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Some properties and applications of cumulative
Kullback–Leibler information
Antonio Di Crescenzoa*† and Maria Longobardib

The cumulative Kullback–Leibler information has been proposed recently as a suitable extension of Kullback–Leibler information
to the cumulative distribution function. In this paper, we obtain various results on such a measure, with reference to its relation with
other information measures and notions of reliability theory. We also provide some lower and upper bounds. A dynamic version of the
cumulative Kullback–Leibler information is then proposed for past lifetimes. Furthermore, we investigate its monotonicity property,
which is related to some new concepts of relative aging. Moreover, we propose an application to the failure of nanocomponents.
Finally, in order to provide an application in image analysis, we introduce the empirical cumulative Kullback–Leibler information
and prove an asymptotic result. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

Information measures have a fundamental role in informational sciences and other applied fields. As well known, the
basic notion describing the information content in a nonnegative absolutely continuous random variable is the differential
entropy, also known as Shannon information measure. However, because it may be not suitable for some applications
(see, for instance, Section 5 of Schroeder [1]), various authors introduced other suitable information measures, such as
the cumulative residual entropy (see Rao et al. [2]) and the cumulative entropy (see Di Crescenzo and Longobardi [3]
and Navarro et al. [4]). The notion of differential entropy has been extended in the past to the relative entropy, which
is a discrepancy measure between two distributions. It is also called Kullback–Leibler information (see Kullback and
Leibler [5]).

Our research is stimulated by the need of describing the uncertainty content in dynamic stochastic models involving
truncated distributions. Indeed, in the last two decades, wide attention has been given by several authors to measure uncer-
tainty of truncated random variables, due to their relevance in applied fields such as reliability theory and survival analysis.
One of the first papers in this context is due to Muliere et al. [6], who investigated the residual entropy function and the
right truncated entropy function. Quite strangely, to a certain extent, this contribution passed unnoticed. The aforemen-
tioned measures were investigated later independently by Ebrahimi and Pellerey [7], Ebrahimi [8], and Di Crescenzo and
Longobardi [9]. Along these lines, several recent studies involve dynamic information measures based on truncated ran-
dom variables. See, for instance, Kapodistria and Psarrakos [10], centered on the residual lifetime and its relation with the
cumulative residual entropy. Other results on dynamic discrimination measures based on the Kullback–Leibler information
have been provided by Khorashadizadeh et al. [11], Kumar et al. [12], Navarro et al. [13], and Taneja et al. [14]. More-
over, recently, Park et al. [15] defined a discrepancy measure named cumulative Kullback–Leibler information, which can
be viewed as the analog of the Kullback–Leibler information with reference to the cumulative distribution function.

The first aim of this paper is to study some properties of the cumulative Kullback–Leibler information. We also investi-
gate a dynamic version of such discrimination measure that is relevant for stochastic models whose uncertainty is related
to the past. It is defined in terms of the cumulative Kullback–Leibler information for past lifetimes. Such a measure also
involves other dynamic information measures, as the cumulative inaccuracy of past lifetimes and the dynamic cumulative
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entropy, as well as the mean past lifetimes. Furthermore, we provide two applications. In the first case, we employ the
cumulative Kullback–Leibler information to the design of nanocomponents. In the second case, we introduce the empirical
cumulative Kullback–Leibler information and study its asymptotic properties for measuring the discrepancies in the gray
levels of digitalized images.

This is the plan of the paper: In Section 2, we analyze some properties of the new notion, such as the effect of linear trans-
formations, and its behavior under the proportional reversed hazard model. In Section 3, we develop certain inequalities and
bounds for the cumulative Kullback–Leibler information. In Section 4, we investigate the dynamic version of the cumula-
tive Kullback–Leibler information for the past lives of random lifetimes. In Section 5, we provide some results on notions
of relative aging and study monotonicity properties of the dynamic cumulative Kullback–Leibler information. Finally, the
preannounced applications of the cumulative Kullback–Leibler information to the failure of nanocomponents and in image
analysis are given in Sections 6 and 7, respectively.

For readability convenience, the proofs of the theoretical results have been included in the appendix. Moreover,
throughout the paper , we denote by [X|B] any random variable having the same distribution of X conditional on B.

2. Cumulative Kullback–Leibler information

We first recall some notions of information theory. Let X and Y be nonnegative absolutely continuous random variables
having probability density functions (pdf’s) f (x) and g(x), respectively.

∙ The differential entropy of X is defined by

HX = −E[log(f (X))] = −∫
+∞

0
f (t) log(f (t)) dt, (1)

where ‘log’ means natural logarithm, 0 log 0 = 0 by convention. We recall that HX describes the ‘uniformity’ of
the distribution of X, that is, how the distribution spreads over its domain, and is irrespective of the locations of
concentration.

∙ The cumulative residual entropy of X is defined by

(X) = −∫
+∞

0
F(t) log(F(t)) dt, (2)

where F(t) = P(X > t) is the survival function of X.
∙ The cumulative residual entropy of X is defined by

(X) = −∫
+∞

0
F(t) log(F(t)) dt, (3)

where F(t) = P(X ⩽ t) is the distribution function of X. The measures defined in (2) and (3) constitute the cumulative
residual and the cumulative analogs of the differential entropy given in (1), respectively.

∙ The relative entropy of X and Y is defined by

IX,Y = ∫
+∞

0
f (t) log

(
f (t)
g(t)

)
dt. (4)

Equation (4) defines a discrepancy measure between two distributions and is also called Kullback–Leibler information
(see Kullback and Leibler [5]). Note that IX,Y measures the inefficiency of assuming that the pdf of a stochastic model is g
when the true pdf is f .

