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Abstract The aim of this review is to provide a general over-
view of the possible associations among the vitamin D status,
air pollution and obesity. Sunlight exposure accounts in
humans for more than 90 % of the production of vitamin D.
Among emerging factors influencing sunlight-induced syn-
thesis of vitamin D, prospective and observational studies
proved that air pollution constitutes an independent risk factor
in the pathogenesis of vitamin D hypovitaminosis. In addition,
environmental pollutants can affect risk of obesity when in-
haled, in combination with unhealthy diet and lifestyle. In
turn, obesity is closely associated with a low vitamin D status
and many possible mechanisms have been proposed to ex-
plain this association. The associations of air pollution with
low vitamin D status on the hand and with obesity on the other
hand, could provide a rationale for considering obesity as a
further link between air pollution and low vitamin D status. In
this respect, a vicious cycle could operate among low vitamin
D status, air pollution, and obesity, with additive detrimental

effects on cardio-metabolic risk in obese individuals. Besides
vitamin D supplementation, nutrient combination, used to
maximize the protective effects against air pollution, might
also contribute to improve the vitamin D status by attenuating
the Bobesogen^ effects of air pollution.
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Sunlight exposure provides in humans for more than 90 % of
the production of vitamin D, a liposoluble hormone that is
known to exert a wide range of hormonal functions in skeletal
and non-skeletal tissues [1]. In particular, solar ultraviolet
(UV)-B radiation (UVB; wavelengths of 290 to 315 nm) stim-
ulates the synthesis of vitamin D3 from 7-dehydrocholesterol
in the epidermis of the skin [2]. Circulating vitamin D3 is
transported to the liver, where it is hydroxylated to form 25-
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hydroxyvitamin D3 (25(OH)D) or calcidiol, the major circu-
lating form of vitamin D. Thereafter, the 25-hydroxyvitamin
D3–1-hydroxylase enzyme catalyzes a second hydroxylation
of 25(OH)D in the kidneys, resulting in the formation of
1,25(OH)2D or calcitriol, the active form of vitamin D [2].
In this respect, vitamin D is actually more like classified as
an active circulating pre-hormone than a vitamin, a substance
that is obligatorily required from the diet. Hence, inadequate
radiation or insufficient cutaneous absorption of solar UVB is
one of the cardinal causes of vitamin D deficiency. The pen-
etration of UVB photons into the skin is impaired by various
factors, including season, time of day, geographical location
skin pigmentation, sunscreen use, aging, and cultural back-
ground. However, different epidemiological studies suggest
that worldwide prevalence of a low vitamin D status is higher
than expected also in spite of an abundant sun exposure [3].
Among emerging factors influencing sunlight-induced syn-
thesis of vitamin D, a great body of evidence indicates that
environmental aerosol pollutants reduce the effectiveness of
sun exposure in producing vitamin D in the skin by absorbing
and scattering solar UVB radiation [2]. Thus, air pollution,
determining the percentage of the ground level of solar UVB
photons, may play a significant independent role in the devel-
opment of vitamin D deficiency [4].

The aim of this review is to provide a general overview of
the possible associations among the vitamin D status, air pol-
lution and obesity.

1 Air pollution and low vitamin D status

Exposure to chronic, low concentrations of air pollutants, gen-
erated as a consequence of urbanization, including automobile
exhaust, heating buildings and particles generated from indus-
trial plants, constitutes an environmental global risk to human
health [4]. In general terms, air pollution is made up of gases
and particulate matter (PM). Particulate matter is classified
according to diameter into PM10 microns, PM2.5 μm, the
major component of pollutant particles, primarily derived
from direct emissions from combustion processes, and ultra-
fine particles [5]. It was estimate that nearly 80 % of the
world’s population lives in areas where air pollution levels
largely exceeding the limit values set by the air quality guide-
lines, established by the World Health Organization [6]. Air
pollution, especially the tropospheric ozone, effectively ab-
sorbs UVB radiation, thereby reducing the quantity of photons
reaching the earth’s surface. As the skin synthesis of vitamin
D, which occurs through the action of sunlight, is not surpris-
ing that a reduced radiation caused by air pollution constitutes
one of the main causes of vitamin D deficiency [4].
Accordingly, urban residents, especially in areas with high
levels of ambient air pollution, tend to be less engaged in

outdoor activities and have a higher prevalence of D
hypovitaminosis compared to rural inhabitants [7].

