharp constant [7,
16] in the following convolution inequality: ‖f ∗ ψ‖L2 ≤ A‖f ‖

L
4
3
‖ψ‖

L
4
3

. A calculation

shows that
||ψ ∗ ψ ||L2

||ψ ||2
L

4
3

= A.

1which we recall asserts that, given 1 < p ≤ 2 and q ≥ 2 so that 1
p

+ 1
q

= 1, ||Ff ||Lq ≤ ||f ||Lp . In

fact Beckner [7] proved a sharper form of such an inequality, with a better constant (namely (p
1
p /q

1
q )n/2) in

factor of the right hand side, but constants play no essential role in our result.
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Thus utilizing the fact that cn = ||ψ ||L4/3 it follows that

A − ||ψf ∗ ψf̃ ||L2

||ψf ||2
L

4
3

= ||ψ ∗ ψ ||L2 (||ψf ||2
L4/3 − ||ψ ||2

L4/3 ) + (||ψ ∗ ψ ||L2 − ||ψf ∗ ψf̃ ||L2 )||ψ ||2
L4/3

||ψf ||2
L

4
3
||ψ ||2

L
4
3

≤ (||ψ ∗ ψ ||L2 − ||ψf ∗ ψf̃ ||L2 )||ψ ||2
L4/3

||ψf ||2
L

4
3
||ψ ||2

L
4
3

≤ A

||ψf ∗ ψf̃ ||L2

(||ψ ∗ ψ ||L2 − ||ψf ∗ ψf̃ ||L2 ).

Given q ∈ (1, 4/3) so that fg ∈ Lq , construct the corresponding θ ∈ (0, 1/2) so that
q = 4(1 − θ)/(3 − 2θ). Now Theorem 4.1 guarantees that on the one hand

||ψ ∗ ψ ||L2 − ||ψf ∗ ψf̃ ||L2 ≤ cδc(f )
θ
2

and on the other hand

||ψf ∗ ψf̃ ||L2 ≥ ||ψ ∗ ψ ||L2 − cδc(f )
θ
2 = 1 − cδc(f )

θ
2

for some c > 0 that depends on q and ||f ψ ||Lq . Hence,

A − ||ψf ∗ ψf̃ ||L2

||ψf ||2
L

4
3

≤ Acδc(f )θ/2

1 − cδ(f )θ/2
.

Now Theorem 1.1 of [19] asserts that for any ε > 0 there exists δ > 0 such that if

A − ||ψf ∗ ψf̃ ||L2

||ψf ||2
L

4
3

≤ δA,

then ‖ψf − F‖L4/3 ≤ ε‖ψf ‖L4/3 for a Gaussian function F . The desired conclusion of
Corollary 4.2 immediately follows by properly tuning the parameters ε and δ.

In view of the Pinsker Inequality used in Eq, 4.1, it is natural to introduce the following
pseudo-metric.

Definition 4.4 Define the Fourier-Wiener pseudometric by

dFW (f, g) :=
√∫

Rn

||Wf | − |Wg||2dm.

The Fourier-Wiener pseudometric fails to be a metric due to multipliers of the form eiω(x)

where ω is real-valued: |Wf (ξ)| = |eiω(ξ)Wf (ξ)|.
The log-Sobolev equality cases may be encoded in the following uniqueness assertion

whose proof is entirely based on Carlen’s approach. The pseudometric gives a different
perspective of seeing proximity to minimizers.

Lemma 4.5 Suppose f ∈ L2(Rn, dm) is normalized. Then dFW (f, e2π(b·x− |b|2
2 )) = 0 for

some b ∈ R
n if and only if f is of the form e2π(a·x− |a|2

2 ) for some a ∈ R
n.
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Proof If f is of the requested form, then |Wf | = 1 and so dFW (f, e2π(b·x− |b|2
2 )) = 0.

Conversely, if dFW (f, e2π(b·x− |b|2
2 )) = 0 for some b ∈ R

n, then |Wf | = 1 a.e. and so
|Fψf |2 = 2n/2e−2π |x|2 , where ψ is as in Theorem 4.1. Now one may utilize Fourier
inversion and Cramer’s theorem to conclude.

The Fourier-Wiener pseudo-metric yields also a lower bound on the deficit as shown in
the next proposition.

Proposition 4.6 Suppose f ∈ L2(Rn, dm) is normalized. Then for all a ∈ R
n,

δc(f ) ≥ 1

2
dFW

(
f, e2π(a·x− |a|2

2 )

)4

.

Proof Let a ∈ R
n. Combining Carlen’s theorem, Pinsker’s inequality, the elementary

inequality |α − β| ≥ |√α − √
β|2 for α, β ≥ 0 and that |We2π(a·x− |a|2

2 )| = 1 yields

δc(f ) ≥
∫
Rn

|Wf |2 log |Wf |2dm ≥ 1

2

( ∫
Rn

||Wf |2 − 1|dm
)2

≥ 1

2

( ∫
Rn

||Wf | − 1|2dm
)2 = 1

2
d4
FW (f, e2π(a·x− |a|2

2 )). (4.2)

In our next and last statement, we exploit that for a subclass of functions (namely those
functions satisfying F(e−π |y|2f (y))(x) ≥ 0), the Fourier-Wiener pseudo-metric is indeed
an L2 norm. Since in this class the unique minimizer of the logarithmic Sobolev inequality
is f = 1, our result quantifies how far f is from 1 in L2. We mention that functions whose
Fourier transform is non-negative and not identically equal to zero are known as strictly
positive definite functions whose study is an active field.