In the following, for any random variable T with cumulative distribution function FT , we denote its left-hand point and
right-hand point by

lT = inf
{

t ∈ R ∶ FT (t) > 0
}
, rT = sup

{
t ∈ R ∶ FT (t) < 1

}
.

Let us now consider a discrimination measure between two random variables X and Y , with distribution functions F(t) and
G(t), introduced recently by Park et al. [15].
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Definition 2.1
Let X and Y be random variables with finite means and having the same left-hand points l = lX = lY . The cumulative
Kullback–Leibler information of X and Y is defined by

KL(X,Y) = ∫
max{rX ,rY}

l
F(t) log

(
F(t)
G(t)

)
dt + E(X) − E(Y), (5)

provided that the integral in the right-hand side is finite.

The measure given in (5) can be seen as a suitable extension of the Kullback–Leibler information to the cumulative
distribution function. It is suitably rescaled in order to be nonnegative. Indeed, because log(x) ⩽ x − 1 for all x > 0, we
have KL(X,Y) ⩾ 0. Specifically, KL(X,Y) = 0 if and only if F(u) = G(u) almost everywhere. Otherwise, KL(X,Y) ≠KL(Y ,X), as shown in the following example.

Example 2.1
If Xa and Xb have uniform distribution over (0, a) and (0, b), respectively, then KL(Xa,Xb) ≠ KL(Xb,Xa) for a ≠ b, because
from (5), we have

KL(Xa,Xb) =
⎧⎪⎨⎪⎩

a
2

log
(a

b

)
+ b − a

2
, if 0 < a < b,

(a − b)2

4a
, if 0 < b < a.

Other examples are given in Table I.
Let us analyze the effect of linear transformations on the cumulative Kullback–Leibler information.

Proposition 2.1
Let X and Y be random variables with finite means and having the same left-hand points; for a, c > 0 and b ⩾ 0, we have

KL(aX + b, cY + b) = aKL

(
X,

c
a

Y
)
+ aE(X) − cE(Y)

= cKL

(a
c

X,Y
)
+ aE(X) − cE(Y).

For any pair of random variables X and Y having the same left-hand points l, the cumulative inaccuracy is defined by
(see Di Crescenzo and Longobardi [16])

K(X,Y) = −∫
max{rX ,rY}

l
F(t) log(G(t)) dt, (6)

provided that the integral in the right-hand side of (6) is finite. This measure is the analogous of the cumulative residual
inaccuracy studied in Taneja and Kumar [17].

Remark 2.1
For any pair of random variables X and Y with finite means, having the same left-hand points, and such that KL(X,Y) is
finite, from (5), we have

KL(X,Y) = K(X,Y) − (X) + E(X) − E(Y), (7)

Table I. Examples of cumulative Kullback–Leibler information.

FXi
(x), i = 1, 2 KL(X1,X2)

exp
{
−cix

−𝛾i
} c

1∕𝛾1
1

𝛾2
1

[
Γ
(
− 1

𝛾1

)
+ c−𝛾2∕𝛾1

1 c2𝛾1Γ
(
𝛾2−1

𝛾1

)]
+ c1∕𝛾1

1 Γ
(

1 − 1

𝛾1

)
− c1∕𝛾2

2 Γ
(

1 − 1

𝛾2

)
x > 0, ci > 0, 𝛾i > 1

exp
{

ci(1 − x−1)
}

(c1 − c2)
[
1 − (1 + c1)ec1Γ(0, c1)

]
+ c1ec1 Γ(0, c1) − c2ec2 Γ(0, c2)

0 < x < 1, ci > 0
Here, as usual, Γ(⋅) is the Euler gamma function and Γ(⋅, ⋅) is the upper incomplete gamma function.
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where (X) and K(X,Y) are defined in (3) and (6), respectively.

The reversed hazard rate function of a nonnegative absolutely continuous random variable X, representing a random
lifetime, is 𝜏X(t) = f (t)∕F(t), for t > 0.

Remark 2.2
If X and Y are nonnegative absolutely continuous random variables, then (X) and K(X,Y) satisfy (see Proposition 3.1
of [3], and Proposition 8.2.1 of [16]):

(X) = E

[
T (2)

X (X)
]
, K(X,Y) = E

[
T (2)

Y (X)
]
, (8)

where

T (2)
X (t) ∶= −∫

+∞

t
log(F(s)) ds = ∫

+∞

t ∫
+∞

s
𝜏X(x) dx ds, t > 0, (9)

and T (2)
Y (t) is similarly defined.

For any nonnegative absolutely continuous random variable Y , let us now set

TY (t) ∶= − log(G(t)) = ∫
+∞

t
𝜏Y (x) dx, t ∈ (0,+∞). (10)

This function is involved in the following representation of the cumulative Kullback–Leibler information in terms of
the cumulative entropies of X and Y . Such a representation is based on the probabilistic mean value theorem due to Di
Crescenzo [18].

Proposition 2.2
If X and Y are nonnegative absolutely continuous random variables, with finite unequal means, with the same left-hand
points, and such that X ⩽st Y or Y ⩽st X, then

KL(X,Y) = (Y) − (X) + {
E
[
TY (Z)

]
− 1

}
[E(Y) − E(X)], (11)

where Z is a nonnegative absolutely continuous random variable with pdf

fZ(z) =
G(z) − F(z)
E(X) − E(Y)

, 0 < z < +∞.

Table II. Some discrimination measures, for X and Y exponentially distributed with parameters 1 and 𝜇,
respectively, where BC(X,Y) = ∫ +∞

−∞

√
f (x)g(x) dx is the Bhattacharya coefficient, 𝛾 ≃ 0.577216 is the

Euler’s constant and 𝜓(z) = Γ′(z)∕Γ(z) is the digamma function.