Prospective and observational studies, conducted on popu-
lations living in different geographic areas, proved that air
pollution constitutes an independent risk factor in the patho-
genesis of vitamin D hypovitaminosis [4]. A cross-sectional
study conducted in Belgium on postmenopausal women en-
gaged in outdoor activities, showed that the tropospheric
ozone increased the prevalence of a low vitamin D status
[8]. In particular, in this study the serum levels of vitamin D
and parathormone (PTH) of 47 women living in rural areas
were compared with those of 38 women living in Brussels. As
expected, in urban residents the prevalence of vitamin D in-
sufficiency was significantly higher than rural residents (38 %
vs 18%), while the concentration of ground-level ozone was 3
times higher in urban areas than in rural areas. In a cross-
sectional study conducted in urban and rural areas of Iran,
Hosseinpanah et al. [9] included 200 healthy women living
in two separate zones of approximately similar latitude, but
with different levels of air pollution. The Authors found that
the prevalence of hypovitaminosis D was higher in women
living in the more polluted area compared those living in the
less polluted area, confirming that air pollution plays a signif-
icant independent role in vitamin D deficiency. Baïz et al. [10]
investigated the association between gestational exposure to
ambient urban air pollution and levels of vitamin D in the cord
blood in french mother-child pairs, and found that the pollut-
ant exposure, especially during late pregnancy, contributed to
lower vitamin D levels in offspring, thus affecting the child’s
risk of developing diseases later in life. The association be-
tween air pollution and low vitamin D status was also inves-
tigated among children by Agarwal et al. [11], who compared
serum 25(OH)D levels of 34 children aged between 9 and
24 months, residents in Mori Gate, an area of Delhi known
for the high levels of air pollution, with those of 34 children
matched by sex and age, residents of Gurgaon, a less polluted
area of the city. Children living in the highly polluted area had
average serum concentrations of 25(OH)D significantly lower
by 54 % compared to those living in the less polluted area of
the city. In addition, the quality of the air has been proven to
retain an inverse association with 25(OH)D among children
aged 4–10 years and living in Iran, a region with plenty of
sunlight, but in a highly air-polluted city, such as Isfahan [12].

2 Inhaled pollution and obesity

Aside from the mutagenicity and carcinogenicity of particu-
late air pollution from combustion source, the largest source
contributing to the PM2.5 mass [13], epidemiological studies
show that air pollution exposure is associated with adverse
respiratory health effects [14]. Beyond the effects on respira-
tory system, current data strongly support that exposure to air
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pollutants may not only carry a perivascular and peribronchial
inflammation, but can increase both systemic inflammation
and oxidative stress, the main links of air pollution with car-
diovascular diseases and obesity [15–17]. Mechanistically, in-
haled pollution particles induce a local inflammatory response
in the lung that is initiated by alveolar macrophages and air-
way epithelial cells. Endothelial dysfunction and reactive ox-
ygen species generation via activation of alveolar macro-
phages and systemic vascular oxidases, including nicotin-
amide adenine dinucleotide phosphate (NADPH), mitochon-
drial and xanthine oxidases, appear to represent early steps in
this pro-inflammatory status [18]. In particular, PM2.5 expo-
sure enhanced the expression in alveolar macropahges of pro-
inflammatory cytokines, such as interleukin-6 and tumour ne-
crosis factor-α [5]. Subsequently, systemic mediators translo-
cate from the lung into the circulation eliciting the classic
systemic inflammatory response, with production of acute
phase proteins by the liver [5]. In addition, air pollutants might
act as Bobesogens^ by altering the methylation of peroxisome
proliferator-activated receptor gamma (PPARγ) or PPARγ
target molecules, known to exert a pivotal role in the regula-
tion of adipogenesis [19–21], or via their binding to the α and
β estrogen receptors (ER), actively involved in the regulation
of energy metabolism pathways [22].

