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We solve a class of isoperimetric problems on RN with respect to weights that are 
powers of the distance to the origin. For instance we show that, if k ∈ [0, 1], then 
among all smooth sets Ω in RN with fixed Lebesgue measure, 

∫
∂Ω |x|k HN−1(dx)

achieves its minimum for a ball centered at the origin. Our results also imply a 
weighted Pólya–Szegö principle. In turn, we establish radiality of optimizers in some 
Caffarelli–Kohn–Nirenberg inequalities, and we obtain sharp bounds for eigenvalues 
of some nonlinear problems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

There has been a growing interest in isoperimetric inequalities with weights during the last decades, 
and a wide literature is available, see for instance [4–7,9–12,15,16,19,22,23,25,35,39,40] and the references 
therein. However, most research dealt with inequalities where both the volume functional and perimeter 
functional carry the same weight. In this article we analyze a scale of isoperimetric inequalities on RN with 
two different weights in perimeter and volume which are powers of the distance to the origin.

More precisely, given k, l ∈ R, we study the following isoperimetric problem:

Minimize
∫
∂Ω

|x|k HN−1(dx) among all smooth sets Ω ⊂ RN satisfying
∫
Ω

|x|l dx = 1.

In particular, we are interested in conditions on the numbers k and l such that the above minimum is 
attained for a ball centered at the origin.
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Our motivation comes from some norm inequalities with weights which are now well-known as the 
Caffarelli–Kohn–Nirenberg inequalities (see, e.g. [13,18,21,26] and the references cited therein). These in-
equalities compare a weighted Lp-norm of the gradient of a function on RN with a weighted Lq-norm of the 
function, and they have many applications to the analysis of weighted elliptic and parabolic problems.

Let us state the main results concerning the isoperimetric inequalities. We decided to include also results 
that are already known in order to offer to the reader a comprehensive picture of the status of the art about 
this subject.
We underline that in the following theorem the new results are cases (iii) and (iv).

Theorem 1.1. Let N ∈ N, k, l ∈ R and l + N > 0. Further, assume that one of the following conditions 
holds:

(i) N ≥ 1 and l + 1 ≤ k;
(ii) N ≥ 2, k ≤ l + 1 and lN−1

N ≤ k ≤ 0;
(iii) N ≥ 3, 0 ≤ k ≤ l + 1 and

l ≤ l1(k,N) := (k + N − 1)3

(k + N − 1)2 − (N−1)2
N

−N . (1.1)

(iv) N = 2, k ≤ l + 1, and

l ≤ l1(k, 2) :=
{

0 if 0 ≤ k ≤ 1
3

(k+1)3
(k+1)2− 16

27
− 2 if k ≥ 1

3
. (1.2)

Then

∫
∂Ω

|x|k HN−1(dx) ≥ Crad
k,l,N

⎛⎝∫
Ω

|x|l dx

⎞⎠(k+N−1)/(l+N)

, (1.3)

for all smooth sets Ω in RN , where

Crad
k,l,N :=

∫
∂B1

|x|k HN−1(dx)

⎛⎝∫
B1

|x|l dx

⎞⎠(k+N−1)/(l+N) = (NωN )(l−k+1)/(l+N) · (l + N)(k+N−1)/(l+N). (1.4)

Equality in (1.3) holds for every ball centered at the origin.

Let us briefly comment on Theorem 1.1. First observe that it can be extended to Lebesgue measurable 
sets on RN by a standard approximation procedure (see Section 2). Moreover, it is often possible to detect 
all cases of equality in (1.3) (for details, see Section 5). Inequality (1.3) was proved under assumption (i)
in [33], Theorem 3.1 and its application through Example 3.5, part (4), and under assumption (ii) in [20], 
Theorem 1.3. Note also that partial results for N = 2, (i) and (ii), were obtained in [25], Proposition 4.21, 
parts (3), respectively (2), and for (i) in [5], Theorem 2.1.
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Fig. 1. The conjectured region of radiality for k > 0 is below the dotted curve l = l∗.

As we already pointed out the main result of this paper is the proof of Theorem 1.1 in the cases (iii) and
(iv). We emphasize that the conditions (ii)–(iv) contain the range N ≥ 2, l = 0 ≤ k ≤ 1, while the case 
l = 0, k ≥ 1 was already known for some time, see [5]. In this way we generalize in particular on a recent 
result in [22] where only the two-dimensional case was considered.

Let us observe that a necessary condition for the radiality of the minimizers is given by

l ≤ l∗(k,N) := k − 1 + N − 1
k + N − 1 , (1.5)

see Theorem 4.1. Note that l1(k, N) < l∗(k, N) for k > 0, that is, we are not able to establish inequality 
(1.3) in the (small) region

{(k, l) : k > 0, l1(k,N) < l < l∗(k,N)},

see Fig. 1.
For more details on this, see SubSection 5.5. We wish to point out that the situation can be quite different 

from Theorem 1.1 for other ranges of the parameters k and l. For instance, if k = l ≥ 0, then the minimizing 
sets have been identified as balls whose boundaries touch the origin, see [7] and [23].

Now we outline the content of the paper. We introduce some notation and provide some analytic tools that 
will be of later use in Section 2. In Section 3 we introduce two functionals Rk,l,N and Qk,l,N and we provide 
some basic information related to the isoperimetric problem. In Section 4 we give a necessary condition for 
the existence of a minimizer to the isoperimetric problem (Lemma 4.1) and a necessary condition for its 
radiality (Theorem 4.1), which also establishes breaking of symmetry for a certain range of the parameters 
k and l. Section 5 deals with the proof of Theorem 1.1. In addition, we treat the equality case in (1.3), 
see the Theorems 5.1, 5.2, 5.3, Corollary 5.2 and Theorem 5.4. Further, we give a complete solution of the 
isoperimetric problem in the case N = 1 in Section 6, Theorem 6.1. Our proofs use well-known rearrangement 
tools, the classical isoperimetric inequality and Hardy’s inequality. The interpolation argument that occurs 
in the proof of Lemma 5.1 seems to be new in this context. By using Theorem 1.1 and inversion in the 
unit sphere, we show an isoperimetric inequality where the extremal sets are exteriors of balls centered 
at the origin in Theorem 7.1. Finally, we give some applications of Theorem 1.1 in Section 8. Using the 
notion of weighted rearrangement we provide a Pólya–Szegö-type inequality in Theorem 8.1. This allows to 
obtain best constants in some Caffarelli–Kohn–Nirenberg inequalities (see Lemma 8.1, Proposition 8.1 and 
Theorems 8.2 and 8.3). Further, in Theorem 8.4 we evaluate the best constant in a weighted Sobolev-type 
inequality for Lorentz spaces, originally proved in [1] (see also [27,17]), and a sharp bound for the first 
eigenvalue of a weighted elliptic eigenvalue problem associated to the p-Laplace operator (Theorem 8.5).
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2. Notation and preliminary results

Throughout this article N will denote a natural number while k and l are real numbers. With the 
exception of Section 5 we will assume

k + N − 1 > 0 and l + N > 0. (2.1)

Let us introduce the following notation

BR(x0) :=
{
x ∈ RN : |x− x0| < R

}
, (x0 ∈ RN ),

BR := BR(0), (R > 0),

and let L N denote the N -dimensional Lebesgue measure and ωN = L N (B1).
We will use frequently N -dimensional spherical coordinates (r, θ) in RN :

RN � x = rθ, where r = |x|, and θ = x|x|−1 ∈ S N−1.

If M is any set in RN , then let χM denote its characteristic function.
Next, let k and l be real numbers satisfying (2.1). We define a measure μl by

dμl(x) = |x|l dx. (2.2)

If M ⊂ RN is a measurable set with finite μl-measure, then let M� denote the ball BR such that

μl (BR) = μl (M) =
∫
M

dμl(x). (2.3)

If u : RN → R is a measurable function such that

μl ({|u(x)| > t}) < ∞ ∀t > 0,

then let u� denote the weighted Schwarz symmetrization of u, or in short, the μl-symmetrization of u, which 
is given by

u�(x) = sup
{
t ≥ 0 : μl ({|u(x)| > t}) > μl

(
B|x|
)}

. (2.4)

Note that u� is radial and radially non-increasing, and if M is a measurable set with finite μl-measure, 
then

(χM )� = χM� .

The μk-perimeter of a measurable set M is given by

Pμk
(M) := sup

⎧⎨⎩
∫
M

div
(
|x|kv

)
dx : v ∈ C1

0 (RN ,RN ), |v| ≤ 1 in M

⎫⎬⎭ . (2.5)

It is well-known that, if Ω is an open set, then the above distributional definition of weighted perimeter is 
equivalent to the following
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Pμk
(Ω) =

⎧⎪⎨⎪⎩
∫
∂Ω

|x|k HN−1(dx) if ∂Ω is (N − 1)-rectifiable

+∞ otherwise
. (2.6)

(HN−1 denotes (N − 1)-dimensional Hausdorff-measure.)
We will call a set Ω ⊂ RN smooth, if it is open and bounded with smooth boundary, that is, for every 

x0 ∈ ∂Ω, there is a number r > 0 such that Br(x0) ∩ Ω has exactly one connected component and 
Br(x0) ∩ ∂Ω is the graph of a C1-function on an open set in RN−1.

If p ∈ [1,+∞), we will denote by Lp(Ω, dμl) the space of all Lebesgue measurable real valued functions
u such that

‖u‖Lp(Ω,dμl) :=

⎛⎝∫
Ω

|u|p dμl(x)

⎞⎠1/p

< +∞. (2.7)

We will often use the following well-known Hardy–Littlewood inequality,∫
RN

uv dμl(x) ≤
∫
RN

u�v� dμl(x), (2.8)

which holds for all functions u, v ∈ L2(RN , dμl).
Furthermore, W 1,p(Ω, dμl) is the weighted Sobolev space consisting of all functions which together with 

their weak derivatives uxi
, (i = 1, ..., N), belong to Lp(Ω, dμl). The space will be equipped with the norm

‖u‖W 1,p(Ω,dμl) := ‖u‖Lp(Ω,dμl) + ‖∇u‖Lp(Ω,dμl) . (2.9)

Finally W 1,p
0 (Ω, dμl) will stand for the closure of C∞

0 (Ω) under norm (2.9).
Now we want to recall the so-called starshaped rearrangement (see [34]) which we will use in Section 5. 