IX,Y (Kullback–Leibler information)
1
𝜇
− 1 + log(𝜇)

KL(X,Y) (cumulative Kullback–Leibler information) 2 − 𝛾 − 1
𝜇
− 𝜇 + 1

6
(𝜇 − 1)𝜋2 − 𝜓(𝜇)

dCM(X,Y) = ∫ +∞
−∞ [F(x) − G(x)]2 dF(x) (Cramer-von Mises distance)

2(𝜇 − 1)2

6 + 15𝜇 + 6𝜇2

dR,2(X, Y) = log
[∫ +∞

−∞ (f (x))2(g(x))−1 dx
]

(Renyi divergence of order 2) log

(
𝜇2

2𝜇 − 1

)
dE(X,Y) = 2 ∫ +∞

−∞ [F(x) − G(x)]2 dx (energy distance)
(𝜇 − 1)2

𝜇 + 1

dH(X,Y) =
1

2
∫ +∞
−∞

[√
f (x) −

√
g(x)

]2
dx (Hellinger distance) 1 −

2
√
𝜇

𝜇 + 1

dB(X,Y) = − log[BC(X,Y)] (Bhattacharya distance) log

(
𝜇 + 1

2
√
𝜇

)
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Figure 1. Plot of measures given in Table II for 𝜇 ∈ [0, 2], with (a) KL(X,Y) (line), dCM(X,Y) (dot-dashed), dE(X,Y) (dashed), IX,Y
(dotted) and (b) dH(X,Y) (line), dR,2(X,Y) (dot-dashed), dB(X,Y) (dotted).

In the next example, the cumulative Kullback–Leibler information is compared with other suitable discrimination
measures. Further examples of distances can be found in Finkelstein [19].

Example 2.2
Let X and Y be exponentially distributed with parameters 1 and 𝜇, respectively. In Table II, we evaluate the Kullback–
Leibler information and the cumulative Kullback–Leibler information obtained via Equations (4) and (5), and compare
them with other discrimination criteria. See Rényi [20] and Frery et al. [21] for their definitions. Such measures are
also shown in Figure 1 as functions of 𝜇. As expected, all measures are close to 0 when 𝜇 approaches 1 and increase
monotonically when 𝜇 goes away from 1.

We conclude this section by showing a connection with the proportional reversed hazard model. In such a model, the
distribution functions of X𝜃 and X are related by

F𝜃(x) = [F(x)]𝜃 ∀x ∈ R, 𝜃 > 0. (12)

See, for instance, Di Crescenzo [22], Gupta and Gupta [23], Sankaran and Gleeja [24] for various results about this model.

Proposition 2.3
If X and X𝜃 are random variables satisfying the proportional reversed hazard model expressed by (12), then

KL(X,X𝜃) = (𝜃 − 1)(X) + E(X) − E(X𝜃).

3. Inequalities and bounds

Lemma 1 of Ebrahimi et al. [25] shows that the differential entropies of two stochastically ordered random variables
are suitably related. Hereafter, we provide a similar inequality concerning the cumulative entropy function given in (3).
To this aim, and in order to perform some comparisons, we recall some well-known stochastic orders (see Shaked and
Shanthikumar [26]). Given two random variables X and Y having distribution functions F(t) and G(t), then X is said to be
larger than Y in the

– usual stochastic order (denoted by X ⩾st Y) if F(t) ⩽ G(t) for all t ∈ R,
– reversed hazard rate order (denoted by X ⩾rh Y) if F(s)G(t) ⩽ F(t)G(s) for all s ⩽ t.

Proposition 3.1
If X ⩽st Y , then

(X) − E(X) ⩽ (Y) − E(Y).

Let us now provide some lower bounds for the cumulative Kullback–Leibler information.

Proposition 3.2
(i) If X and Y are absolutely continuous random variables taking values in [0, r], with r finite, then

KL(X,Y) ⩾ [r − E(X)] log

(
r − E(X)
r − E(Y)

)
+ E(X) − E(Y). (13)

Copyright © 2015 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2015
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(ii) If X and Y are random variables with finite means, and having the same left-hand points l = lX = lY , then

KL(X,Y) ⩾
3
2 ∫

max{rX ,rY}

l

[F(u) − G(u)]2

F(u) + 2G(u)
du. (14)

Making use of inequality x log(x) ⩾ x − 1, x > 0, it is not hard to see that the right-hand side of (13) is nonnegative, and
that it vanishes when E(X) = E(Y).

The following example shows that there are no implications between the bounds given in Proposition 3.2. Hereafter, we
denote by 1A the indicator function of A.

Example 3.1
Let X be uniformly distributed in (0, 1) and let Y have distribution function

G(x) = x
10

1{0⩽x<a} +
[ a

10
+

(
1 − a

10

) x − a
1 − a

]
1{a⩽x<1} + 1{x⩾1},

with 0 < a < 1. Figure 2 shows the cumulative Kullback–Leibler information and the bounds obtained in Proposition 3.2
as functions of a ∈ (0, 1).

Hereafter, we obtain some upper bounds for the cumulative Kullback–Leibler information.

Proposition 3.3
Let X and Y be random variables with finite means and having the same left-hand points l = lX = lY .

(i) Then,

KL(X,Y) ⩽ ∫
max{rX ,rY}

l
F(u)

[
F(u)
G(u)

− 1

]
du + E(X) − E(Y), (15)

provided that the integral in the right-hand side is finite.
(ii) If X ⩾st Y , we have

KL(X,Y) ⩽
1
2 ∫

max{rX ,rY}

l
F(u)

[
F(u)
G(u)

− 1

] [
3 − F(u)

G(u)

]
du + E(X) − E(Y) (16)

and

KL(X,Y) ⩽ −2.45678∫
max{rX ,rY}

l
F(u)

[
1 − F(u)

G(u)

]2

du + E(X) − E(Y). (17)

We remark that, under assumption X ⩾st Y , the bound shown in (16) is better than the bound provided in (15), in the
sense that the right-hand side of (16) is smaller than the right-hand side of (15).

