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a b s t r a c t 

Recent years have seen an increase of complexity in paradigms and languages for devel- 

opment of Cloud Systems. The need to build value added services and resources promoted 

pattern-based composition and orchestration as new hot research topics. Anyway, unlike 

web services, it is unclear what orchestration means for Cloud Systems. In this scenario, 

a way to automatically build composite services from their pattern-based description is 

appealing. In this work we describe a methodology for automatic composition and verifi- 

cation of Cloud Services which is driven by formal orchestration language. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Cloud Architecture is nowadays a de facto standard for providing any kind of service on Internet. Big vendors, like Amazon

Web Services (AWS) 1 or Microsoft with Azure 2 are definitely the main actors in Cloud Architecture definition. In [1] NIST

extends the meaning of orchestration to Cloud Architecture. In addition, a new trend in Cloud Services design and man-

agement grew up in the last years: the definition of design patterns for Cloud Computing. Anyway, the introduction of

design patterns in Cloud Computing requires a concept of orchestration that is more complex than the one defined in [1] :

as we will show in this work many design patterns [2] with different purposes can be described as complex workflows.

Workflow based composition opens the problem of understanding if a composite service is compliant with users’ require-

ments and QoS. Properties of composite services obviously depend on components properties and composition. We think

that compliance cannot be evaluated only by means of syntactical or type checking. Actually, several semantics-based ap-

proaches for simple web services composition exist (a survey is in [3] ). Some of them exploit BPEL4WS [4] orchestration

language and OWL-based ontologies for services description. In this context, it is clear that a methodology able to compose

and verify Cloud Services by using Cloud Design Patterns is really appealing. This is the reason for we propose a formal

orchestration language able to describe all elements, events and composition issues we need to describe complex services.

The language enables pattern-based composition of Cloud elements at different layers. In this way, we reach two goals:
∗ Corresponding author. 
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Fig. 1. System architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

first, our methodology enables Cloud designer and programmers to describe interactions of components directly by means

of patterns; second, the proposed approach allows for the analysis of semantics and Quality of Services(QoS) of composite

services and resources. 

The paper is organized as follows. Section 2 contains the description of the methodology we propose and the architecture

of a framework used to enact its steps. In order to describe patterns and composite services in Section 3 we introduce an

orchestration language. Section 4 discusses the problem of binding real services into composite services. Section 5 proposes

a full example and Section 6 contains an analysis of related works. Finally, Section 7 reports some concluding remarks. 

2. Methodology and architecture 

In the methodology we are going to illustrate, a formal workflow language describes composition and patterns. Its for-

mal semantics, together with a semantic-based definition of cloud resources and services, enables automatic composition.

Patterns give information about how services and resources interact at early design and development stages. This abstract

information suggests the way to analyse, for example, composition soundness or quality of services. Let us consider a sim-

ple example with two basic control flow patterns: the sequence and the 1 out of N . From an availability point of view, if N

services are organized in a sequence, the failure probability of the composite service is the sum of the failure probabilities

of components, on the other hand in the 1 out of N composition, it is their product. Our workflow language (Operational

Flow Language: OFL in the following) has simple constructs that can be used to define complex Cloud Patterns 3 [2] . OFL

is expressive enough to describe several patterns, as well as simple enough to be defined by a clear operational semantics.

The final step is the management of Cloud composite services as patterns instances. 

In order to bind real services in composition skeleton, we have to know their functionalities and their QoS properties.

Our methodology supports ontology-based description of services by using OWL-S [5] but it is not enough expressive to

characterize general composition [4] . We think that an Inputs, Outputs, Preconditions, Effects (IOPE [6] ) characterization of

Cloud resources, as well as a semantic description of what resources are and what they do, are useful to choose components

that best match semantics and requirements of composite services. For proper matching and ontology [7] describes roles of

available resources and services. Finally, for what QoS analysis and composition concerns, the workflow graphs described by

OFL allow for the creation of analysis models by using Model Transformation techniques [8] . 

Fig. 1 depicts the architecture that enforces the methodology previously introduced. 