For later convenience, we will write y for points in RN and (z, θ) for corresponding N -dimensional spherical 
coordinates (z = |y|, θ = y|y|−1).

We call a measurable set M ⊂ RN starshaped if the set

M ∩ {zθ : z ≥ 0}

is either empty or a segment {zθ : 0 ≤ z < m(θ)} for some number m(θ) > 0, for almost every θ ∈ S N−1.
If M is a bounded measurable set in RN , and θ ∈ S N−1, then let

M(θ) := M ∩ {zθ : z ≥ 0}.

There is a unique number m(θ) ∈ [0, +∞) such that

m(θ)∫
0

zN−1 dz =
∫

M(θ)

zN−1 dz.

We define

M̃(θ) := {zθ : 0 ≤ z ≤ m(θ)}, (θ ∈ S N−1),
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and

M̃ := {zθ : z ∈ M̃(θ), θ ∈ S N−1}.

We call the set M̃ the starshaped rearrangement of M .
Note that M̃ is Lebesgue measurable and starshaped, and we have

L N (M) = L N (M̃). (2.10)

If v : RN → R is measurable with compact support, and t ≥ 0, then let Et be the super-level set {y :
|v(y)| ≥ t}. We define

ṽ(y) := sup{t ≥ 0 : y ∈ Ẽt}.

We call ṽ the starshaped rearrangement of v. It is easy to verify that ṽ is equimeasurable with v, that is, 
the following properties hold:

Ẽt = {y : ṽ(y) ≥ t}, (2.11)

L N (Et) = L N (Ẽt) ∀t ≥ 0. (2.12)

This also implies Cavalieri’s principle: If F ∈ C([0, +∞)) with F (0) = 0 and if F (v) ∈ L1(RN ), then

∫
RN

F (v) dy =
∫
RN

F (ṽ) dy (2.13)

and if F is non-decreasing, then

F̃ (v) = F (ṽ). (2.14)

Note that the mapping

z −→ ṽ(zθ), (z ≥ 0),

is non-increasing for all θ ∈ S N−1.
If v, w ∈ L2(RN ) are functions with compact support, then there holds Hardy–Littlewood’s inequality:

∫
RN

vw dy ≤
∫
RN

ṽw̃ dy. (2.15)

If f : (0, +∞) → R is a measurable function with compact support, then its (equimeasurable) non-increasing 
rearrangement, f̂ : (0, +∞) → [0, +∞), is the monotone non-increasing function such that

L 1{t ∈ [0,+∞) : |f(t)| > c} = L 1{t ∈ [0,+∞) : f̂(t) > c} ∀c ≥ 0,

see [34], Chapter 2. A general Pólya–Szegö principle for non-increasing rearrangement has been given in 
[37], Theorem 2.1. For later reference we will only need a special case:
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Lemma 2.1. Let δ ≥ 0, and let f : (0, +∞) → R be a bounded, locally Lipschitz continuous function with 
bounded support, such that

+∞∫
0

tδ|f ′(t)| dt < +∞.

Then f̂ is locally Lipschitz continuous and

+∞∫
0

tδ|f̂ ′(t)| dt ≤
+∞∫
0

tδ|f ′(t)| dt. (2.16)

3. The functionals Rk,l,N and Qk,l,N

Throughout this section we assume (2.1), i.e.

k + N − 1 > 0 and l + N > 0.

If M is a measurable set with 0 < μl(M) < +∞, we set

Rk,l,N (M) := Pμk
(M)

(μl(M))(k+N−1)/(l+N) . (3.1)

Note that

Rk,l,N (Ω) =

∫
∂Ω

|x|k HN−1(dx)

⎛⎝∫
Ω

|x|l dx

⎞⎠(k+N−1)/(l+N) (3.2)

for every smooth set Ω ⊂ RN .
If u ∈ C1

0 (RN ) \ {0}, we set

Qk,l,N (u) :=

∫
RN

|x|k|∇u| dx

⎛⎝∫
RN

|x|l|u|(l+N)/(k+N−1) dx

⎞⎠(k+N−1)/(l+N) . (3.3)

Finally, we define

Crad
k,l,N := (NωN )(l−k+1)/(l+N) · (l + N)(k+N−1)/(l+N). (3.4)

We study the following isoperimetric problem:

Find the constant Ck,l,N ∈ [0, +∞), such that

Ck,l,N := inf{Rk,l,N (M) : M is measurable with 0 < μl(M) < +∞.} (3.5)
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Moreover, we are interested in conditions on k and l such that

Rk,l,N (M) ≥ Rk,l,N (M�) (3.6)

holds for all measurable sets M with 0 < μl(M) < +∞.
Let us begin with some immediate observations.
If M is a measurable set with finite μl-measure and with finite μk-perimeter, then there exists a sequence 

of smooth sets {Mn} such that limn→∞ μl(MnΔM) = 0 and limn→∞ Pμk
(Mn) = Pμk

(M). This property 
is well-known for Lebesgue measure (see for instance [29], Theorem 1.24) and its proof carries over to the 
weighted case. This implies that we also have

Ck,l,N = inf{Rk,l,N (Ω) : Ω ⊂ RN , Ω smooth}. (3.7)

The functionals Rk,l,N and Qk,l,N have the following homogeneity properties,

Rk,l,N (M) = Rk,l,N (tM), (3.8)

Qk,l,N (u) = Qk,l,N (ut), (3.9)

where t > 0, M is a measurable set with 0 < μl(M) < +∞, u ∈ C1
0 (RN ) \ {0}, tM := {tx : x ∈ M} and 

ut(x) := u(tx), (x ∈ RN ), and there holds

Crad
k,l,N = Rk,l,N (B1). (3.10)

Hence we have that

Ck,l,N ≤ Crad
k,l,N , (3.11)

and (3.6) holds if and only if

Ck,l,N = Crad
k,l,N .

Finally, the classical isoperimetric inequality reads as

R0,0,N (M) ≥ Crad
0,0,N for all measurable sets M with 0 < μ0(M) < +∞, (3.12)

and equality holds only if M is a ball in RN .

Lemma 3.1. Let l > l′ > −N . Then

(μl(M))1/(l+N)

(μl′(M))1/(l
′+N) ≥ ω

1
l+N − 1

l′+N

N · (l + N)−
1

l+N (l′ + N)
1

l′+N (3.13)

for all measurable sets M with 0 < μl(M) < +∞. Equality holds only for balls BR, (R > 0).

Proof. Let M� be the μl-symmetrization of M . Then we obtain, using the Hardy–Littlewood inequality,

μl′(M) =
∫
M

|x|l′ dx =
∫
RN

|x|l′−lχM (x) dμl(x)

≤
∫ (

|x|l′−l
)�

(χM )� (x) dμl(x)

RN
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=
∫
RN

|x|l′−lχM�(x) dμl(x)

=
∫

M�

|x|l′ dx = μl′(M�).

This implies that

(μl(M))1/(l+N)

(μl′(M))1/(l
′+N) ≥ (μl(M�))1/(l+N)

(μl′(M�))1/(l
′+N)

and, by evaluating the right-hand side, (3.13) follows.
Next assume that equality holds in (3.13). Then we must have∫

M

|x|l′−l dμl(x) =
∫
M�

|x|l′−ldμl(x),

that is, ∫
M\M�

|x|l′−l dμl(x) =
∫

M�\M

|x|l′−ldμl(x).

Since l′ − l < 0, this means that μl(MΔM�) = 0. The Lemma is proved. �
Lemma 3.2. Let k, l satisfy (2.1). Assume that l > l′ > −N and Ck,l,N = Crad

k,l,N . Then we also have 
Ck,l′,N = Crad

k,l′,N . Moreover, if Rk,l′,N (M) = Crad
k,l′,N for some measurable set M with 0 < μl′(M) < +∞, 

then M is a ball centered at the origin.

Proof. By our assumptions and Lemma 3.1 we have for every measurable set M with 0 < μl(M) < +∞,

Rk,l′,N (M) = Rk,l,N (M) ·
[

(μl(M))1/(l+N)

(μl′(M))1/(l
′+N)

]k+N−1

≥ Crad
k,l,N ·

[
ω

1
l+N − 1

l′+N

N · (l + N)−
1

l+N (l′ + N)
1

l′+N

]k+N−1

= Crad
k,l′,N ,

with equality only if M is a ball centered at the origin. �
Lemma 3.3. Assume that k ≤ l + 1. Then

Ck,l,N = inf
{
Qk,l,N (u) : u ∈ C1

0 (RN ) \ {0}
}
. (3.14)

Proof. The proof uses classical arguments (see, e.g. [28]). We may restrict ourselves to nonnegative func-
tions u. By (3.5) and the coarea formula we obtain,

∫
RN

|x|k|∇u| dx =
∞∫
0

∫
u=t

|x|k HN−1(dx) dt (3.15)

≥ Ck,l,N

∞∫ ⎛⎝∫ |x|l dx

⎞⎠(k+N−1)/(l+N)

dt.
0 u>t
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Further, Cavalieri’s principle gives

u(x) =
∞∫
0

χ{u>t}(x) dt, (x ∈ RN ). (3.16)

Hence (3.16) and Minkowski’s inequality for integrals (see [42]) lead to

∫
RN

|x|l|u|(l+N)/(k+N−1) dx =
∫
RN

|x|l
∣∣∣∣∣∣
∞∫
0

χ{u>t}(x) dt

∣∣∣∣∣∣
(l+N)/(k+N−1)

dx

≤

⎛⎜⎝ ∞∫
0

⎛⎝ ∫
RN

|x|lχ{u>t}(x) dx

⎞⎠(k+N−1)/(l+N)

dt

⎞⎟⎠
(l+N)/(k+N−1)

=

⎛⎜⎝ ∞∫
0

⎛⎝ ∫
u>t

|x|l dx

⎞⎠(k+N−1)/(l+N)

dt

⎞⎟⎠
(l+N)/(k+N−1)

. (3.17)

Now (3.15) and (3.17) yield

Qk,l,N (u) ≥ Ck,l,N ∀u ∈ C1
0 \ {0}(RN ). (3.18)

To show (3.14), let ε > 0, and choose a smooth set Ω such that

Rk,l,N (Ω) ≤ Ck,l,N + ε. (3.19)

It is well-known that there exists a sequence {un} ⊂ C∞
0 (RN ) \ {0} such that

lim
n→∞

∫
RN

|x|k|∇un| dx =
∫
∂Ω

|x|k HN−1(dx), (3.20)

lim
n→∞

∫
RN

|x|l|un|(l+N)/(k+N−1) dx =
∫
Ω

|x|l dx. (3.21)

To do this, one may choose mollifiers of χΩ as un (see e.g. [43]). Hence, for large enough n we have

Qk,l,N (un) ≤ Ck,l,N + 2ε. (3.22)

Since ε was arbitrary, (3.14) now follows from (3.18) and (3.22). �
Remark 3.1. Lemma 3.3 improves on [2], Corollary 1.1 and 1.2, where the authors showed the inequality

inf
{
Rk,l,N (Ω) : Ω ⊂ RN , Ω smooth

}
≥ inf

{
Qk,l,N (u) : u ∈ C1

0 (RN ) \ {0}
}
.