Figure 2. Plot of the cumulative Kullback–Leibler information (line), lower bound (13) (dashed curve), and lower bound (14) (dot-
dashed curve) of Example 3.1, for 0 < a < 1.

Copyright © 2015 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2015
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Figure 3. Plot of the cumulative Kullback–Leibler information (18) (lower line), lower bound (13) (dot-dashed curve), lower bound
(14) (dashed curve), upper bound (16) (dotted curve) and upper bound (17) (upper line) of Example 3.2, for 0 < 𝛽 ⩽ 𝛼, with 𝛼 = 1

(case a) and 𝛼 = 2 (case b).

Example 3.2
Let X and Y be random variables having power distribution functions F(x) = x𝛼 and G(x) = x𝛽 , 0 ⩽ x ⩽ 1, with 𝛼 > 0 and
𝛽 > 0. They satisfy the proportional reversed hazard model G(x) = [F(x)]𝜃 , x ∈ R, with 𝜃 = 𝛽∕𝛼. From (5), noting that
E(X) = 𝛼∕(𝛼 + 1) and E(Y) = 𝛽∕(𝛽 + 1), we have

KL(X,Y) =
(𝛼 − 𝛽)2

(1 + 𝛼)2(1 + 𝛽)
. (18)

For brevity, we omit the expressions of the bounds evaluated previously and provide some plots in Figure 3. We note that
in case (b), the upper bounds intersect each other, and thus, there are no implications between them.

4. A dynamic measure for past lifetimes

We consider two nonnegative random variables X and Y , representing the lifetimes of two items, and having support (0, rX)
and (0, rY ), respectively. For t > 0, let X(t) = [X|X ⩽ t] and Y(t) = [Y|Y ⩽ t] be their respective past lifetimes. These
notions deserve interest in applied fields such as survival analysis, reliability theory, and actuarial science. For each t > 0,
we denote the distribution functions of X(t) and Y(t) by

F(t)(x) =
F(x)
F(t)

, G(t)(x) =
G(x)
G(t)

, 0 ⩽ x ⩽ t, (19)

respectively. See Sunoj et al. [27], Vonta and Karagrigoriou [28], and Sachlas and Papaioannou [29] for various results and
applications of past lifetimes.

In analogy with the discrimination measure between past lives given in Definition 1.1 of Di Crescenzo and Longobardi
[30], we now introduce a dynamic version of the cumulative Kullback–Leibler information referred to the past lifetimes
X(t) and Y(t). It involves the mean past lifetimes of X and Y , which are respectively

𝜇X(t) = E
[
X(t)

]
= ∫

t

0

[
1 − F(x)

F(t)

]
dx, 𝜇Y (t) = E

[
Y(t)

]
= ∫

t

0

[
1 −

G(y)
G(t)

]
dy, (20)

for all t ∈ X,Y , where X,Y ∶= (0,min{rX , rY}). In agreement with Definition 2.1, we now consider the following.

Definition 4.1
The cumulative past Kullback–Leibler information of two random lifetimes X and Y , for any t ∈ X,Y is defined by

KL

(
X(t),Y(t)

)
∶= ∫

t

0

F(x)
F(t)

log

(
F(x)
F(t)

G(t)
G(x)

)
dx + 𝜇X(t) − 𝜇Y (t), (21)

where 𝜇X(t) and 𝜇Y (t) are given in (20).

Roughly speaking, KL(X(t),Y(t)) measures the closeness of the distributions of the two lifetimes, when the items are
inspected at time t > 0, and both are found failed.

Copyright © 2015 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2015
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Remark 4.1
From Definitions 2.1 and 4.1, it is easy to see that KL(X(t),Y(t)) is nonnegative for all t ∈ X,Y , and the following
limits hold

lim
t→0+

KL

(
X(t),Y(t)

)
= 0, lim

t→supX,Y

KL

(
X(t),Y(t)

)
= KL(X,Y).

Remark 4.2
Let t ∈ X,Y . In analogy with Equation (7), from (21), it follows that the cumulative past Kullback–Leibler information of
X and Y can be expressed as

KL

(
X(t),Y(t)

)
= K

[
X(t), Y(t)

]
− (X(t)

)
+ 𝜇X(t) − 𝜇Y (t), (22)

where, due to (6) and (19), K[X(t),Y(t)] is the cumulative inaccuracy of the past lifetimes, that is,

K
[
X(t),Y(t)

]
∶= −∫

t

0

F(x)
F(t)

log

(
G(x)
G(t)

)
dx, (23)

and where

(X(t)
)
= −∫

t

0

F(x)
F(t)

log

(
F(x)
F(t)

)
dx, (24)

is the dynamic cumulative entropy of X, introduced in Section 5 of Di Crescenzo and Longobardi [3].

Note that the cumulative measure given in (23) is an analogous of the dynamic measure of inaccuracy between two past
lifetime distributions proposed in Equation (9) of Kumar et al. [12].

Let us now obtain some lower and upper bounds for KL(X(t),Y(t)). The next result immediately follows from Proposition
3.2, and thus, the proof is omitted.