The WF Builder , the IOPE Interoperability Matcher and the QoS Builder respectively manage goals of: (a) creating a

workflow of composite services from their patter-based description; (b) matching component services in the orchestrated

service; (c) analysing QoS of resulting composite Cloud Services. The WF (Workflow) Builder is based on a Knowledge Base

of logic rules containing (a) the Operational semantics of OFL (in the repository WF Semantic Rules ); (b) the operational

semantics rules of orchestration patterns ( Patterns Composition Rules ). They are in turn defined by OFL. Results from WF

Builder are skeletons used to implement Orchestrated Cloud Services. Proper back-end units can read skeletons in order to

create stubs for different Vendors languages and APIs. Inputs for the Service Interoperability Matching are Cloud Orches-

tration skeletons (declaring how services interact) and the descriptions of component services and resources. Descriptions

use OWL-S and IOPE grounding for cloud resources. In addition, the description of services functionalities depends on do-

main ontologies (i.e. financial services, E-Health etc.). Furthermore Cloud Ontology [7] describes the roles of elements in the

Cloud Architecture. The description of these ontologies is out of the scope of this work. Finally, QoS Analyzer takes Cloud

Orchestration and QoS descriptions in order to build analysable models (by using QoS Composition rules ). At the moment

the analyzer supports only performance and availability analyses. 
3 https://cloudpatterns.org , http://en.clouddesignpattern.org/index.php/Main _ Page , https://msdn.microsoft.com/en-us/library/dn568099.aspx 

https://cloudpatterns.org
http://en.clouddesignpattern.org/index.php/Main_Page
https://msdn.microsoft.com/en-us/library/dn568099.aspx
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Table 1 

OFL main elements. 

Element SubElement Description 

Transition ControlFlow Defines precedences among activities in OFL control flows 

DataFlow Declares data routing 

Event Declares asynchronous events like interrupts 

DependsOn Defines if an element in OFL depends on the existence or the correct execution of another element 

in process definition 

Handling Declares relationships among Events and their managing activities 

InstalledOn Defines where activity-related services are installed 

PoolCreate declares that the source activity of this transition may create a persistent instance of a Pool 

PoolCreateOn Like PoolCreate but it creates services on existing Virtual or physical resources 

PoolCreate1S Creates a service and destroys when it ends 

PoolDestroy Deallocate resources in a Pool 

Monitoring Monitors resource 

PoolInvokeOn Invoke a service in a Pool 

Participant Actor Represents an external user for the process: it can send events and/or provide data 

PhysicalP A physical resource 

VirtualP A Virtual Server 

Activity Interruptible Defines interruptible activities: these activities can be target of Event Transitions 

Handler Handles events. Connected to an event by an Handling Transition 

NoReturnH This is a Handler that does not return control to the interrupted activity 

ReturnH This is a Handler that returns control to the interrupted activity 

Resource A Cloud Resource that can execute some operation (for example a storage element) 

AbstractRes Defines that the activity is an abstract resource 

PhysicalRes Defines that the activity is at physical resource 

SaaS Defines that the activity is at SaaS layer 

PaaS Defines that the activity is at PaaS layer 

IaaS Defines that the activity is at IaaS layer 

Monitor Defines a monitoring activity 

Route processes only inner data 

Process Data Data Simple data like files, streams etc. 

Message Data containing messages from an activity to another 

Inner Data Variable A process variable 

Transition Condition predicates that enables firing of transition 

LoopCond Conditions for Loop blocks 

PoolCond Conditions for Pool instantiation and activation 

Block Structural a simple activities grouping 

Loop Activities in a loop 

SubProcess Declares sub-processes structures 

Pool A Pool is a collection of instances of activities that can be created dynamically. Once a Pool instance is created (by proper 

transition), it is associated to proper pool condition. Whenever an activity fires to a pool, the firing condition selects the 

proper instance of resource and services to use 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. OFL semantics 

In this section we briefly introduce the basic elements and operational semantics of OFL. Then, we show how OFL is

expressive enough to describe Cloud Patterns. OFL is a workflow-based language: it consists of a graph of activities, partici-

pants and their properties. An Activity represents one logical step within a composite process. The completion of an activity

and the starting of another one is a transition point in the workflow execution. Transitions may be unconditional, but the

order of execution of activities at run-time may depend on one or more logical expressions called transition conditions.

Conditions are evaluated when activities start and end and their values affect the behaviours of activities. More in detail,

Table 1 lists the main constructs of OFL and their meanings. 