4. Necessary conditions

Throughout this section we assume that assumptions (2.1) are fulfilled, i.e.

k + N − 1 > 0 and l + N > 0.
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The main result in this section is Theorem 4.1 which highlights the phenomenon of symmetry breaking.
The following result holds true.

Lemma 4.1. A necessary condition for

Ck,l,N > 0 (4.1)

is

l
N − 1
N

≤ k. (4.2)

Proof. Assume that k < l(N − 1)/N , and let te1 = (t, 0, . . . , 0), (t > 2). It is easy to see that there is a 
positive constant D = D(k, l, N) such that

Rk,l,N (B1(te1)) ≤ D
tk

tl(k+N−1)/(l+N) .

Since k − l(k + N − 1)/(l + N) < 0, it follows that

lim
t→∞

Rk,l,N (B1(te1)) = 0. �
Theorem 4.1. A necessary condition for

Ck,l,N = Crad
k,l,N (4.3)

is

l + 1 ≤ k + N − 1
k + N − 1 . (4.4)

Remark 4.1. Theorem 4.1 means that if l+1 > k+ N−1
k+N−1 , then symmetry breaking occurs, that is Ck,l,N <

Crad
k,l,N . Our proof relies on the fact that the second variation of the perimeter for smooth volume-preserving 

perturbations from the ball B1 is non-negative if and only if (4.4) holds. Note that this also follows from a 
general second variation formula with volume and perimeter densities, see [40].

Proof. First we assume N ≥ 2. Let (r, θ) denote N -dimensional spherical coordinates, u ∈ C2(S N−1), 
s ∈ C2(R) with s(0) = 0, and define

U(t) := {x = rθ ∈ RN : 0 ≤ r < 1 + tu(θ) + s(t)}, (t ∈ R).

Note that U(0) = B1. By the Implicit Function Theorem, we may choose s in such a way that∫
U(t)

|x|l dx =
∫
B1

|x|l dx for |t| < t0, (4.5)

for some number t0 > 0. We set s1 := s′(0) and s2 := s′′(0). Since

∫
|x|l dx =

∫
N−1

1+tu(θ)+s(t)∫
ρl+N−1 dρ dθ,
U(t) S 0
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a differentiation of (4.5) leads to

0 =
∫

S N−1

(u + s1) dθ and (4.6)

0 = (l + N − 1)
∫

S N−1

(u + s1)2 dθ + s2

∫
S N−1

dθ. (4.7)

Next we consider the perimeter functional

J(t) :=
∫

∂U(t)

|x|k HN−1(dx) (4.8)

=
∫

S N−1

(1 + tu + s(t))k+N−2
√

(1 + tu + s(t))2 + t2|∇θu|2 dθ,

where ∇θ denotes the gradient on the sphere. Differentiation of (4.8) leads to

J ′(0) = (k + N − 1)
∫

S N−1

(u + s1) dθ, and

J ′′(0) = (k + N − 2)(k + N − 1)
∫

S N−1

(u + s1)2 dθ +

+ (k + N − 1)s2

∫
S N−1

dθ +
∫

S N−1

|∇θu|2 dθ.

By (4.6) and (4.7) this implies

J ′(0) = 0, and (4.9)

J ′′(0) = (k + N − 1)(k − l − 1)
∫

S N−1

(u + s1)2 dθ +
∫

S N−1

|∇θu|2 dθ. (4.10)

Now assume that (4.3) holds. Then we have Rk,l,N (U(t)) ≥ Rk,l,N (B1) for all t with |t| < t0. In view of 
(4.5) this means that J(t) ≥ J(0) for |t| < t0, that is,

J ′′(0) ≥ 0 = J ′(0). (4.11)

The second condition is (4.9), and the first condition implies in view of (4.6) and (4.10),

0 ≤ (k + N − 1)(k − l − 1)
∫

S N−1

v2 dθ +
∫

S N−1

|∇θv|2 dθ (4.12)

∀v ∈ C2(S N−1) with
∫

S N−1

v dθ = 0.

Let V be the first non-trivial eigenfunction of the Laplace–Beltrami operator on the sphere. Then ∫
N−1 |∇θV |2 dθ = (N − 1) 

∫
N−1 V

2 dθ and 
∫

N−1 V dθ = 0. Choosing v = V in (4.12), we obtain (4.4).
S S S
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Next assume that N = 1. We proceed similarly as before. Let s ∈ C2(R) with s(0) = 0 and U(t) :=
(−1 + t, 1 + s(t)), (t ∈ R). Note that U(0) = (−1, 1) = B1. We may choose s in such a way that

μl(U(t)) = μl(B1) for |t| < t0. (4.13)

Setting s1 := s′(0) and s2 := s′′(0), a differentiation of (4.13) yields

s1 = 1 and s2 = −2l. (4.14)

Next, let

J(t) := Pμk
(U(t)) = |1 + s(t)|k + | − 1 + t|k. (4.15)

A differentiation of this gives

J ′(0) = k(−1 + s1) = 0 and J ′′(0) = k(2k − 2 + s2) = 2k(k − 1 − l). (4.16)

As before, we must have J ′′(0) ≥ 0, so that (4.16) implies l + 1 ≤ k. �
5. Main results

This section is devoted to the proof of Theorem 1.1, that is, we obtain sufficient conditions on k, l and 
N such that Ck,l,N = Crad

k,l,N holds, or equivalently,

Rk,l,N (M) ≥ Crad
k,l,N for all measurable sets M with 0 < μl(M) < +∞. (5.1)

Such a proof is contained in various subsections each of which addresses one of the cases of Theorem 1.1.
Throughout this section we again assume (2.1), i.e.

k + N − 1 > 0 and l + N > 0.

5.1. Proof of Theorem 1.1, case (i)

As mentioned in the Introduction, Theorem 1.1 was already shown under assumption (i) in [33]. Below 
we give another simple proof which is based on Gauss’ Divergence Theorem. Note that this tool has been 
applied in similar situations in [35] and [8]. We also discuss equality cases of (1.3).

Theorem 5.1. Let l + 1 ≤ k. Then (4.3) holds. Moreover, if l + 1 < k and

Rk,l,N (M) = Crad
k,l,N for some measurable set M with 0 < μl(M) < +∞, (5.2)

then M = BR for some R > 0.

Proof. We consider two cases.
1. l + 1 = k.
Let Ω be smooth. We choose R > 0 such that Ω� = BR. From Gauss’ Divergence Theorem we have, (ν

denotes the exterior unit normal to ∂Ω),
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∫
Ω

|x|l dx = 1
l + N

∫
Ω

div
(
x|x|l

)
dx (5.3)

= 1
l + N

∫
∂Ω

(x · ν)|x|lHN−1(dx)

≤ 1
l + N

∫
∂Ω

|x|l+1HN−1(dx),

with equality for Ω = BR, and (5.1) follows for smooth sets. Using (3.7), we also obtain (5.1) for measurable 
sets.

2. l + 1 < k.
Using Lemma 3.2 and the result for l + 1 = k we again obtain (5.1), and (5.2) can hold only if M = BR

for some R > 0. �
Corollary 5.1. Condition (4.2), i.e. lN−1

N ≤ k is a necessary and sufficient condition for Ck,l,N > 0.

Proof. The necessity follows from Lemma 4.1, and the sufficiency in the case l + 1 ≤ k follows from 
Theorem 5.1. Finally, assume that k < l + 1. Then (3.5) is equivalent to (3.14), by Lemma 3.3. Now the 
main Theorem of [13] tells us that condition (4.2) is also sufficient for Ck,l,N > 0. �
5.2. Proof of Theorem 1.1, case (ii)

The case when k assumes negative values has been settled in a recent paper, see [20], Theorem 1.3. We 
slightly improve on this result by adding a full treatment of the equality case in (4.3). For the convenience 
of the reader, we include the full proof.

Theorem 5.2. Let N ≥ 2, and let k, l satisfy

l
N − 1
N

≤ k ≤ min{0, l + 1}. (5.4)

Then (4.3) holds. Moreover (5.2) holds only if M = BR for some R > 0.

Proof. Let u ∈ C∞
0 (RN ) \ {0}. We set

y := x|x| k
N−1 , v(y) := u(x) , s := r

k+N−1
N−1 .

Using N -dimensional spherical coordinates, let ∇θ denote the tangential part of the gradient on SN−1. 
Then we obtain ∫

RN

|x|l|u|(l+N)/(k+N−1) dx (5.5)

=
∫

S N−1

∞∫
0

rl+N−1|u|(l+N)/(k+N−1) dr dθ

= N − 1
k + N − 1

∫ ∞∫
s

l+N
k+N−1 (N−1)−1|v|(l+N)/(k+N−1) ds dθ
S N−1 0
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= N − 1
k + N − 1

∫
RN

|y|
l+N

k+N−1 (N−1)−N |v|(l+N)/(k+N−1) dy

= N − 1
k + N − 1

∫
RN

|y|(l(N−1)−kN)/(k+N−1)|v|(l+N)/(k+N−1) dy .