Proposition 4.1
For all t ∈ X,Y , the following lower bounds hold

KL

(
X(t), Y(t)

)
⩾

[
t − 𝜇X(t)

]
log

(
t − 𝜇X(t)
t − 𝜇Y (t)

)
+ 𝜇X(t) − 𝜇Y (t), (25)

and

KL

(
X(t),Y(t)

)
⩾ 1

2∫
t

0

[
F(t)(x) − G(t)(x)

]2

1
3
F(t)(x) +

2
3
G(t)(x)

dx. (26)

Proposition 4.2
For all t ∈ X,Y , the following upper bound holds

KL

(
X(t),Y(t)

)
⩽ ∫

t

0

[
F2
(t)(u)

G(t)(u)
− F(t)(u)

]
du + 𝜇X(t) − 𝜇Y (t). (27)

Moreover, if X ⩾rh Y , then

KL(X(t),Y(t)) ⩽
1
2∫

t

0
F(t)(u)

[
F(t)(u)
G(t)(u)

− 1

] [
3 −

F(t)(u)
G(t)(u)

]
du + 𝜇X(t) − 𝜇Y (t), (28)

and

KL(X,Y) ⩽ −2.45678∫
t

0
F(t)(u)

[
1 −

F(t)(u)
G(t)(u)

]2

du + 𝜇X(t) − 𝜇Y (t). (29)

Copyright © 2015 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2015
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Example 4.1
Let X and Y have distribution functions

F(x) = exp
{
−c1∕x2

}
, G(x) = exp

{
−c2∕x2

}
, x > 0,

respectively, with c1, c2 > 0. Hence, from Equations (20) and (21), for t ∈ X,Y , we have

KL

(
X(t),Y(t)

)
= (c1 − c2)

⎡⎢⎢⎢⎣
1
t
−

√
𝜋 exp

{
c1∕t2

} (
2c1 + t2

)
erfc

{√
c1∕t

}
2
√

c1t2

⎤⎥⎥⎥⎦
+

√
c1𝜋 exp

{
c1∕t2

}
erfc{

√
c1∕t} −

√
c2𝜋 exp

{
c2∕t2

}
erfc

{√
c2∕t

}
,

(30)

where erfc(⋅) is the complementary error function (see Gradshteyn and Ryzhik [31], p. 888). If c1 > c2, then X ⩾rh Y , and
thus, inequalities provided in (28) and (29) hold. Figure 4 shows the plots of the bounds given in Propositions 4.1 and 4.2
for a case when c1 > c2.

In the following counterexample, we show that the assumption X ⩾rh Y is necessary to obtain inequalities expressed in
(28) and (29).

Counterexample 4.1
Let X be uniformly distributed in (0, 1), and let Y have distribution function

G(x) =
(4

3
x
)𝛼

1{0⩽x<1∕3} +
(4

9

)𝛼
1{1∕3⩽x<2∕3} + x2𝛼1{2∕3⩽x<1} + 1{x⩾1},

with 𝛼 > 0. Hence, it is not hard to see that if 0.5 < 𝛼 < 1, then X ⩾̸rh Y . Moreover, in this case, one can show that both
the functions given in the right-hand side of (28) and (29) intersect KL(X(t),Y(t)) for suitable choices of 𝛼 (see an example
in Figure 5).

Figure 4. The upper bounds given in (29), (27), and (28), the cumulative past Kullback–Leibler information shown in (30), and the
lower bounds provided in (26) and (25) for Example 4.1 (from top to bottom) for c1 = 5 and c2 = 1.

Figure 5. The cumulative past Kullback–Leibler information (line), the right-hand side of (28) (dotted curve), and the right-hand side
of (29) (dot-dashed curve) when 𝛼 = 0.95 for Counterexample 4.1.

Copyright © 2015 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2015



A. DI CRESCENZO AND M. LONGOBARDI

5. Relative aging and monotonicity property

Let us now provide some results on relative aging that will be used in the succeeding text. To this purpose, consider a
nonnegative random variable X, with support (0,+∞), denoting a random lifetime. We recall that X is said to be increasing
(decreasing) failure rate, in short IFR (DFR), if the survival function F(t) is logconcave (logconvex), that is, if the hazard
rate function 𝜆X(t) ∶= f (t)∕F(t) is increasing (decreasing) in t > 0.

Given two nonnegative random variables X and Y describing random lifetimes, in reliability theory, it is of interest to
study the reliability of one variable relative to the other. For instance, we recall that X is said to be aging faster than Y if the
random variable Z = TY (X) is IFR, where TY (t) is defined in Equation (10) (see Definition 1 of Sengupta and Deshpande
[32]). This fact introduces a notion of relative aging, in the sense that X is aging faster (slower) than Y if and only if the
ratio of hazard rates 𝜆X(t)∕𝜆Y (t) is increasing (decreasing) in t. See also the contribution by Rowell and Siegrist [33] on
this topic.

We now consider an analogous concept, which involves the ratio of reversed hazard rates of X and Y .

Proposition 5.1
Given two nonnegative random variables X and Y , the following statements are equivalent:

(i) Z = TX(Y) is IFR (DFR);
(ii) TY◦T−1

X is convex (concave);
(iii) 𝜏X(t)∕𝜏Y (t) is increasing (decreasing) in t.

We remark that condition (iii) of Proposition 5.1 is involved in point (b) of Theorem 1.C.4 of Shaked and Shanthikumar
[26], where it is stated that if X ⩽rh Y and 𝜏X(t)∕𝜏Y (t) is decreasing in t, then X is smaller than Y in the likelihood ratio order.

Condition (iii) of Proposition 5.1 will be used in Proposition 5.2. It is not hard to see that such a condition defines a
stochastic order (see Rezaei et al. [34]).

Let us now investigate the monotonicity property of KL(X(t),Y(t)).

Theorem 5.1
Let X and Y be nonnegative absolutely continuous random variables, and let t ∈ X,Y . Then, KL(X(t),Y(t)) is increasing in
t if and only if

KL

(
X(t),Y(t)

)
⩽ B(t) ∀t ∈ X,Y , (31)

where

B(t) ∶=
[
𝜏Y (t)
𝜏X(t)

− 1

] [
𝜇Y (t) − 𝜇X(t)

]
.