Dependencies exist among elements in different groups. For example, Control Flow transitions can be connected only

to activities; transition conditions exist only in Control Flow etc. We omit here all dependences for brevity. Some points

exists within the workflow that allow for the control of activities execution: AND-split is a point where a single thread

of control splits into two or more threads which are executed in parallel. AND-join is a point where two or more parallel

activities converge into a single thread of execution. XOR-split is a decision point where only one of alternative branches is

executed. XOR-join is a point in the workflow where two or more parallel activities converge in a single thread of execution

without synchronization. OR-split is a decision point between several alternative workflow branches. OR-join is a point in

which several alternative branches re-converge into a single thread. In the following XOR, AND and OR are called Split

or Join Conditions. Therefore in the OFL language, workflow processes consist of a graph of nodes (activities) and edges

(transitions) identified by a pair of nodes ( From, To ). Handling transitions are the only exception since they connect Event

Transitions to Handler Activities. Activities represent atomic Cloud Service execution or resource uses. Types of elements
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Fig. 2. OFG example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in OFL graphs (Operational Flow Graph: OFG) are depicted as stereotypes (i.e. reported inside double-angled brackets). An

example is in Fig. 2 that reports the OFG of an instance of the Compensating Transaction Pattern. 

The workflow here is really simple: it includes only SaaS activities and ControlFlow transitions, hence, we omitted stereo-

types for simplicity. Transitions conditions are reported near the related transitions. If they miss, we always evaluate con-

ditions true . In the figure, Err and NoErr are true when an error or no errors respectively occurs during the execution of

the from activity. Obviously they are mutually exclusive: an XOR split assures that only one between compensating and next

activities are able to execute. If a the service executes a compensation activity, it executes the following compensations too.

3.1. Mapping Cloud Patterns to OFL graph 

OFGs represent executable processes that can be easily implemented in different Cloud environments. We only need

a way to generalize OFG in order to represent Cloud Patterns. Some patterns are not parametric in terms of component

services and an OFG is enough to describe them. More generally, a Cloud Pattern is a parametric graph where services and

resources involved in instances modify the pattern template. In order to allow for automatic composition, we must translate

patterns into OFGs. The main structure of a pattern is a particular Block, called Template. We have defined an imperative

language called Pattern Grounding Language (PGL) in order to describe Blocks replicas and groundings. We do not describe

PGL here for brevity: its main features are the ability of defining sets (lists) of Services that are grounded into an OFG

that describes patterns instances. A proper function, connect , links services and resources each other by means of proper

Transitions. Let us consider the Compensation Pattern: a Designer would describe the pattern in the following way: 

compensation − patter n (S, Ser v ices, Compensating, E) 

where Services is a list of normal services and Compensating is the list of services that compensate the ones in Services. S and

E are the start and end activities respectively. The general compensation pattern is a Block coupled with a PGL definition.

Fig. 3 reports the OFG and the PGL description for compensation pattern. 

It is simple to prove that the PGL on the right of Fig. 3 , invoked with parameters: 

Compensation (S, [ A, B, C ] , [ CA, CB, CC ] , E) 

produces the OFG in the bottom of Fig. 2 . 

4. Conditions propagation and semantics 

In previous sections we outlined that we are interested in pattern-based composition and orchestration of Cloud service.

Starting from an abstract pattern-based description we provide a sets of rules able to translate pattern-based description

into a workflow process. Composition must be verified in order to understand if components match inputs, outputs and

semantics required by other connected elements. Matching is part of verification process that should control if Inputs and

Outputs are in the right format for connected elements and if semantics of Cloud Services and resources are correct. At

this purpose, we inherit some Web Service languages and methods: the Semantic Web Community created OWL-S [9] ,

and matching algorithms, methods and tools based on IOPE (Inputs, Outputs, Preconditions and Effects) analyses [10] . The

matching process requires the existence of a Knowledge Base KB and of a set of Inference Rules IR . A formal, explicit

description of the Domain is given by OWL and OWL-S. With reference to Fig. 1 , 

KB = { RSD ∪ CO ∪ DO }; IR ⊂ W F SR 
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Compensation(S, Services, Compensating, E) :
Prec(C =)
size(Services) == size(Compensating)

Condition Cok = List[size(Services)]
Condition Cerr = List[size(Compensating)]
foreach (c1 : Cok, c2 : Cerr):

c1.value = true; c2.value = true;
sH = head(Services); sT = tail(Services);
C = reverse(Compensating);
foreach (srv : Services; cmp : C; ok : Cok, err : Cerr):

if(srv == sH ) :
connect(srv,cmp,ControlFlow,err);
connect(S,srv,ControlFlow,“true”);

else if(srv == sT ) :
connect(srv,E,ControlFlow,“true”);

connect(srv,succ(srv,Services),ControlFlow,ok);
connect(srv,cmp,ControlFlow,err);

foreach (srv : Services):
srv.JoinCond = AND; srv.SplitCond = XOR;