Further we calculate

∫
RN

|x|k|∇xu| dx =
∫

S N−1

∞∫
0

rk+N−1
(
u2
r + |∇θu|2

r2

)1/2

dr dθ (5.6)

=
∫

S N−1

∞∫
0

sN−1

(
v2
s + |∇θv|2

s2

(
N − 1

k + N − 1

)2
)1/2

ds dθ

≥
∫

S N−1

∞∫
0

sN−1
(
v2
s + |∇θv|2

s2

)1/2

ds dθ

=
∫
RN

|∇yv| dy ,

where we have used (5.4). By (5.5) and (5.6) we deduce,

Qk,l,N (u) (5.7)

≥

∫
RN

|∇yv| dy

⎛⎝∫
RN

|y|l′ |v|(l+N)/(k+N−1) dy

⎞⎠(k+N−1)/(l+N)

(
k + N − 1
N − 1

)(k+N−1)/(l+N)

=
(
k + N − 1
N − 1

)(k+N−1)/(l+N)

Q0,l′,N (v) ,

where we have set l′ := l(N−1)−kN
k+N−1 . Note that we have −1 ≤ l′ ≤ 0 by the assumptions (5.4).

Hence we may apply Lemma 3.3 to both sides of (5.7). This yields

Ck,l,N ≥
(
k + N − 1
N − 1

)(k+N−1)/(l+N)

C0,l′,N . (5.8)

Furthermore, Lemma 3.2 tells us that

C0,l′,N = Crad
0,l′,N . (5.9)

Since also (
k + N − 1
N − 1

)(k+N−1)/(l+N)

Crad
0,l′,N = Crad

k,l,N .

From this, (5.8) and (5.9), we deduce that Ck,l,N ≥ Crad
k,l,N . Since Ck,l,N ≤ Crad

k,l,N by definition, (4.3) follows.
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Next assume that (5.2) holds. If l(N − 1)/N < k, then Lemma 3.2 tells us that we must have M = BR

for some R > 0. Hence it remains to consider the case

l
N − 1
N

= k < 0.

Then

l′ = l(N − 1) − kN

k + N − 1 = 0.

Setting k1 := l(N − 1)/N and

M̂ := {y = x|x| l
N : x ∈ M},

(5.7), the classical isoperimetric inequality (3.12) and a limit argument analogous to the proof of Lemma 3.3
leads to

Crad
k1,l,N = Rk1,l,N (M) ≥

(
l + N

N

)(N−1)/N

R0,0,N (M̂)

≥
(
l + N

N

)(N−1)/N

Crad
0,0,N . (5.10)

Since

Crad
k1,l,N =

(
l + N

N

)(N−1)/N

Crad
0,0,N ,

(5.10) implies that R0,0,N (M̂) = Crad
0,0,N . By (3.12) it follows that M̂ = BR̂(y0) for some R̂ > 0 and y0 ∈ RN . 

Using again (5.10) we find

Rk1,l,N (M) =
(
l + N

N

)(N−1)/N

R0,0,N (BR̂(y0)).

Since

(
l + N

N

)(N−1)/N

μl(M) = μ0(BR̂(y0)),

this implies

Pμk1
(M) = Pμ0(BR̂(y0)).

It is easy to see that this is possible only when y0 = 0. �
Remark 5.1. (a) A well-known special case of Theorem 5.2 is k = 0 ≥ l > −N , see for instance [38], p. 11.

(b) The idea to use spherical coordinates, and in particular the inequality (5.6) in our last proof, appeared 
already in some work of T. Horiuchi, see [31] and [32].
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5.3. Proof of Theorem 1.1, case (iii)

Now we treat the case when k assumes non-negative values. Throughout this subsection we assume N ≥ 2
and k ≤ l + 1. The main result is Theorem 5.3. Its proof is long and requires some auxiliary results. But 
the crucial idea is an interpolation argument that occurs in the proof of the following Lemma 5.1, formula 
(5.13).

Lemma 5.1. Assume l(N − 1)/N ≤ k and k ≥ 0. Let u ∈ C1
0 (RN ) \ {0}, u ≥ 0, and define y, z and v by

y := x|x| k
N−1 , z := |y| and v(y) := u(x), (x ∈ RN ). (5.11)

Then for every A ∈
[
0, (N−1)2

(k+N−1)2

]
,

Qk,l,N (u) ≥
(
k + N − 1
N − 1

) k+N−1
l+N

·

⎛⎝ ∫
RN

|∇yv| dy

⎞⎠A

·

⎛⎝ ∫
RN

|vz| dy

⎞⎠1−A

⎛⎝ ∫
RN

|y|
l(N−1)−kN

k+N−1 v
l+N

k+N−1 dy

⎞⎠
k+N−1

l+N

. (5.12)

Proof. We calculate as in the proof of Theorem 5.2,

∫
RN

|x|k|∇xu| dx =
∫

S N−1

+∞∫
0

zN−1

√
v2
z + |∇θv|2

z2
(N − 1)2

(k + N − 1)2 dz dθ.

Since the mapping

t −→ log

⎛⎝ ∫
S N−1

+∞∫
0

zN−1

√
v2
z + t

|∇θv|2
z2 dz dθ

⎞⎠
is concave, we deduce that for every A ∈

[
0, (N−1)2

(k+N−1)2

]
,

∫
RN

|x|k|∇xu| dx (5.13)

≥

⎛⎝ ∫
S N−1

+∞∫
0

zN−1

√
v2
z + |∇θv|2

z2 dz dθ

⎞⎠A

·

⎛⎝ ∫
S N−1

+∞∫
0

zN−1|vz| dz dθ

⎞⎠1−A

=

⎛⎝∫
RN

|∇yv| dy

⎞⎠A

·

⎛⎝∫
RN

|vz| dy

⎞⎠1−A

.

Finally, we have ∫
RN

|x|lu
l+N

k+N−1 dx = N − 1
k + N − 1

∫
RN

|y|
l(N−1)−kN

k+N−1 v
l+N

k+N−1 dy. (5.14)

Now (5.12) follows from (5.13) and (5.14). �
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Next we want to estimate the right-hand-side of (5.12) from below. We will need a few more properties 
of the starshaped rearrangement.

Lemma 5.2. Assume l(N − 1)/N ≤ k. Then we have for any function v ∈ C1
0 (RN ) \ {0} with v ≥ 0,∫

RN

v
N

N−1 dy =
∫
RN

ṽ
N

N−1 dy (5.15)

∫
RN

|y|
l(N−1)−kN

k+N−1 v
l+N

k+N−1 dy ≤
∫
RN

|y|
l(N−1)−kN

k+N−1 ṽ
l+N

k+N−1 dy, (5.16)

y · ∇ṽ

|y| ≡ ∂ṽ

∂z
∈ L1(RN ) and (5.17)∫

RN

∣∣∣∣∂v∂z
∣∣∣∣ dy ≥

∫
RN

∣∣∣∣∂ṽ∂z
∣∣∣∣ dy. (5.18)

Proof. Equality (5.15) follows from (2.13). Now let us prove (5.16). Set

w(y) := |y|
l(N−1)−kN

l+N .

Since l(N − 1) − kN ≤ 0, we have w = w̃. Hence (5.16) follows from (2.15) and (2.14).
Next let ζ := zN and define V and V̂ by V (ζ, θ) := v(zθ), and V̂ (ζ, θ) := ṽ(zθ). Observe that for each 

θ ∈ S N−1, V̂ (·, θ) is the equimeasurable non-increasing rearrangement of V (·, θ). Further we have

∂v

∂z
= Nζ

N−1
N

∂V

∂ζ
and ∂ṽ

∂z
= Nζ

N−1
N

∂V̂

∂ζ
.

Since ∂v∂z ∈ L∞(RN ), Lemma 2.1 tells us that for every θ ∈ S N−1,

+∞∫
0

zN−1
∣∣∣∣∂v∂z (zθ)

∣∣∣∣ dz =
+∞∫
0

ζ
N−1
N

∣∣∣∣∂V∂ζ (ζ, θ)
∣∣∣∣ dζ

≥
+∞∫
0

ζ
N−1
N

∣∣∣∣∣∂V̂∂ζ (ζ, θ)

∣∣∣∣∣ dζ
=

+∞∫
0

zN−1
∣∣∣∣∂ṽ∂z (zθ)

∣∣∣∣ dz.
Integrating this over S N−1, we obtain (5.18). �

A final ingredient is

Lemma 5.3. Assume that l(N − 1)/N ≤ k, and let M be a bounded starshaped set. Then

⎛⎝∫ |y|
l(N−1)−kN

k+N−1 dy

⎞⎠
k+N−1

l+N

(5.19)

M
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≤ d1

⎛⎝∫
M

dy

⎞⎠
(N−1)(l−k+1)

l+N

·

⎛⎝∫
M

|y|−1 dy

⎞⎠
kN−l(N−1)

l+N

, where

d1 =
(
k + N − 1
l + N

) k+N−1
l+N

·
(

N

N − 1

) (N−1)(l−k+1)
l+N

. (5.20)

Moreover, if k < l + 1 and l(N − 1)/N < k, then equality in (5.19) holds only if M = BR for some R > 0.

Proof. Since M is starshaped, there is a bounded measurable function m : S N−1 → [0, +∞), such that

M = {zθ : 0 ≤ z < m(θ), θ ∈ S N−1}. (5.21)

Using Hölder’s inequality we obtain∫
M

|y|
l(N−1)−kN

k+N−1 dy (5.22)

= k + N − 1
(l + N)(N − 1)

∫
S N−1

m(θ)
(l+N)(N−1)

k+N−1 dθ

= k + N − 1
(l + N)(N − 1)

∫
S N−1

m(θ)
kN−l(N−1)

k+N−1 (N−1)m(θ)
(N−1)(l−k+1)

k+N−1 N dθ

≤ k + N − 1
(l + N)(N − 1)

⎛⎝ ∫
S N−1

m(θ)N dθ

⎞⎠
(N−1)(l−k+1)

k+N−1

·

⎛⎝ ∫
S N−1

m(θ)N−1 dθ

⎞⎠
kN−l(N−1)

k+N−1

= k + N − 1
(l + N)(N − 1)

⎛⎝N ∫
M

dy

⎞⎠
(N−1)(l−k+1)

k+N−1

·

⎛⎝(N − 1)
∫
M

|y|−1 dy

⎞⎠
kN−l(N−1)

k+N−1

,

and (5.19) follows. If k < l+1 and l(N−1)/N < k, then (5.22) holds with equality only if m(θ) = const . �
Now we are ready to prove our main result.

Theorem 5.3. Assume N ≥ 3, 0 ≤ k ≤ l + 1 and

l ≤ (k + N − 1)3

(k + N − 1)2 − (N−1)2
N

−N. (5.23)

Then (4.3) holds. Furthermore, if inequality (5.23) is strict, or if k > 0, then (5.2) holds only if M = BR

for some R > 0.