In the following proposition, we find sufficient conditions such that B(t) is increasing. The proof easily follows from the
definitions of the involved notions, and thus is omitted.

Proposition 5.2
Let 𝜏X(t)∕𝜏Y (t) be decreasing in t, and let 𝜇Y (t) − 𝜇X(t) be increasing in t. Then, B(t) is increasing in t.

Example 5.1

Let F(t) =
(

t
r

)𝛼
and G(t) =

(
t
r

)𝛽
, for 0 ⩽ t ⩽ r. If 0 < 𝛼 < 𝛽, then the assumptions of Proposition 5.2 are satisfied. In

this case, it is easy to check that KL(X(t),Y(t)) and B(t) are both linearly increasing in t.

6. Application to failure of nanocomponents

The design of nanocomponents with specific physical properties often requires the assessing of items reliability. In this
framework, a current problem is related to the contiguous nanocrack. With reference to Ebrahimi [35], we recall that a
nanocrack is a region of a nanocomponent where there is no bonding between adjacent atoms of the lattices. A contiguous
nanocrack is formed when the accumulated number of broken bonds for the crack reaches a certain threshold. Denoting
by b such threshold, and by S the random stress level, then, according to the Maxwell–Boltzmann distribution of thermal
energies of atoms, the net probability of permanent bond breakage at the given stress level S = s is 2 exp(−𝛼) sinh(𝛽𝛾s),
s ⩾ 0, where 𝛼, 𝛽, and 𝛾 are suitable parameters. Specifically, 𝛼 = Q

kT
and 𝛽 = 1

kT
, where T is the absolute temperature,

Q is the activation energy, and k is the Boltzmann constant, whereas 𝛾 is an appropriately chosen constant (see Ebrahimi
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Figure 6. Plot of the cumulative Kullback–Leibler information given in (33) for e𝛼∕c∗0 = 1, b = 1, and 𝛽𝛾 = 0.5, 1, 2 (from top to
bottom), with (a) 0 < s1 ⩽ 8 and s2 = 1, (b) 0 < s2 ⩽ 8 and s1 = 1.

[35] for details). Hence, if X denotes the load duration needed for the accumulated number of broken bonds to reach the
threshold b, then the distribution function of [X|S = s] is (cf. Equation (1) of Ebrahimi [35])

FX|S(x|s) = (
x

r(s)

)b

, 0 ⩽ x ⩽ r(s) ∶= e𝛼
c∗0

csch(𝛽𝛾s), (32)

for b ⩾ 1, s > 0, 𝛼 > 0, 𝛽𝛾 > 0, and where c∗0 > 0 is an appropriately chosen constant. In this section, we adopt the notation
Xs to represent the random variable [X|S = s], that is, the load duration leading to the formation of a contiguous nanocrack
conditional on the stress level S = s. Aiming to study the dependence between pairs of random variables belonging to the
family {Xs; s > 0}, from (5) and (32), we obtain the following expression of the cumulative Kullback–Leibler information:

KL

(
Xs1
,Xs2

)
=

⎧⎪⎪⎨⎪⎪⎩
b2

b + 1
r(s1) log

(
r(s1)
r(s2)

)
− bb(s1, s2), 0 < s2 ⩽ s1,

b
(b + 1)2

r(s1)
{[

r(s2)
r(s1)

]b+1

− 1

}
+ b(s1, s2), 0 < s1 ⩽ s2,

(33)

where

b(s1, s2) =
b
[
r(s1) − r(s2)

]
b + 1

.

Figure 6 shows some plots of KL(Xs1
,Xs2

) for various choices of the involved parameters.
From (33), it is easy to check that KL(Xs,Xs) = 0, s > 0. Moreover, the following limits hold:

lim
s1→0

KL(Xs1
,Xs2

) = lim
s2→0

KL(Xs1
,Xs2

) = +∞,

lim
s1→+∞

KL(Xs1
,Xs2

) = ab2

b + 1
csch(cs2), lim

s2→+∞
KL(Xs1

,Xs2
) = ab2

(b + 1)2
csch(cs1).

This shows that the discrepancy between Xs1
and Xs2

measured through the cumulative Kullback–Leibler information tends
to become infinitely large when the stress level s1 or s2 goes to 0, whereas KL(Xs1

,Xs2
) tends to a finite value when s1 or

s2 goes to infinity. Hence, consider the load durations leading to the formation of a contiguous nanocrack conditional on
two different stress levels S = s1 and S = s2. Such load durations tend to be very different when the stress level s1 or s2 is
close to 0. On the contrary, if the stress level s1 or s2 grows, then the discrepancy between the load durations does not grow
indefinitely because it tends to a constant. This information may help engineers to design nanocomponents. For instance,
aiming to affect the load duration that causes a contiguous nanocrack, the knowledge that the baseline stress level is large
implies that it is not useful to reduce the stress slightly.

7. Application in image analysis

Information measures are often employed in image analysis as well as in other applied fields. For instance, we recall that
the cumulative entropy and its conditional version have been successfully exploited by Nguyen et al. [36] to perform cluster
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analysis on multidimensional data. Moreover, with reference to the cumulative residual entropy defined in (2), Wang et al.
[37] proposed the empirical version of such a measure to solve the alignment problem in image analysis. We also recall
the papers by Contreras-Reyes and Arellano-Valle [38] and Frery et al. [21], where useful methods of information theory
are proposed and applied to investigate images obtained from real sensors. Specifically, their studies involve the flexible
families of multivariate skew-normal distribution, and Wishart distribution, respectively.