S.SpliCond = AND; E.JoinCond = XOR

Fig. 3. Compensating pattern OFG and PGL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elements in KB are axioms derived from a Domain ontology. Relationships among data and operations depend on the

semantic description of operations, Pre-conditions, Effects, Inputs and Outputs. Rules for reasoning on KB are defined in

operational semantics. IR contains the rules to apply in order to build valid OG in terms of IOPEs. The inference rules do

not depend on the Domain. Notice that matching depends only on OFG structure. Hence, a Cloud resource can be grounded

to an activity if: (a) its Input formats (if any) meet Output formats of resources and services of incoming activities in the

OFG; and if: (b) All of its Preconditions are satisfied. Input and Output matching is relatively simple to analyse as well as

I/O problems are quite simple to manage: if the required input is not available, probably the whole process is not correct; if

the required input exists but in different format, proper wrappers can be used in order to translate data formats. 

Preconditions and Effects (PE) are more difficult to manage. They are defined by logic predicates and they express con-

cepts present both in Cloud Ontology(CO) and Domain Ontology (DO) (see Fig. 1 ). After the execution of a Cloud Service, some

things may happen or change: these are the Effects that the service produces. Execution of Cloud Services may change the

truth value of some predicates: this means that the PE matching depends on OFG too: a running composite service may

evaluate some predicates true or false after the execution of any activity in the OFG. Meeting of preconditions is assured by

services previously executed at any time in the composite process and condition values may change during its execution . 

This is an effect we call Condition Propagation and it provides a mean to describe the semantics of the whole composite

service. 

Solving the matching problem requires that a resource or service: (a) accepts all the inputs required by the IOPE speci-

fication of a node in the OFG, (b) produces all outputs required by the IOPE specification of a node in the OFG, (c) satisfies

all preconditions required by the IOPE specification of a node in the OFG, (d) produces all effects required by the IOPE

specification of a node in the OFG. 

The real problem is to understand if a Composite service is sound in terms of IOPE matching. Checking of adjacent

elements in an OFG is simple: Outputs of incoming nodes, must comply with Inputs needed by the node we are checking.

The problem of PE matching is more complex: for each node in the graph, the matcher must analyse many predicates in the

workflow graph. An effect enables new predicates or changes truth values of existing ones. In addition, and this is the case

of our example, during the execution of a composite service, some predicates may change their unification with variables. 

Preconditions of an activity depend on Effects of activities executed before . Anyway, the set of these activities is not

uniquely determined: thanks to different Join and Split conditions instances of an OFG run across different paths of the

graph (for example this happens at OR and XOR split points). 

Let Prec ( N ) and Eff( N ) be the sets of preconditions and effects respectively, for a node N in the OFG. Let us call: 

e v al (p) −→ { true, fal se } , p ∈ P rec(N) orE f f (N) 

the function that evaluates a truth value of a precondition or an effect. 

Let us consider the sets PL (predicates lists) composed by the couples ( p node , eval ( p node )) where p node ∈
Prec ( node ) ∪ Eff( node ) and eval ( p node ). 

P L node = { (p node 
1 , e v al(p node 

1 ) 
)
, · · · , 

(
p node 

n , e v al(p node 
n ) 

)} 
We consider the union of preconditions and effects because, for Condition Propagation, we assume that, in order to bind

a real service into the workflow, it must meet all preconditions and, after its execution, it must produce all declared effects.

The important is to understand if a service can avoid meeting a precondition because of Condition Propagation. We call

PH 

node (Possibly Happens) the set with all possible configurations of predicates lists (i.e. predicates with their evaluations)
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for a node in the OFG. 

PH 

node = { P L node 
1 , · · · , P L node 

n } 
Notice that a PL node in PH 

node contains all predicates (with their evaluation) evaluated before the execution of node activ-

ity (we call this set: PH 

node 
be f ore 

) as well as its Effects . These may eventually substitute the truth value of predicates previously

evaluated in the case Effects contain predicates that have been already considered. If Effects contain new predicates, they are

added to all PL s in PH : if 

PH 

node 
be f ore = { P L node 

be f ore 1 
, · · · , P L node 

be f ore k 
} 

let E f f common i (node ) the set containing all predicates (and their evaluation) in P L node 
be f ore i 

∈ PH 

node 
be f ore 

that are in Eff( node ) even

with same or different evaluation. 