Besides the obesogen effect of tobacco smoking [23–25],
an increasing number of associative studies have suggested
that inhaled environmental pollutants, combined with un-
healthy diet and lifestyle, are associated with a propensity to
obesity, metabolic syndrome, and insulin resistance, and are
able to contribute to chronic non transmissible diseases [26],
including cardiovascular disease and type 2 diabetes mellitus,
all conditions that are characterized by systemic inflammation,
in both adults [27–29] and children [23]. In particular, the
association between obesity and PM2.5 has been extensively
evaluated by a meta-analysis including three large prospective
cohort studies and 14 panel studies with short-term follow-up
[30]. Results of this meta-analysis indicate that obese people
may bemore susceptible to the cardiovascular health effects of
ambient PM2.5, also after adjusting for a number of potential
confounding factors.

3 Low vitamin D status and obesity

Obesity and vitamin D deficiency are among the most impor-
tant modifiable risk factors for non-transmissible chronic dis-
eases [31]. In particular, there is an inverse association of
mortality risk and vitamin D levels, although this association
could be indirectly mediated through obesity itself [32].
Indeed, obesity is closely associated with a low vitamin D
status, as higher body mass index leads to lower vitamin D
status [33]. Vitamin D receptors (VDR) are widely expressed
in adipose and β-pancreatic cells, and both cells also possess

also the capacity to activate in loco vitamin D by having the
enzyme 25-hydroxyvitamin D 1-α-hydroxylase [34].
Through its receptors,VitaminD exerts relevant effects in vitro
on gene expression and proteins related to adipose tissue dif-
ferentiation and metabolism. In particular, vitamin D inhibits
the differentiation of pre-adipocytes, suppresses a number of
transcriptional regulators and functional proteins exerting a
key role in adipocyte metabolism, such as PPARγ, lipoprotein
lipase, protein aP2, a carrier of fatty acids necessary for lipol-
ysis, CCAAT/enhancer-binding protein (C/EBP) and sterol-
regulatory element-binding protein-1 (SREBP-1) [32].

Although various epidemiological studies and clinical trials
show that obese individuals have low circulating levels of
25(OH)D, with an inverse relationship between serum
25(OH)D and PTH levels, the relationship between obesity
and 1,25(OH)2D, is less clear [32]. Under conditions of low
vitamin D status, low serum 25(OH)D levels tend to be asso-
ciated with high serum PTH levels. In turn, PTH stimulates
the production of 1,25(OH)2D, which has a number of extra-
skeletal effects, including on adipose tissue [35]. The
1,25(OH)2D exerts different effects on adipose tissue, as it
stimulates the transcription of adipogenic factors and recipro-
cally inhibits lipolysis by binding to the VDRs expressed on
adipocytes [36]. In addition, 1,25(OH)2D modulates the
chronic inflammation in adipose tissue by reducing the proin-
flammatory cytokines secreted from adipose tissue [35].