On the line of some previous investigations, in this section, we focus on a suitable application of the cumulative
Kullback–Leibler information in image analysis. To this purpose, we first address the problem of estimating the cumula-
tive Kullback–Leibler information by means of an empirical measure of discrimination. Consider two independent random
samples  = (Xi; i = 1, 2,… , n) and  = (Yj; j = 1, 2,… ,m), where Xi and Yj are independent copies of X and Y ,
respectively. According to (5), we give the following.

Definition 7.1
Let X and Y be absolutely continuous and nonnegative. The empirical cumulative Kullback–Leibler information of X and
Y is defined by

KL

(
F̂n, Ĝm

)
= ∫

+∞

0
F̂n(x) log

(
F̂n(x)
Ĝm(x)

)
dx + Xn − Ym,

where

F̂n(x) =
1
n

n∑
i=1

1{Xi⩽x}, Ĝm(x) =
1
m

m∑
i=1

1{Yi⩽x}, x ∈ R,

are the empirical distributions of the samples, and where Xn and Ym are the sample means.

In order to obtain a computationally effective formula for KL(F̂n, Ĝm), we introduce the order statistics of the first
random sample, X(1) ⩽ X(2) ⩽ … ⩽ X(n). Similarly, we denote by Y(1) ⩽ Y(2) ⩽ … ⩽ Y(m) the order statistics of  , and set
Y(0) = −∞.

Remark 7.1
In agreement with (7), it is not hard to see that the empirical cumulative Kullback–Leibler information can be rewritten as

KL

(
F̂n, Ĝm

)
= K

[
F̂n, Ĝm

]
−  (

F̂n

)
+ Xn − Ym. (34)

Note that

(i) (F̂n) is the empirical cumulative entropy (see Di Crescenzo and Longobardi [3])

(F̂n) = −∫
+∞

0
F̂n(x) log

(
F̂n(x)

)
dx

= −
n−1∑
i=1

Ui+1
i
n

log
( i

n

)
,

(35)

where U1 = X(1), Ui = X(i) − X(i−1), for i = 2, 3,… , n, are the sample spacings of the first sample;
(ii) K[F̂n, Ĝm] is the empirical cumulative inaccuracy (see Di Crescenzo and Longobardi [16], for the case n = m)

K
[
F̂n, Ĝm

]
= −∫

+∞

0
F̂n(u) log

(
Ĝm(u)

)
du

= −
m−1∑
j=1

∫
Y(j+1)

Y(j)

F̂n(u) log

(
j

m

)
du

= 1
n

m−1∑
j=1

⎡⎢⎢⎣
Nj+1−Nj∑

r=1

Xj,r + NjY(j) − Nj+1Y(j+1)

⎤⎥⎥⎦ log

(
j

m

)
,

(36)

where

Nj ∶=
n∑

i=1

1{Xi⩽Y(j)}, j = 1, 2,… ,m,
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denotes the number of random variables of the sample  that are less than or equal to the j-th order statistic of  ,
and where we rename by Xj,r, r = 1, 2,… , (Nj+1 − Nj), the random variables of the first sample belonging to the
interval (Y(j),Y(j+1)], if any.

The following asymptotic result holds.

Proposition 7.1
Let X and Y be nonnegative random variables. If X is in Lp for some p > 1, and X ⩾st Y then the empirical cumulative
Kullback–Leibler information of X and Y converges to the cumulative Kullback–Leibler information of X and Y , that is,

KL(F̂n, Ĝm) → KL(X,Y) a.s. as n → +∞ and m → +∞.

Example 7.1
Let us now adopt the empirical cumulative Kullback–Leibler information to measure the discrepancies in the gray levels of
the digitalized images shown in Figure 7. The pictures are formed by 1600 cells; the gray level of each cell being measured
by a real number ranging from 0 (black) to 1 (white). Figure 8 shows the gray levels arranged in increasing order. Hence, a

(i) (ii) (iii)

(vi)(v)(iv)

Figure 7. Images studied in Section 7.

Figure 8. Ordered gray levels of the images in Figure 7.
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Table III. Mean gray levels
of the images of Figure 7.

Image Mean gray level

(i) 0.205311
(ii) 0.5
(iii) 0.562977
(iv) 0.607250
(v) 0.738219
(vi) 0.802999

Table IV. CKL(F̂n, Ĝm) for the images of Figure 7.

X ∖ Y (i) (ii) (iii) (iv) (v) (vi)

(i) 0 0.0937469 0.122712 0.218842 0.414844 0.402350
(ii) 0.0755055 0 0.0110273 0.0244186 0.0984964 0.109691
(iii) 0.0987752 0.0100067 0 0.0216801 0.0688432 0.0583435
(iv) 0.149475 0.0182159 0.0168919 0 0.0285125 0.0640901
(v) 0.258760 0.0729513 0.0510091 0.0248633 0 0.00282724
(vi) 0.332174 0.127517 0.0899049 0.0662241 0.0151126 0

graph close to 0, such as case (i) of Figure 8, corresponds to a picture with many black cells. Moreover, the mean gray level
of the six images are presented in Table III. The empirical cumulative Kullback–Leibler information of the gray levels for
the pairs of images are evaluated by means of Equation (34), for n = m = 1600 (Table IV). The maximum discrepancy is
found between images (i) and (v), whereas the minimum value of KL(F̂n, Ĝm) is attained for images (v) and (vi).

Example 7.1 provides a suitable application of the empirical cumulative Kullback–Leibler information in image analysis.
In this context, starting from the gray levels of images in random samples and , higher values of KL(F̂n, Ĝm) correspond
to marked differences in the nuances of the figures. Therefore, an automatic procedure that evaluates the empirical
cumulative Kullback–Leibler information may allow to categorize images on the base of their gray (or color) levels.