PH 

node = { P L node 
be f ore i 

− E f f common i (node ) ∪ E f f (node ) } , i ∈ (1 ..k ) 

In brief, we add new effects with proper evaluation to each Predicate List and eventually we substitute old evaluations in

the Effects list. Multiple PL s in PH set represent the fact that OFG may contain different paths from a start to end points.

This obviously happens when the composition contains choices or conditional execution of paths, but having multiple PL s

is useful also in parallel paths when they manages preconditions and effects of the same predicates. If OFG is a simple

sequence of nodes, for each node, the cardinality of PH is 1 for each node in the sequence: card 
(
PH 

node 
)

= 1 ∀ node ∈ OF G .

This because in a simple sequence of nodes there is always one possible evaluation of predicates. Anyway, for more complex

OFGs, we have: 

card 
(
PH 

node 
)

≥ 1 ∀ node ∈ OF G 

Let us now describe how PH 

node sets are built for all nodes in OFG. We visit all the OFG from the start to the END points

updating PL sets: updates depend on Effects and Split and Join points in the OFG. The simplest case, as we introduced

before, is the pure sequence path in OFG. If we have two nodes in a sequence (let us call them A and B , with B following A

in the graph), with A as start point and B the end point (i.e. a graph with only two nodes), we have: 

PH 

B = { P L B i = 

(
P L A i ∪ (e v al(P rec(B )) 

)
− E f f common (B ) 

∪ E f f (B ) }∀ P L A i ∈ PH 

A 

Notice that, if A is a starting point in the process: 

PH 

A = { e v al ( E f f (A ) ∪ P rec(A ) ) } 
If the in place of A a more complex graph exists, we must distinguish two cases for B depending on its join condition. The

first case is when the join condition of B is OR or XOR : Here, we can build the set PH 

B 
be f ore 

and then the PH 

B with the rule

previously reported. 

PH 

B 
be f ore = 

⋃ 

t∈ incoming(B ) 

(
PH 

f rom (t) ∪ e v al(P rec(B )) 
)

In XOR and OR join, simply all previous preconditions lists (in all incoming paths) are considered. Notice that if two pre-

conditions lists exist with both same precondition and evaluation, their union results in an unique PL. The other case is

when the join condition of B is AND . This is more difficult to manage because two further cases are possible: (1) the set

of predicates that change from the split node of parallel incoming paths, during paths executions are disjoint on different

paths; (2) some predicates are in the Effects sets of nodes belonging to different parallel paths. 

Let SPN be the name of the (split) node where the parallel paths begin, and JPN the join point we are considering. Let us

call 

CH 

node = { predicates ∈ f irst(P L node ) : 

P L node ∈ { PH 

node − PH 

node 
be f ore } 

the list of predicates that change their evaluation or that are inserted into predicate lists after the evaluation of the effects

in a node ( first function here select the first element in a couple). If we consider a generic path φ in the OFG terminating in

node , we can define the CH 

node set for a whole path: 

C H 

node 
φ = 

⋃ 

node ∈ φ
C H 

node . 

In the first case, we have: ⋂ 

φ∈ SPN incoming paths 

CH 

node 
φ = ∅ 
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Fig. 4. PE matching example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And 

PH 

JPN 

be f ore 
= { P L ′ i = P L i − { (p k , e v al(p k )) : p k ∈ CH 

JPN 

φ
} (1) 

∪ { (p l , e v al(p l )) ∈ P L m 

∈ PH 

I : p l ∈ CH 

JPN 

φ
}} 

∀ P L i ∈ PH 

SPN , ∀ φ from SPN to JPN , 

∀ I ∈ f rom (incoming(J P N )) 

This means that the PH 

JPN is the same of the PH 

SPN except for the predicates that have changed in all JPN incoming paths.

In addition, predicates originally not in PH 

SPN in parallel paths φ are added in PH 

JPN as well. 