Proof. First observe that the conditions k ≥ 0 and (5.23) also imply l(N−1)/N ≤ k. Let u ∈ C∞
0 (RN ) \{0}, 

u ≥ 0, and let v be given by (5.11). In view of (5.23), we may choose

A = N(l − k + 1)
l + N

to obtain
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Qk,l,N (u) ≥
(
k + N − 1
N − 1

) k+N−1
l+N

·

⎛⎝ ∫
RN

|∇yv| dy

⎞⎠
N(l−k+1)

l+N

·

⎛⎝ ∫
RN

|vz| dy

⎞⎠
kN−l(N−1)

l+N

⎛⎝ ∫
RN

|y|
l(N−1)−kN

k+N−1 v
l+N

k+N−1 dy

⎞⎠
k+N−1

l+N

. (5.24)

Further, (5.18) and Hardy’s inequality yield

∫
RN

|vz| dy ≥
∫
RN

|ṽz| dy ≥ (N − 1)
∫
RN

ṽ

|y| dy , (5.25)

where ṽ denote the starshaped rearrangement of v. Together with (5.24) and (5.16) this leads to

Qk,l,N (u) ≥ (N − 1)
kN−l(N−1)

l+N

(
k + N − 1
N − 1

) k+N−1
l+N

· (5.26)

·

⎛⎝ ∫
RN

|∇yv| dy

⎞⎠
N(l−k+1)

l+N

·

⎛⎝ ∫
RN

ṽ

|y| dy

⎞⎠
kN−l(N−1)

l+N

⎛⎝ ∫
RN

|y|
l(N−1)−kN

k+N−1 ṽ
l+N

k+N−1 dy

⎞⎠
k+N−1

l+N

.

Now let M be a bounded measurable set. Then combining (3.20), (3.21) and the argument leading to (3.7)
we deduce that there exists a sequence of non-negative functions {un} ⊂ C1

0 (RN ) such that

lim
n→∞

∫
RN

|x|k|∇un| dx = Pμk
(M) (5.27)

and

un −→ χM in Lp(RN ) for every p ≥ 1. (5.28)

We define M ′ := {y = x|x| k
N−1 : x ∈ M} and vn(y) := un(x), (y = x|x| k

N−1 , x ∈ RN ). Let ṽn and M̃ ′ be 
the starshaped rearrangements of vn and M ′ respectively. Then (5.27) and (5.28) also imply

lim
n→∞

∫
RN

|∇yvn| dy = Pμ0(M ′), and (5.29)

ṽn −→ χ
M̃ ′ in Lp(RN ) for every p ≥ 1. (5.30)

Choosing u = un in (5.26) and passing to the limit n → ∞, we obtain, using (5.27), (5.28), (5.29), (5.30)
and the isoperimetric inequality (3.12),

Rk,l,N (M) ≥ (N − 1)
kN−l(N−1)

l+N

(
k + N − 1

) k+N−1
l+N

· (5.31)

N − 1
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·

(Pμ0(M ′))
N(l−k+1)

l+N ·

⎛⎜⎝∫
M̃ ′

dy

|y|

⎞⎟⎠
kN−l(N−1)

l+N

⎛⎜⎝∫
M̃ ′

|y|
l(N−1)−kN

k+N−1 dy

⎞⎟⎠
k+N−1

l+N

≥ (N − 1)
kN−l(N−1)

l+N

(
Nω

1/N
N

)N(l−k+1)
l+N

(
k + N − 1
N − 1

) k+N−1
l+N

·

·

(μ0(M ′))
(N−1)(l−k+1)

l+N ·

⎛⎜⎝∫
M̃ ′

dy

|y|

⎞⎟⎠
kN−l(N−1)

l+N

⎛⎜⎝∫
M̃ ′

|y|
l(N−1)−kN

k+N−1 dy

⎞⎟⎠
k+N−1

l+N

.

In view of (5.19) and since μ0(M ′) = μ0(M̃ ′) we finally get from this

Rk,l,N (M) ≥ (N − 1)
kN−l(N−1)

l+N

(
Nω

1/N
N

)N(l−k+1)
l+N

(
k + N − 1
N − 1

) k+N−1
l+N

· 1
d1

(5.32)

= (NωN )
l−k+1
l+N · (l + N)

k+N−1
l+N = Crad

k,l,N ,

and (4.3) follows by (3.7).
Now assume that (5.2) holds. If inequality (5.23) is strict, then Lemma 3.2 tells us that we must have 

M = BR for some R > 0. It remains to consider the case that k > 0 and

l = (k + N − 1)3

(k + N − 1)2 − (N−1)2
N

−N.

Then we also have l(N − 1)/N < k and k < l + 1. Now observe that all inequalities in (5.31) and (5.32)
become equalities. First, combining (3.12) and (5.31), we obtain that M ′ = BR(x0) for some R > 0 and 
x0 ∈ RN . Further, (5.19) together with (5.32) imply that M̃ ′ is a ball centered at the origin. But this is 
possible only if x0 = 0. �
Remark 5.2. Theorem 5.3 is valid for N ≥ 2. Moreover, when N ≥ 3, then (5.23) covers the important range

l = 0 ≤ k ≤ 1.

However, we emphasize that this is not true in the case N = 2 (see however Lemma 5.4 in the next 
subsection).

5.4. Proof of Theorem 1.1, case (iv)

Next we improve on the subsections 5.2 and 5.3 in the two-dimensional case. We will make use of the 
following result of G. Csató [22], that has been obtained by using conformal mappings.

Lemma 5.4. Let N = 2, l = 0 and 0 ≤ k ≤ 1. Then (4.3) holds.
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The following result holds

Corollary 5.2. Let N = 2, k ≤ l + 1,

l

2 ≤ k and (5.33)

l ≤ 0. (5.34)

Then (4.3) holds. Furthermore, if l
2 < k, then equality in (5.1) holds only if M = BR for some R > 0.

Proof. If k ≤ 0, then (4.3) follows from Theorem 5.2. If k ≥ 0, then (4.3) follows from Lemma 5.4 together 
with Lemma 3.2.

Finally, assume that (5.2) holds and that l
2 < k. Then the above result for l

2 = k and Lemma 3.2 shows 
that M = BR for some R > 0. �
Theorem 5.4. Let N = 2, k ≤ l + 1,

k ≥ 1
3 and (5.35)

l ≤ (k + 1)3

(k + 1)2 − 16
27

− 2. (5.36)

Then (4.3) holds. Furthermore, if inequality (5.36) is strict, then (5.2) holds only if M = BR for some 
R > 0.

Proof. We proceed similarly as in the proof of Theorem 5.3. Below we mainly point out the differences, and 
we leave it to the reader to fill in the details.

Note that our assumptions imply

l

2 < k and (5.37)

3k − 2l − 1 ≥ 0. (5.38)

If u ∈ C∞
0 (R2) \ {0}, u ≥ 0, we define v by

v(y) := u(x), where y := x|x| 3k−1
4 , and z := |y|.

Then we show, using an interpolation argument as in the proof of Lemma 5.1, that for every A ∈
[
0, 16

9(k+1)2

]
,

Qk,l,2(u) (5.39)

≥
(

3(k + 1)
4

) k+1
l+2

·

⎛⎝∫
R2

|y| 13 |∇yv| dy

⎞⎠A

·

⎛⎝∫
R2

|y| 13 |vz| dy

⎞⎠1−A

⎛⎝∫
R2

|y|
2(2l+1−3k)

3(k+1) v
l+2
k+1 dy

⎞⎠
k+1
l+2

.

Let ṽ denote the starshaped rearrangement of v. Analogously as in the proof of Lemma 5.2, the properties 
of the rearrangement, (5.38) and Lemma 2.1 lead to
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∫
R2

v2 dy =
∫
R2

ṽ2 dy, (5.40)

∫
R2

|y|
2(2l+1−3k)

3(k+1) v
l+2
k+1 dy ≤

∫
R2

|y|
2(2l+1−3k)

3(k+1) ṽ
l+2
k+1 dy, (5.41)

y · ∇ṽ

|y| 23
≡ |y| 13 ∂ṽ

∂z
∈ L1(R2), and (5.42)

∫
R2

|y| 13
∣∣∣∣∂v∂z
∣∣∣∣ dy ≥

∫
R2

|y| 13
∣∣∣∣∂ṽ∂z
∣∣∣∣ dy. (5.43)

Further, we have by Hardy’s inequality

∫
R2

|y| 13 |ṽz| dy ≥ 4
3

∫
R2

|y|− 2
3 ṽ dy. (5.44)

Finally, we show, similarly as in the proof of Lemma 5.3, that for every bounded measurable and starshaped 
set in R2,

∫
M

|y|
4l−6k+2

3k+3 dy ≤ d2

⎛⎝∫
M

dy

⎞⎠
2(l+1−k)

k+1

·

⎛⎝∫
M

|y|− 2
3 dy

⎞⎠
3k−2l−1

k+1

, where (5.45)

d2 =
(

3
2

) 2(l+1−k)
k+1

· k + 1
l + 2 . (5.46)

By (5.36), we may choose

A = 3(l + 1 − k)
l + 2

in (5.39). Combining this with (5.41), (5.43) and (5.44), we obtain

Qk,l,2(u) (5.47)

≥
(

3(k + 1)
4

) k+1
l+2

·
(

4
3

) 3k−2l−1
l+2

·

⎛⎝∫
R2

|y| 13 |∇yv| dy

⎞⎠
3(l+1−k)

l+2

·

⎛⎝∫
R2

|y|− 2
3 ṽ dy

⎞⎠
3k−2l−1

l+2

⎛⎝∫
R2

|y|
2(2l+1−3k)

3(k+1) ṽ
l+2
k+1 dy

⎞⎠
k+1
l+2

.