8. Concluding remarks

The present paper is centered on the study of the cumulative Kullback–Leibler information. This is an asymmetric measure
of discrimination for pairs of random variables. We have first investigated some properties, inequalities, and bounds of this
measure. The analysis also focused on its dynamic version, which is specially suited for past lifetimes. A monotonicity
property of its upper bound has been related to a quite new notion of relative aging. In conclusion, in order to shade some
light on the practical use of this measure, we considered two applications:
(i) The first is about the failures of nanocomponents, with reference to a stochastic model for the load duration needed for
the number of broken bonds that leads to a contiguous nanocrack. The cumulative Kullback–Leibler information in this
case may give some advice on the role of the stress level involved in this model.
(ii) In the second case, the empirical cumulative Kullback–Leibler information is applied in images analysis. After pro-
viding a convergence result, we adopt this empirical measure to compare the gray level in some images. Differently from
various papers mentioned in Section 7, our approach is nonparametric. The extension to cases involving specific families
of distributions is too heavy in this context, and thus will be the object of future investigation.

Appendix

Proof of Proposition 2.1

It immediately follows from Definition 2.1, and recalling that the distribution function of aX + b is F
(

x−b
a

)
, x ∈ R.

Proof of Proposition 2.2
From Theorem 4.1 of [18], for a measurable and differentiable function h(t) such that E[h(Y)] and E[h(X)] are finite,
and its derivative h′(t) is measurable and Riemann-integrable of the interval [x, y] for all y ⩾ x ⩾ 0, we have E[h(Y)] −
E[h(X)] = E[h′(Z)][E(Y)−E(X)], under the given assumptions. Hence, by choosing h(t) = T (2)

Y (t), and thus h′(t) = −TY (t)
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due to (9) and (10), and recalling the identities given in (8), we obtain (see also Proposition 8.2.2 of Di Crescenzo and
Longobardi [16]):

(Y) − K(X,Y) = −E
[
TY (Z)

]
[E(Y) − E(X)].

Hence, Equation (11) follows by use of (7).

Proof of Proposition 2.3
Because of Equation (12), recalling Equations (3) and (6), we have K(X,X𝜃) = 𝜃 (X). The proof then immediately
follows from (7).

Proof of Proposition 3.1
From Equation (7), recalling that KL(X,Y) ⩾ 0, we have

(X) − E(X) ⩽ K(X,Y) − E(Y).

Proposition 3.1 of Di Crescenzo and Longobardi [16] states that assumption X ⩽st Y implies K(X,Y) ⩽ (Y). The proof
then follows.

Proof of Proposition 3.2
The proof of (13) immediately follows applying the well-known log-sum inequality (see, for instance, Cover and Thomas
[39]) to the pdf’s of X and Y . Because

x log(x) ⩾ x − 1 + 3(x − 1)2

2(x + 2)
for all x > 0,

the proof of (14) follows from Equation (5), by taking x = F(u)∕G(u).

Proof of Proposition 3.3
Recalling that log(x) ⩽ x − 1, ∀x > 0, the proof of (15) follows from Definition 2.1. From the following inequalities

log(x) ⩽ 1
2
(x − 1)(3 − x), log(x) ⩽ −2.45678(1 − x)2, 0 < x ⩽ 1,

and the definition of KL(X,Y), we easily obtain the proof of (16) and (17).

Proof of Proposition 4.2
We note that X(t) ⩾st Y(t) for all t ∈ X,Y if, and only if, X ⩾rh Y . The proof thus follows from Proposition 3.3.

Proof of Proposition 5.1
The equivalence between (i) and (ii) has been shown in Theorem 5.1 of Di Crescenzo [22]. Noting that the hazard rate
function of Z = TX(Y) is

𝜆Z(t) = − d
dt

log(FZ(t)) = −𝜏Y

(
T−1

X (t)
) d
dt

T−1
X (t) =

𝜏Y

(
T−1

X (t)
)

𝜏X

(
T−1

X (t)
) , t > 0,

the equivalence between (i) and (iii) immediately follows.

Proof of Theorem 5.1
From (23) we have

d
dt

K
[
X(t),Y(t)

]
= 𝜏Y (t)

[
t − 𝜇X(t)

]
− 𝜏X(t)K

[
X(t),Y(t)

]
,

whereas (see Section 6, proof of Theorem 6.1, Equation (32) of Di Crescenzo and Longobardi [3])

d
dt
(X(t)

)
= 𝜏X(t)

[
t − 𝜇X(t) − (X(t)

)]
.
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Moreover, from (20), we obtain

d
dt
𝜇X(t) = 𝜏X(t)[t − 𝜇X(t)].

Hence, recalling Equation (22), we obtain

d
dt
KL(X(t),Y(t)) =

[
𝜏Y (t) − 𝜏X(t)

] [
𝜇Y (t) − 𝜇X(t)

]
− 𝜏X(t)KL

(
X(t),Y(t)

)
.

It thus follows that KL(X(t),Y(t)) is increasing in t if and only if the inequality given in Equation (31) holds.

Proof of Proposition 7.1
By the law of large numbers, we have Xn → E(X) a.s. as n → +∞, and Ym → E(Y) a.s. as m → +∞. Moreover, under the
given assumptions (F̂n) → (X) a.s. as n → +∞ (see Proposition 2 of Di Crescenzo and Longobardi [40]). Similarly,
in the same line of Theorem 9 of Rao et al. [2] making use of assumption F(t) ⩽ G(t) for all t ∈ R, one can prove that
K[F̂n, Ĝm] → K(X,Y) a.s. as n → +∞ and m → +∞. The proof thus follows immediately from the relations given in (7)
and (34).
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