Proposition 4.7 Suppose f ∈ L2(Rn, dm) is normalized. If F(e−π |y|2f (y))(x) ≥ 0, then

δc(f ) ≥ 1

2

(∫
Rn

|f − 1|2dm

)2

. (4.3)

Equivalently, suppose g ∈ L1(Rn, dγn) is normalized (i.e.
∫

g dγn = 1) and non-negative.

If Fh ≥ 0, where h(y) = e−π |y|2g 1
2 (2

√
πy), then

δLS(g) ≥ 1

2

(∫
Rn

|g 1
2 − 1|2dγn

)2

. (4.4)

In particular, under the same assumptions on g,

δLS(g) ≥ 1

32

(∫
Rn

|g − 1|2dγn

)4

.

Proof By Cauchy-Schwarz’s inequality and since
∫

gdγn = 1, one has
(∫

Rn

|g − 1|2dγn

)2

≤
∫
Rn

|g 1
2 − 1|2dγn

∫
Rn

|g 1
2 + 1|2dγn ≤ 4

∫
Rn

|g 1
2 − 1|2dγn.

Thus the very last conclusion follows at once from Eq. 4.4. On the other hand, recall that

δc(fg) = δLS(g), where fg(x) := g
1
2 (2

√
πx) so that Eq. 4.4 is equivalent to Eq. 4.3.
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Therefore we are left with proving (4.3). By Proposition 4.6, we have (for any a ∈ R
n),

δc(f ) ≥ 1

2
d4
FW (f, e2π(a·x− |a|2

2 )) = 1

2

( ∫
Rn

||Wf | − 1|2dm
)2

.

Now the positive definiteness assumption, the fact that the Gaussian is the fixed point of the
Fourier transform, and Parseval’s identity yields∫

Rn

||Wf | − 1|2dm =
∫
Rn

|Wf − 1|2dm =
∫
Rn

|F(U∗f ) − 2n/4e−π |x|2 |2dx

=
∫
Rn

|F(U∗f ) − F(2n/4e−π |x|2)|2dx

=
∫
Rn

|U∗f − 2n/4e−π |x|2 |2dx

=
∫
Rn

|f − 1|2dm. (4.5)

This ends the proof of the proposition.

To illustrate the utility of the previous result consider the following family of functions:

H :=
{
ga(x) = (2a + 1)n/2e−a|x|2 , x ∈ R

n : a > −1/2
}
.

Since the Fourier transform of Gaussian are Gaussian, the previous results apply in H. Now
for dva = gadγn, a calculation shows that ga is normalized in L1(Rn, dγ ) and∫

Rn dva∫
Rn x2dva

= 2a + 1

n
,

so that for any λ > 0,
H �⊂ P(λ),

where P(λ) is the space of probability measures v satisfying a Poincaré inequality with
constant λ > 0 in the sense that for every smooth φ : Rn → R such that

∫
φdv = 0,

λ

∫
Rn

φ2dv ≤
∫
Rn

|∇φ|2dv.

Currently available log-Sobolev inequality stability results involving the Lp distances
involve the class P(λ), where the constant of proportionality depends on λ, or strong
moment assumptions (e.g. requiring the second moment of the measure to be bounded by
the dimension) [24]. The results above involve a rather different condition via positivity of
the Fourier transform and as seen through the above example includes the whole class H.

We end the paper with a strengthening of Proposition 4.7: in the proof the following
chain of inequalities were utilized:

√
2δc(f ) ≥

∫
Rn

||Wf |2 − 1|dm ≥
∫
Rn

||Wf | − 1|2dm =
∫
Rn

|Wf − 1|2dm,

where the last equality follows from the positive definiteness assumption. Equivalently we
could have used the pointwise estimate ||z|2 − 1| ≥ |z − 1|2 which is valid for any non-
negative real number z.

Now, one can relax that inequality asking for the weaker ||Wf |2 − 1| ≥ k|Wf − 1|2 for
some k ∈ (0, 1]. It turns out that, given a complex number z ∈ C, the inequality

||z|2 − 1| ≥ k|z − 1|2
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is satisfied by all z = x + iy belonging to the set Sk := S+
k ∪ S−

k , with

S+
k :=

{
z = x + iy :

(
x + k

1 − k

)2 + y2 ≥ 1

(1 − k)2

}
, k ∈ (0, 1),

being the outside of the disc D+
k centered at

(
− k

1−k
, 0

)
and of radius 1/(1 − k) (for k = 1

S+
1 := {z = x + iy : x ≥ 1}), and

S−
k :=

{
z = x + iy :

(
x − k

1 + k

)2 + y2 ≤ 1

(1 + k)2

}
, k ∈ (0, 1]

being the inside of the disc D−
k centered at

(
k

1+k
, 0

)
and of radius 1/(1 + k). It should

be noticed that D−
k is contained in the unit disc D+

0 = D−
0 which is contained in D+

k

and all are tangent at the point (1, 0). The family (S+
k )k and (S−

k )k are increasing (in the
sense of inclusion). Moreover, it is easy to see that ∪k∈(0,1]Sk = C \ {z : |z| = 1} and
∩k∈(0,1]Sk = {z = x + iy : (x − (1/2))2 + y2 ≤ 1/2} ∪ {z = x + iy : x ≥ 1} which con-
tains all the non-negative real numbers (thus recovering the positive definiteness condition).
Therefore, Proposition 4.7 can be relaxed in the following way: Suppose f ∈ L2(Rn, dm)

is normalized. If there exists k ∈ (0, 1] such that F(e−π |y|2f (y))(x) ∈ Sk for all x ∈ R
n,

then

δc(f ) ≥ k

2

(∫
Rn

|f − 1|2dm

)2

.
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