Now let M be a bounded measurable set, and set M ′ := {y = x|x| 3k−1
4 : x ∈ M}. Then, proceeding as 

the proof of Theorem 5.3 and using the isoperimetric inequality

R 1
3 ,0,2(M) ≥ Crad

1
3 ,0,2

, (5.48)

which follows from Corollary 5.2, we obtain from (5.47),
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Rk,l,2(M) (5.49)

≥
(

3(k + 1)
4

) k+1
l+2

·
(

4
3

) 3k−2l−1
l+2

·

(
Pμ 1

3
(M ′)

) 3(l+1−k)
l+2 ·

⎛⎜⎝∫
M̃ ′

|y|− 2
3 dy

⎞⎟⎠
3k−2l−1

l+2

⎛⎜⎝∫
M̃ ′

|y|
2(2l+1−3k)

3(k+1) dy

⎞⎟⎠
k+1
l+2

≥
(

3(k + 1)
4

) k+1
l+2

·
(

4
3

) 3k−2l−1
l+2

·

(
Crad

1
3 ,0,2

μ0(M ′)
) 3(l+1−k)

l+2 ·

⎛⎜⎝∫
M̃ ′

|y|− 2
3 dy

⎞⎟⎠
3k−2l−1

l+2

⎛⎜⎝∫
M̃ ′

|y|
2(2l+1−3k)

3(k+1) dy

⎞⎟⎠
k+1
l+2

.

In view of (5.45) and since μ0(M ′) = μ0(M̃ ′), we finally obtain

Rk,l,2 ≥
(
Crad

1
3 ,0,2

) 3(l+1−k)
l+2 ·

(
3(k + 1)

4d2

) k+1
l+2

·
(

4
3

) 3k−2l−1
l+2

= Crad
k,l,2 , (5.50)

and (4.3) follows by (3.7).
Now assume that (5.2) holds. If inequality (5.36) is strict, then we must have M = BR for some R > 0, 

by Lemma 3.2. The Theorem is proved. �
Remark 5.3. The assumptions of Corollary 5.2 and Theorem 5.4 cover the range l = 0 ≤ k ≤ 1 for N = 2.

5.5. Concluding remarks

Let us comment on the results of Section 5.
1. Let k > 1 −N and N ≥ 2. We define a number l∗ = l∗(k, N) by

l∗ := sup{l : l > −N, Ck,l,N = Crad
k,l,N}. (5.51)

By Lemma 3.2 we have that Ck,l,N = Crad
k,l,N whenever l ∈ (−N, l∗]. Further, Theorems 5.1, 5.2 and 

Corollary 5.1 tell us that

l∗ = k
N

N − 1 if k ≤ 0. (5.52)

Next, let k > 0 and define numbers l∗ = l∗(k, N) and l1 = l1(k, N) by (1.5), (1.1) and (1.2), respectively. 
By Theorem 4.1 it follows that

l∗ ≤ l∗. (5.53)

Further, Theorem 5.3, Lemma 5.4 and Theorem 5.4 imply that

l1 ≤ l∗. (5.54)
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Note also that the (weaker) inequality

l1 ≤ l∗ (5.55)

already follows from (1.5), (1.1) and (1.2).

Conjecture 5.1. There holds

l∗(k,N) = l∗(k,N) when k ≥ 0. (5.56)

Conjecture 5.1 can be rephrased by saying that if 0 ≤ k ≤ l + 1, then balls centered at the origin are 
isoperimetric if they are stable, that is, if

l ≤ k − 1 + N − 1
k + N − 1 . (5.57)

In particular, equality (5.56) has already been conjectured in the case N = 2 in [25], Conjecture 4.22, 
part (1).

2. Related to Conjecture 5.1 is the so-called Log-Convex Density Theorem, which was conjectured in [4], 
and proved by G.R. Chambers in [19]. The Theorem says that in RN with radial log-convex density f(r), 
equal for perimeter and volume, balls about the origin are isoperimetric. Note that log-convexity of f is 
necessary because it is equivalent to the stability of balls around the origin.

A more general conjecture has been stated [40]: With two different radial densities for perimeter and 
volume, balls about the origin are isoperimetric if stable, provided the densities satisfy some smoothness 
conditions.

3. There are more comfortable ways to obtain isoperimetric results in the two-dimensional case. This is 
due to the availability of conformal mappings, see [22,25]. For instance, Proposition 2.3 of [25] establishes an 
equivalence between various sectors in the complex plane with differing perimeter and area densities which 
are powers of the distance to the origin.

4. The approach used in the proof of Theorem 5.2 also allows to obtain a lower bound for the isoperimetric 
constant Ck,l,N for all positive values of k. Such a bound is useful when relation (4.3) does not hold. In view 
of Theorem 4.1 this is the case when l > l∗(k, N), or equivalently, if

l > k − 1 + N − 1
k + N − 1 . (5.58)

Proposition 5.1. Let N ≥ 2, and assume k ≤ l + 1, k > 0 and l(N − 1)/N ≤ k. Then

Ck,l,N ≥
(

N − 1
k + N − 1

) l+1−k
l+N

Crad
0,l′,N , (5.59)

where l′ := l(N−1)−kN
k+N−1 .

Remark 5.4. Similar estimates for the best constant Ck,l,N have been obtained in [20], Proposition 1.1, 
part 2, but with a different approach.

Proof of Proposition 5.1. We proceed as in the proof of Theorem 5.2 until inequality (5.6). Then, since 
N−1

k+N−1 ≤ 1, we may replace (5.6) by the inequality∫
|x|k|∇xu| dx ≥ N − 1

k + N − 1

∫
|∇yv| dy. (5.60)
RN RN
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Continuing as before, we obtain

Qk,l,N (u) ≥
(

N − 1
k + N − 1

) l+1−k
l+N

Q0,l′,N (v). (5.61)

Finally, observing that l′ = l(N−1)−kN
k+N−1 ∈ [−1, 0], (5.61) yields (5.59). �

6. The case N = 1

The next result gives a complete solution to the isoperimetric problem in the one-dimensional case.

Theorem 6.1. Let N = 1, k > 0 and l > −1.

(i) If k ≥ l + 1, then (4.3) holds. Moreover, if (5.2) holds and if k > l + 1, then M = (−R, R) for some 
R > 0.

(ii) If k < l + 1, then

Rk,l,1(M) ≥ Rk,l,1((0, R)) = (l + 1)k/(l+1) (6.1)

for all measurable sets M with 0 < μl(M) < +∞ and for all R > 0.

Proof. (i) The result follows from Theorem 5.1.
(ii) It is sufficient to prove the assertion for smooth sets, that is, for unions of finitely many bounded 

open intervals. For any smooth set Ω we set

U := {y = |x|lx : x ∈ Ω}.

Then an elementary calculation shows that

Rk,l,1(Ω) = (l + 1)k
′Rk′,0,1(U), (6.2)

where k′ = k
l+1 ∈ (0, 1). It remains to show that

Rk′,0,1(U) ≥ Rk′,0,1((0, 1)) for all smooth sets U ⊂ R. (6.3)

Let y1 := inf U and y2 := supU . Then |y1|k
′ + |y2|k

′ = Pμk′ ((y1, y2)) ≤ Pμk′ (U) and 
∫
U

dy ≤
∫ y2
y1

dy. In 
other words, we have

Rk′,0,1(U) ≥ Rk′,0,1((y1, y2)).

It is therefore sufficient to consider open intervals U . Thus, let U = (y1, y2), (y1 < y2). Setting c := y2 − y1, 
we define

U(t) := (−c/2 + t, c/2 + t), (t ∈ R).

Then we have 
∫
U(t) dy = c and

∫
|y|k′

H0(dy) = | − c/2 + t|k/(l+1) + |c/2 + t|k/(l+1) =: f(t), (t ∈ R).

∂U(t)
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Note that f is an even function. Let t ∈ [−c/2, c/2]. Then f(t) = (c/2 − t)k/(l+1) + (t + c/2)k/(l+1), which 
is a concave function. Hence

inf{f(t) : t ∈ [−c/2, c/2]} = f(−c/2) = f(c/2).

Since also f ′(t) > 0 for t > c/2, this implies that

inf{f(t) : t ∈ R} = f(−c/2) = f(c/2),

that is,

Rk′,0,1((y1, y2)) ≥ Rk′,0,1((0, c)),

and the assertion follows. �
7. The case l + N < 0

In this section we treat our functionals Rk,l,N and Qk,l,N for a different range of the parameters k and l. 
Instead of (2.1) we assume

k + N − 1 < 0 and l + N < 0. (7.1)

We state our result only for smooth sets. Extensions to measurable sets and a discussion of the equality 
case in the isoperimetric inequalities follows the lines of the proofs in Section 4, and they are left to the 
reader.

Theorem 7.1. Let N ∈ N, k, l ∈ R and l + N < 0. Further, assume that one of the following conditions 
holds:

(j) N ≥ 1 and l + 1 ≥ k;
(jj) N ≥ 2, l + 1 ≤ k, k ≤ lN−1

N and k + 2N − 2 ≥ 0;
(jjj) N ≥ 3, l + 1 ≤ k ≤ 2 − 2N and

l ≥ (k + N − 1)3

(k + N − 1)2 − (N−1)2
N

−N ;

(jv) N = 2, l + 1 ≤ k, l
2 ≤ k and either

−2 ≤ k ≤ −7
3 or

−7
3 ≤ k and l ≥ (k + 1)3

(k + 1)2 − 16
27

− 2.

Then

∫
|x|k HN−1(dx) ≥ Crad

k,l,N

⎛⎝∫ |x|l dx

⎞⎠(k+N−1)/(l+N)

, (7.2)

∂Ω Ω
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for every open set Ω ⊂ RN with smooth boundary that does not contain a neighborhood of the origin, where

Crad
k,l,N := (NωN )(l−k+1)/(l+N) · |l + N |(k+N−1)/(l+N). (7.3)

Equality in (7.2) holds for all sets Ω = RN \BR, (R > 0).

Remark 7.1. Theorem 7.1 has been known in some particular situations:

(a) N = 2, k = l < −2, see [16], Proposition 4.3;
(b) N ∈ N, k = l < −N , see [25], Proposition 7.5;
(c) case (jj), see [20], Theorem 1.3, part (3).

Proof of Theorem 7.1. Let u ∈ C∞
0 (RN ) \ {0}, with u �≡ 0 in RN . We set

y := x|x|−2 , v(y) := u(x) .

Observe that v vanishes in a neighborhood of the origin. Then a short computation shows that∫
RN

|x|l|u|(l+N)/(k+N−1) dx =
∫
RN

|y|−l−2N |v|(l+N)/(k+N−1) dy and (7.4)

∫
RN

|x|k|∇xu| dx =
∫
RN

|y|−k−2N+2|∇yv| dy. (7.5)

This implies that

Qk,l,N (u) = Qk̃,l̃,N (v), (7.6)

where k̃ := −k − 2N + 2 and l̃ := −l − 2N .