Many possible mechanisms might account for the low vi-
tamin D status during obesity, including lower dietary intake
of vitamin D by obese individuals [31], lesser exposure of skin
to sunlight in obese individuals, due to less outdoor activity
than leaner individual [31], decreased intestinal absorption
due to malabsorptive bariatric procedures, impaired 25-
hydroxylation and 1-α hydroxylation in adipose tissue.
Perhaps, the most likely explanation for low vitamin D status
in obesity is that, due to its lipophilicity, vitamin D is largely
stored in the adipose tissue [37]. Nevertheless, a volumetric
dilution related to the greater volume of distribution of
25(OH)D in tissue mass in obese individuals could be consid-
ered as a reasonable cause of the low vitamin D status [38].
Finally, it has also been suggested that accrual of adipose
tissue obesity could result from an excessive adaptive Bwinter
response^, and that the decline in vitamin D skin synthesis,
due to reduced sunlight exposure, contributes to the tendency
to increase fat mass during the colder periods of the year [39].
Thus, the increased storage capacity for vitamin D in obese
individuals is likely to reduce the circulating 25(OH)D con-
centrations [31]. Accordingly, serum levels of vitamin D
showed a relatively smaller increase in obese subjects as com-
pared with that in non-obese subjects after either 24 h of UVB
radiation or oral vitamin D supplementation [40]. On the other
hand, the possibility can be envisaged that low vitamin D itself
could contribute to obesity or reduce weight loss [32]. A low
vi tamin D status is known to induce secondary
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hyperparathyroidism that increases the intracellular levels of
ionic calcium in adipocytes [41]. Increased intracellular calci-
um in adipocytes can increase the expression of fatty acid
synthase, a key regulatory enzyme in the deposition of lipids,
and decrease lipolysis [42].

Although the direction of the association between low vitamin
D and obesity still remains debatable [43], a number of clinical
and experimental studies have provided evidence for the role of
obesity as a causal risk factor for the development of vitamin D
deficiency [33]. In particular, it has been calculated that each unit
increase of BMI was associated with a 1.15 % decrease of
25(OH)D [31]. In addition, it has been described a strong inverse
association between vitamin D status with both subcutaneous
and visceral adiposity [44]. Thus, low vitamin D can cause the
adipose tissue accrual and compromise normal metabolic func-
tioning, contributing to the adverse health effects associated co-
morbidities, including insulin resistance and type 2 diabetes [45].
Experimental data have shown that large doses of vitamin D2
lead to increases in energy expenditure due to uncoupling of
oxidative phosphorylation in adipose tissues [46]. However, clin-
ical trials investigating the effects of increased in vitaminD status
on body weight have not provided consistent data on possible
effects of vitamin D supplementation on weight loss [47, 48]. In
this context, it has been reported that normalization of 25(OH)D
levels in vitamin D-insufficient subjects with vitamin D supple-
mentation could participate to prevent weight gain by reducing
the 1,25(OH)2D production, likely through lowering PTH levels
[49].

4 Nutrition solutions: role of nutritionist

Taking into account the associations among vitamin D status,
air pollution and obesity, some practical nutritional consider-
ations could be drawn.

Despite that the anti-obesity effects of vitamin D supplemen-
tation is still matter of debate, the link between air pollution and
obesity strongly support the use of adequate vitamin D supple-
mentation in obese individuals according to the current guide-
lines, in association with a healthy diet and lifestyle, especially in
those living in urban areas with high air pollution [4, 50]. The
amount of vitamin D produced by an adult who is exposed to the
sun to one minimal erythemal dose of UV radiation is equivalent
to ingesting between 10,000 and 25,000 IU of vitamin D [51].
The Endocrine Society suggests 1000 IU/d for infants up to
6 months, 1500 IU/d for infants from 6 months to 1 year, at least
2500 IU/d for children aged 1–3 years, 3000 IU/d for children
aged 4–8 years, and 4000 IU/d for everyone over 8 years. Higher
levels of 2000 IU/d for children 0–1 year, 4000 IU/d for children
1–18 years, and 10,000 IU/d for children and adults 19 years and
older may be needed to correct vitamin D deficiency [50].
Indeed, few foods contain vitamin D and clinical studies suggest
that we may need more vitamin D than presently recommended

to prevent chronic non-transmissible diseases [52, 53]. In partic-
ular, vitamin D is present in oil-rich fish, sunlight-exposedmush-
rooms, eggs, and milk [44]. Cod liver oil is a rich natural source
of vitamin D; nevertheless, there is concern regarding its use at
high doses due to its vitamin A content and possible contamina-
tion by heavymetals, such asmercury [54, 55]. Fortificationwith
vitamin D of food, such as milk, bread and margarine, is associ-
ated with statistically significant improvements in serum
25(OH)D [56, 57]. However, fortification with vitamin D varies
worldwide and the vitamin D content in the foods is quite
variable.