(7.6) also means that for every open set Ω with smooth boundary that does not contain a neighborhood of 
the origin,

Rk,l,N (Ω) = Rk̃,l̃,N (Ω̃), where Ω̃ := {y = x
|x|2 : x ∈ Ω}. (7.7)

Now the conclusion follows from Theorem 1.1. �
8. Applications

In this section we provide some applications of our results.

8.1. Pólya–Szegö principle

First we obtain a Pólya–Szegö principle related to our isoperimetric inequality (4.3) (cf. [44]) Assume 
that the numbers l and k satisfy one of the conditions (i)–(iv) of Theorem 1.1. Then (1.3) implies∫

∂Ω

|x|kHN−1(dx) ≥
∫

∂Ω�

|x|kHN−1(dx) (8.1)

for every smooth set Ω, where Ω� is the μl-symmetrization of Ω. We will use (8.1) to prove the following



308 A. Alvino et al. / J. Math. Anal. Appl. 451 (2017) 280–318
Theorem 8.1 (Pólya–Szegö principle). Let the numbers k, l and N satisfy one of the conditions (i)–(iv) of 
Theorem 1.1. Further, let p ∈ [1, +∞) and m := pk + (1 − p)l. Then there holds

∫
RN

|∇u|p |x|pk+(1−p)l
dx ≥

∫
RN

|∇u�|p |x|pk+(1−p)l
dx ∀u ∈ W 1,p

0 (RN , dμm), (8.2)

where u� denotes the μl-symmetrization of u.

Proof. It is sufficient to consider the case that u is non-negative. Further, by an approximation argument 
we may assume that u ∈ C∞

0 (RN ) \ {0}. Let

I :=
∫
RN

|∇u|p|x|pk+(1−p)l dx and

I� :=
∫
RN

|∇u�|p|x|pk+(1−p)l dx.

The coarea formula yields

I =
∞∫
0

∫
u=t

|∇u|p−1|x|pk+(1−p)l HN−1(dx) dt and (8.3)

I� =
∞∫
0

∫
u�=t

|∇u�|p−1|x|pk+(1−p)l HN−1(dx) dt. (8.4)

Further, Hölder’s inequality gives

∫
u=t

|x|k HN−1(dx) ≤

⎛⎝ ∫
u=t

|x|kp+l(1−p)|∇u|p−1 HN−1(dx)

⎞⎠ 1
p

·

⎛⎝ ∫
u=t

|x|l
|∇u| HN−1(dx)

⎞⎠
p−1
p

, (8.5)

for a.e. t ∈ [0, +∞). Hence (8.3) together with (8.5) tells us that

I ≥
∞∫
0

⎛⎝ ∫
u=t

|x|k HN−1(dx)

⎞⎠p

·

⎛⎝ ∫
u=t

|x|l
|∇u| HN−1(dx)

⎞⎠1−p

dt. (8.6)

Since u� is a radial function, we obtain in an analogous manner,

I� =
∞∫
0

⎛⎝ ∫
u�=t

|x|k HN−1(dx)

⎞⎠p

·

⎛⎝ ∫
u�=t

|x|l
|∇u�| HN−1(dx)

⎞⎠1−p

dt. (8.7)

Observing that

∫
|x|l dx =

∫
|x|l dx ∀t ∈ [0,+∞), (8.8)
u>t u�>t
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Fleming–Rishel’s formula yields∫
u=t

|x|l
|∇u| HN−1(dx) =

∫
u�=t

|x|l
|∇u�| HN−1(dx) (8.9)

for a.e. t ∈ [0, +∞). Hence (8.9) and (8.1) give

∞∫
0

⎛⎝ ∫
u=t

|x|k HN−1(dx)

⎞⎠p

·

⎛⎝ ∫
u=t

|x|l
|∇u| HN−1(dx)

⎞⎠1−p

dt

≥
∞∫
0

⎛⎝ ∫
u�=t

|x|k HN−1(dx)

⎞⎠p

·

⎛⎝ ∫
u�=t

|x|l
|∇u�| HN−1(dx)

⎞⎠1−p

dt.

Now (8.2) follows from this, (8.6) and (8.7). �
An important particular case of Theorem 8.1 is

Corollary 8.1. Let p ∈ [1, +∞), a ≥ 0, u ∈ W 1,p
0 (RN , dμap), and let u� be the Schwarz symmetrization 

(= μ0-symmetrization) of u. Then∫
RN

|∇u|p |x|ap dx ≥
∫
RN

|∇u�|p |x|ap dx. (8.10)

Proof. We choose k := a and l := 0. If a ∈ [0, 1] then k, l satisfy either one of the conditions (iii) or (iv), 
and if a ≥ 1, then k, l satisfy condition (i) of Theorem 1.1. Hence (8.10) follows from Theorem 8.1. �
8.2. Caffarelli–Kohn–Nirenberg inequalities

Next we will use Theorem 8.1 to obtain best constants in some Caffarelli–Kohn–Nirenberg inequalities.
Let p, q, a, b be real numbers such that

1 ≤ p ≤ q

{
≤ Np

N−p if p < N

< +∞ if p ≥ N
, (8.11)

a > 1 − N

p
, and

b = b(a, p, q,N) = N

(
1
p
− 1

q

)
+ a− 1.

We define

p∗ :=
{

Np
N−p if p < N

+∞ if p ≥ N
, (8.12)

Ea,p,q,N (v) :=

∫
RN

|x|ap|∇v|p dx

⎛⎝ ∫ |x|bq|v|q dx

⎞⎠p/q
, v ∈ C∞

0 (RN ) \ {0}, (8.13)
RN
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Sa,p,q,N := inf{Ea,p,q,N (v) : v ∈ C∞
0 (RN ) \ {0}}, and (8.14)

Srad
a,p,q,N := inf{Ea,p,q,N (v) : v ∈ C∞

0 (RN ) \ {0}, v radial }. (8.15)

Note that with this new notation we have

Ek,1, l+N
k+N−1 ,N

(v) = Qk,l,N (v) ∀v ∈ C∞
0 (RN ) \ {0}, (8.16)

Sk,1, l+N
k+N−1 ,N

(v) = Ck,l,N and (8.17)

Srad
k,1, l+N

k+N−1 ,N
= Crad

k,l,N . (8.18)

It has been proved in [13], that

Sa,p,q,N > 0. (8.19)

Further, it is known that the functional Ea,p,q,N is well-defined for functions in W 1,p
0 (RN , dμap) and that 

C∞
0 (RN ) is dense in W 1,p

0 (RN , dμap). Moreover, Sa,p,q,N is attained for some u ∈ W 1,p
0 (RN , dμap) if 1 <

p < q.
We are interested in the range of values a (depending on p, q and N) for which

Sa,p,q,N = Srad
a,p,q,N (8.20)

holds. This problem has been investigated by several authors. For recent advances concerning the symmetry 
of optimizers in the CKN inequalities, see for example [36,26] and references therein.

First observe that the case 1 < p = q (which is equivalent to a −b = 1) corresponds to the Hardy–Sobolev 
inequality, with the known best constant

Sa,p,p,N = Srad
a,p,p,N =

(
N

p
− 1 + a

)p

, (8.21)

see [30]. Note that the Hardy constant Sa,p,p,N is not achieved for any function u ∈ W 1,p
0 (RN , dμap).

Next, let 1 < p < N and q = p∗. If a ≤ 0, then one has

Sa,p,p∗,N = Srad
a,p,p∗,N , (8.22)

see [32], Theorem 2.4, condition (3).
From now on let us assume that

N ≥ 2 and 1 < p < q < p∗. (8.23)

In this case, the constants Srad
a,p,q,N , including the corresponding (radial) minimizers, have been given in [41], 

Theorem 1.4. The problem of symmetry breaking was analyzed by many authors, see [14] and the references 
cited therein.

It is known that there is a finite number

a∗ = a∗(p, q,N)

with a∗ ≥ 1 − N , such that
p
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Sa,p,q,N = Srad
a,p,q,N for a ∈ (1 − N

p
, a∗] and (8.24)

Sa,p,q,N < Srad
a,p,q,N for a > a∗, (8.25)

see [14], Theorem 1.1 and Remark 3.1. Moreover, if a∗ = a∗(p, q, N) denotes the unique number in 
(1 − N

p , +∞) such that

(
N

p
− 1 + a∗

)2

= (N − 1)
(

1
q − p

− 1
q + p′

)
, (8.26)

where p′ = p
p−1 , then

a∗ ≤ a∗, (8.27)

see [14], Theorem 1.1, and if p < N , then a∗ ≥ 0, see [14], Theorem 1.3.
Finally, it has been conjectured that condition (8.27) cannot be improved, see [14], p. 423, that is:

Conjecture 8.1. There holds

a∗ = a∗. (8.28)

Remark 8.1. Conjecture 8.1 can be rephrased by saying that, if a > 1 − (N/p), then (8.20) holds if and only 
if (

N

p
− 1 + a

)2

≤ (N − 1)
(

1
q − p

− 1
q + p′

)
. (8.29)

The case p = 2 in the CKN inequalities has received a lot of interest since the seminal article [18]. In 
particular, Conjecture 8.1 for p = 2 has been proved in the recent paper [26], Theorem 1.1, using generalized 
entropy functionals for diffusion equations. However, this tool seems not useful for general p.

A bound for a∗ from below is given in [32], Proposition 4.6: Let

a1 = a1(p, q,N) := N − 1
1 + q

p′
− N

p
+ 1, (8.30)

and note that a1 > 1 − N
p . Then

a∗ ≥ a1. (8.31)

Our aim is to improve on the bound a1. First observe that an application of the Theorems 1.1 and 8.1 yield 
the following result.

Lemma 8.1. Assume that N, p, q, a and b satisfy the conditions (8.11) and (8.23). Further, assume that there 
exist real numbers k and l which satisfy one of the conditions (i)–(iv) of Theorem 1.1, and such that

ap = kp + l(1 − p) and (8.32)

bq ≤ l. (8.33)

Then (8.20) holds.
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Proof. Let u ∈ W 1,p
0 (RN , dμap) \{0}, and let u� be the μl-symmetrization of u. Then we have by Theorem 8.1

and (8.32), ∫
RN

|x|ap|∇u|p dx ≥
∫
RN

|x|ap|∇u�|p dx. (8.34)

Further, it follows from (2.8) and (8.33) that∫
RN

|x|bq|u|q dx ≤
∫
RN

|x|bq|u�|q dx. (8.35)

Finally, (8.34) together with (8.35) yield

Ea,p,q,N (u) ≥ Ea,p,q,N (u�), (8.36)

and the assertion follows. �
Next we define

a2 = a2(p, q,N) := 1 + N

(
1
q
− 1

p

)
, (8.37)

and note that

max{0, a1} < a2 < 1. (8.38)

Proposition 8.1. Assume that N, p, q, a and b satisfy the conditions (8.11) and (8.23), and let

a ≤ a2. (8.39)

Then (8.20) holds.

Proof. We may restrict to the case a ≥ 0, and we choose k := a and l := 0. Since 0 < k < 1, one of the 
conditions (iii) or (iv) of Theorem 1.1 is satisfied. Further, we have

bq − l = bq =
(
N

(
1
p
− 1

q

)
+ a− 1

)
q

≤
(
N

(
1
p
− 1

q

)
+ a2 − 1

)
q = 0.

Now the assertion follows from Lemma 8.1. �
Finally, a more sophisticated choice of the parameters k and l leads to a further improvement of the lower 

bound for a∗.
First we assume N ≥ 3. Let us define a3 = a3(p, q, N) as the unique number in 

(
1 − N

p ,+∞
)
, such that

(
N

p
− 1 + a3

)2

= (N − 1)2

N
(

1 − 1
)
·
(
1 − q + q

)2 . (8.40)

p q p
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Note that

a2 < a3. (8.41)

Theorem 8.2. Assume that N, p, q, a and b satisfy 1 < p < q < p∗, N ≥ 3 and the conditions (8.11). Further, 
let

a ≤ a3. (8.42)

Then (8.20) holds.

Proof. By elementary calculus one verifies that a3 appears as the maximum of all values a ≥ 0 which have 
a representation a = k + l( 1

p − 1) with parameters k and l that satisfy the conditions (iii) of Theorem 1.1
and such that bq ≤ l. Formally,

a3 = max
{
a : a = k + l(1

p
− 1), 0 ≤ k ≤ l + 1, (8.43)

1
l + N

≥ 1
k + N − 1 − (N − 1)2

N(k + N − 1)3 , bq ≤ l

}
.

The assertion now follows from Lemma 8.1. �
The bound a2 can be improved in the case N = 2, too, provided that

1
q
>

1
p
− 1

3 . (8.44)

Define a4 = a4(p, q) as the unique number in (1 − 2
p , +∞) such that

(
2
p
− 1 + a4

)2

= 16

27
(

1
p − 1

q

)(
1 − q

p + q
)2 . (8.45)

Note that

a2(p, q, 2) = 1 + 2
(

1
q
− 1

p

)
< a4, (8.46)

in view of (8.11) and (8.44).

Theorem 8.3. Let N = 2, and assume that the numbers N, p, q, a and b satisfy 1 < p < q < p∗ and the 
conditions (8.11), (8.44). Further, let

a ≤ a4. (8.47)

Then (8.20) holds.
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Proof. Using the conditions (iv) of Theorem 1.1 one verifies that

a4 = max
{
a : a = k + l(1

p
− 1), 1

3 ≤ k ≤ l + 1, (8.48)

1
l + 2 ≥ 1

k + 1 − 16
27(k + 1)3 , bq ≤ l

}
.

Note that the set on the right-hand side of (8.48) is non-empty in view of (8.44). Now the assertion again 
follows from Lemma 8.1. �
Remark 8.2. Let us point out an interesting relation between the Conjectures 5.1 and 8.1.

First observe that in view of the identifications (8.16), (8.17) and (8.18), condition (5.57) appears as a 
limit case of (8.29) by sending p → 1 and then putting

a = k and q = l + N

k + N − 1 .

Further, assume that Conjecture 5.1 was true. Then, proceeding similarly as in the proof of Theorem 8.2, 
one can show that also Conjecture 8.1 holds true: Indeed, by elementary calculus one verifies that

a∗ = max
{
a : a = k + l(1

p
− 1), 0 ≤ k ≤ l + 1 ≤ k + N − 1

k + N − 1 , bq ≤ l

}
. (8.49)

Then one obtains as before that

Ea,p,q,N (u) ≥ Ea,p,q,N (u�) ∀u ∈ W 1,p
0 (RN , dμap) \ {0},

and (8.28) follows.

8.3. Sobolev-type inequalities for Lorentz spaces

Corollary 8.1 can be used to obtain best constants for imbedding inequalities between the Sobolev space 
W 1,p

0 (RN , dμap), with a ≥ 0, into Lorentz spaces.
Let u : RN → R be a measurable function and u� its Schwarz symmetrization (= μ0-symmetrization). 

Then the decreasing rearrangement of u is given by

u∗(ωN |x|N ) = u�(x), (x ∈ RN ). (8.50)

For every r ∈ (0, ∞) we define

‖u‖r,q =

⎛⎝ +∞∫
0

[
u∗(s) s1/r

]q ds

s

⎞⎠1/q

if q ∈ (0,∞), and (8.51)

‖u‖r,∞ = sup
s>0

u�(s) s1/r, if q = +∞. (8.52)

The Lorentz space Lr,q(RN ) is the collection of all measurable functions u : RN → R such that ‖u‖r,q is 
finite. These spaces give in some sense a refinement of the usual Lebesgue spaces.
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Theorem 8.4. Let N, a, p, q and b satisfy the conditions (8.11) and (8.23), with a ∈ [0, a2], where a2 is given 
by (8.37). Then we have

⎛⎝ ∫
RN

|x|ap|∇u|p dx

⎞⎠1/p

≥ (ωN )−b/N
(
Srad
a,p,q,N

)1/p ‖u‖r,q ∀u ∈ W 1,p
0 (RN , dμap), (8.53)

where

r := Np

N − p + ap
. (8.54)

Proof. Let u ∈ W 1,p
0 (RN , dμap) \ {0}, and let u� denote its Schwarz symmetrization. Corollary 8.1 tells us 

that ∫
RN

|∇u|p|x|ap dx ≥
∫
RN

|∇u�|p|x|ap dx. (8.55)

Further, we have by Proposition 8.1,

∫
RN

|∇u�|p|x|ap dx ≥ Srad
a,p,q,N

⎛⎝ ∫
RN

|u�|q|x|bq dx

⎞⎠p/q

. (8.56)

Since also

‖u‖r,q = (ωN )−b/N ·

⎛⎝ ∫
RN

|u�|q|x|bq dx

⎞⎠1/q

,

where r is given by (8.54), the assertion follows from (8.55) and (8.56). �
Remark 8.3. (a) Theorem 8.4 is well-known in the special case a = 0, see [1], where also other cases are 
considered, and [27] and [17].

(b) Note that the number r defined in (8.54) satisfies

q ≤ r < +∞, (8.57)

by the assumptions of Theorem 8.4.

8.4. An eigenvalue problem

The Pólya–Szegö inequality allows us to obtain a sharp lower bound for the first eigenvalue of the following 
nonlinear eigenvalue problem {

−div(|∇u|p−2∇u) = λ|x|−βp|u|p−2u in Ω
u = 0 on ∂Ω

(8.58)

where Ω is a bounded domain in RN , 1 < p < N and 0 ≤ β < 1. This eigenvalue problem, together with 
some related elliptic problems for the p-Laplacian has been studied in [21].
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We set

λ1(Ω) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ω

|∇ϕ|pdx

∫
Ω

|x|−βp|ϕ(x)|pdx
: ϕ ∈ W 1,p

0 (Ω) \ {0}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (8.59)

Observe that the bounds on β and p assure that the imbedding of W 1,p
0 (Ω) in Lp(Ω, |x|−βpdx) is compact 

(see, e.g. [21]).
The following result holds true

Theorem 8.5. Let Ω� denote the μ−βp-symmetrization of Ω. We have

λ1(Ω) ≥ λ1(Ω�) (8.60)

where λ1(Ω�) is the first eigenvalue of the problem{
−div(|∇v|p−2|∇v|) = λ|x|−βp|v|p−2v in Ω�

v = 0 on ∂Ω�.
(8.61)

Proof. Put l := −βp and k := −β(p − 1). Then it follows that k ≤ 0, l + N > 0 and l(N − 1)/N − k ≤ 0. 
Hence the conditions (5.4) are satisfied. Furthermore, we have pk+ l(1 − p) = 0. Applying Theorem 8.1, we 
obtain, by the definition of u�, ∫

Ω

|∇u|p dx ≥
∫
Ω�

|∇u�|p dx,

∫
Ω

|u(x)|p|x|−βp dx =
∫
Ω�

|u�(x)|p|x|−βp dx,

and the result follows. �
Remark 8.4. In this last remark, let Ω# be the ball centered at the origin having the same Lebesgue measure 
as Ω, that is, Ω# is the Schwarz symmetrization (= μ0-symmetrization of Ω). Then the following estimate 
holds

λ1(Ω) ≥ λ1(Ω#), (8.62)

see [3]. Indeed, if u#(x) denotes the Schwarz symmetrization of u, then the following estimate holds true∫
Ω

|∇u|p dx

∫
Ω

|u(x)|p|x|−βp dx

≥

∫
Ω#

|∇u#|p dx

∫
Ω#

|u#(x)|p|x|−βp dx

≥ λ1(Ω#)

which implies (8.62).
Observe that estimate (8.62) is worse than (8.60). Indeed by classical Hardy–Littlewood inequality we 

get
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∫
Ω�

1
|x|βp dx =

∫
Ω

1
|x|βp dx ≤

∫
Ω#

1
|x|βp dx

and therefore Ω� ⊆ Ω#. This implies

λ1(Ω#) ≤ λ1(Ω�). (8.63)

9. Disclosure of potential conflicts of interest

The authors disclose all relationships or interests that could have direct or potential influence or impart 
bias on the work.

10. Note added in proof

After submitting our paper, we learned about the new article [24]. The authors show that Ck,l,N = Crad
k,l,N

if k > 0 and l1(k, N) < l ≤ l∗(k, N). From this and our Theorem 1.1 Conjecture 5.1 follows. By Remark 8.2 
this means that also Conjecture 8.1 is true.
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