Besides vitamin D supplementation, an improvement in
the vitamin D status could be obtained also through the at-
tainment of a healthy dietary pattern and weight loss. In this
respect, it is well known that nutrients with higher antioxi-
dant activity are recommended to reduce the risk of devel-
oping overweight/obesity, including asω-3 polyunsaturated
fatty acids (PUFA), monounsaturated fatty acids (MUFA),
vitamins of complex B, vitamin C, vitamin E, in combination
with a healthy diet regimen rich in fruits, vegetables, fibre,
with a reduced intake of saturated fats, simple carbohydrates,
and sweetened drinks. More recently, a number of clinical
trials indicate that some nutrients can attenuate the oxidative
damage induced by air pollution [58, 59]. In particular, Tong
et al. in a randomized, double-blinded, controlled study,
showed in healthy middle-aged adults the efficacy of 3 g/
day the fish oil supplements provided protection against the
adverse cardiac and lipid effects associated with air pollution
exposure [58]. However, a recent study indicates that ω-3
PUFA nutritional supplements should be analysed for oxida-
tion safety [60]. The combined supplementation with
800 mg/d of vitamin E and 500 mg/d of vitamin C showed
an additive protective effect of both vitamins to the oxidative
stress associated with air pollution, where vitamin E acts as
antioxidant and vitamin C regenerates its oxidized form [59].
In addition, Riedl et al. [61] reported that broccoli extracts or
sulforaphane, found in cruciferous vegetables such as broc-
coli and brussel sprouts, can have protective effects against
air pollution via nuclear factor E2-related factor 2, the tran-
scription factor responsible for the expression of antioxidant
response element, the regulator of the endogenous antioxi-
dant enzyme system [62]. Accordingly, in a randomized,
placebo-controlled study, dietary intervention with broccoli
sprouts enhanced the detoxification of some airborne pollut-
ants, providing a frugal means to attenuate their associated
long-term health risks [63].

5 The dangerous liason among air pollution, obesity,
and vitamin D

In this complex scenario, the well documented associations of
air pollution with obesity on the one side, and with low
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vitamin D status on the other side, could provide a rationale
for considering the obesity a further link between air pollution
and low vitamin D status. In this respect, a vicious cycle could
be envisaged, whereby on the one side the air pollutants, ab-
sorbing solar UVB radiation, reduce the effectiveness of sun
exposure in producing vitamin D in the skin; on the other side,
air pollutants, combined with unhealthy diet and lifestyle,
might contribute to obesity as environmental Bobesogens^.
Obesity, through different mechanisms, including low dietary
intake of vitamin D, less exposure of skin to sunlight and
sequestration of vitamin D in the adipose tissue, might further
worsen the low vitamin D status, thus increasing the cardio-
metabolic risk in obese individuals, in a situation similar to the
Bwinter response^. In turn, the low vitamin D status, through
the secondary hyperparathyroidism and the increased the in-
tracellular calcium in adipocytes, might increase adipogenic
pathways, thus favouring weight gain and obesity.
Accordingly, a number of studies reported that children’s air
pollution exposures in the Mexico City Metropolitan Area
was associated with systemic inflammation, endothelial dys-
function [64], altered appetite-regulating peptides, high risk of
insulin resistance, obesity, type 2 diabetes, premature cardio-
vascular disease [65], early hallmarks of Alzheimer’s disease
[66], and vitamin D deficiency [66, 67].

The use of sunscreens might provide a novel aspect of
associative link between obesity, pollution and low vitamin
D status. Although still debatable [68–70], the regular use of
sunscreens in sufficient amounts exerts protective effects on
sunburn and might be essential for prevention of skin cancers,
UV-induced immunosuppression, and photoaging. Although
it has been reported that wearing a sunscreen with a sun pro-
tection factor of 30 reduces vitamin D synthesis in the skin by
more than 95 %, a proper and adequate use of sunscreens is

unlikely to affect vitamin D status adversely, as a sufficient
amount of UVB radiation would reach the skin surface for
production of vitamin D. Accordingly, markers for vitamin
D deficiency, including 25(OH)D and PTH, are generally
not affected due to use of sunscreens in Brazil, one of the
countries of the world with greater extent of land in proximity
to the sun [71, 72]. In addition, the adequate use of sunscreens
contributes to promoting healthier lifestyle options that in-
clude outdoor physical activity. Nevertheless, to achieve the
desirable level of protection, sun lotions and creams consist of
cocktail of chemical filters. Percutaneous absorption and en-
docrine disrupting activity of small-sized organic and nano-
sized inorganic UV filters have been reported [73]. It is well
known that a number of endocrine disruptors (EDCs) can act
as Bobesogens^ by promoting adipogenesis, intra-adipocyte
lipid accumulation, and insulin resistance through different
regulatory pathways. These regulatory pathways include the
PPAR-γ pathways and the agonistic estrogenic effects via ER
α and β, the main targets of EDCs involved in adipose tissue
and energy metabolism [22, 74]. Although there is no evi-
dence in the literature of a direct involvement of sunscreens
as environmental Bobesogens^, a role as EDCs in the context
of their ability to induce reproductive disorders by acting as
estrogenic compounds has been highlighted in a recently pub-
lished review [75]. Hence, an intriguing hypothesis can be
proposed, that an inadequately wearing of some sunscreens
might cause a low vitamin D status not only directly by reduc-
ing the absorption of solar UVB radiation, but also indirectly
acting as Bobesogen^ EDCs, combined with unhealthy diet
and lifestyle. Sequestration of vitamin D in the adipose tissue
further worsens the low vitamin D status and increases the
cardio-metabolic risk in obese individuals. The proposed vi-
cious cycle acting between vitamin D, air pollution, and

Fig. 1 An intriguing hypothesis
can be proposed, that, combined
with unhealthy diet and lifestyle,
the inadequately wearing of some
sunscreens might cause a low
vitaminD status either directly, by
reducing the absorption of solar
UVB radiation, and also
indirectly, by inducing obesity,
possibly by acting as
environmental Bobesogens^.
Sequestration of vitamin D in the
adipose tissue further worsens the
low vitamin D status and
increases the metabolic risk in
obese individuals
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obesity, combined with unhealthy diet and lifestyle and with
the possible contribution of the inadequate use of particular
sunscreens acting as endocrine disruptors, is presented in
Fig. 1.

6 Conclusions

The associations of air pollution with low vitamin D status on
the one side, and with obesity on the other side, could provide
a rationale for considering obesity as a further link between air
pollution and low vitamin D status, with the possible dual
contribution of sunscreens either by reducing the skin produc-
tion of vitamin D, and, possibly, by acting as environmental
Bobesogens^. Vitamin D supplementation and nutrient com-
binations might be recommended to contribute to the protec-
tive effects against air pollution and to improve the vitamin D
status by attenuating the Bobesogen^ effects of air pollution. A
vicious cycle could be proposed among low vitamin D status,
air pollution, and obesity, with additive detrimental effects on
cardio-metabolic risk in obese individuals. Further prospec-
tive studies are needed to support the potential causal associ-
ations between vitamin D levels, air pollutants and obesity,
and the impact in clinical practice of nutritional interventions
to reduce the detrimental effects of the exposure to air pollut-
ants and to improve the vitamin D status along with weight
loss.

EDCs, endocrine disruptors; PM, particulate matter; PTH,
parathormone; UV, ultraviolet; VDR, vitamin D receptors.
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