The second case is more complicated: it involves the case when the same predicate changes in different parallel paths. It

is usually a case of erroneous design (it figures like an anomaly in a transaction based system), but we consider it anyway

since sometimes this behaviour may be explicitly wanted. Let us consider a partition � of all paths φ connecting SPN to

JPN : 

� = { �NC ∪ �C } , �NC ∩ �C = ∅ 
where �C is the set of paths where a predicate change exists. In the second case we have: 

PH 

JPN 

be f ore 
= PH 

JPN 

be f ore NC 
∪ PH 

JPN 

be f ore C 
(2) 

PH 

JPN 

be f ore NC 
is computed as described in ( 1 ) but only on paths in �NC . In addition, 

PH 

JPN 

be f ore C 
= 

( ⋃ 

Inc∈ f rom (incoming(J PN )) on �C 

PH 

Inc 

) 

∪ e v al(P rec(J P N )) 

We have now all elements to understand if an OFG is sound in terms of (IO)PE Matching. We analyse all nodes in the OFG,

building for each node the sets PH 

node and PH 

node 
be f ore 

. Then we analyse again the OFG. Two cases may happen: 

∀ node ∈ OF G, P rec(node ) � P L i ∀ P L i ∈ PH 

node 
be f ore (3)

∀ node ∈ OF G, ∃ P L i ∈ PH 

node 
be f ore : P rec(node ) � P L i (4) 

AND ∃ j : P L j ∈ PH 

node 
be f ore : ¬ 

(
P rec(node ) � P L j 

)
In the case ( 3 ), all execution paths allow for the execution of a service in node if it meets the specified Prec ( node ) pre-

conditions. The case ( 4 ) is more complex: at least a path exists where a component with Prec ( node ) preconditions can be

executed without problem but at least one path exists too where a service meeting only preconditions in Prec ( node ) can-

not be executed. In this case, the matching algorithms alerts users that something may go wrong during the execution of

the composite cloud service. If the problem was an incorrect design, users can solve the problem by analysing PH 

node 
be f ore 

.

Otherwise, proper compensation elements can be introduced in order to correct problem at run-time. 

In order to provide an example of how PH sets are built, let us consider Fig. 4 . It depicts an OFG where bold letters

represent nodes (activities) names. Predicates appear italicized below each node. Without losing generality we report here

only effects. The presence of the name of a predicate, indicates that the process evaluates it true after the execution of the

related activity, while the presence of an exclamation mark means that the process evaluates the predicate false . Split and

Join conditions are reported too. The figure shows two cases: in the first case, the LP C = { (P 4 , true ) } , in the second case,

LP C = { (P 4 , true ) , (P 2 , false ) } . 
In the first case ( Fig. 5 on the left), if P rec(I) = { P r ec 1 , P r ec 2 , P 1 , P 4 } we can bind to I a service with precondition P rec(I) =

{ P rec 1 , P rec 2 } since P 1 and P 4 are propagated during process execution. The same service cannot bind to I in the second case

( Fig. 5 on the right), because there is a case where PH 

H that does not contain P 4 and we are in the case of ( 4 ). Notice that

PH 

H describes the semantics of all the composite process except for the execution of I . 
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Fig. 5. Propagation. 

Fig. 6. Block OFG for Load Balancer. 

 

 

 

 

 

 

 

5. Load Balancer full example 

In this section we describe all steps needed to provide an OFG description of the Load Balancer Pattern. 4 Then we will

discuss how we study matching on the realized pattern. The steps we discuss are the following: (1) we define a parametric

OFG for the pattern and the related PGL; (2) we analyze soundness for a given instance of the pattern; (3) once some IOPE

specification for the pattern are reported on the OFG, we show how matching is enacted. 

Fig. 6 shows the parametric OFG for the Load Balancer Pattern. In the figure, LBal is the Load Balancer service which

interfaces with monitored services; S and VS are respectively the generic Service and Virtual Server where the service is

installed. They are collected in a Block. The Route Activity choose the Service in the Pool for load balancing purposes.

It actually selects the virtual server with minimal load. This updates a list of transition conditions ( Cond −Pool): the only
4 http://cloudpatterns.org/design _ patterns/service _ load _ balancing 

http://cloudpatterns.org/design_patterns/service_load_balancing
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LoadBalancer(S, Service, V irtualServer, instances, E) :
Prec(LoadBalancer) = (size(Services) ==
size(V irtualServers)), type(Service) ==
SaaS, type(V irtualServer) == PaaS

Saas LBal = SaaS();
Condition Cbal = List[instances];
Route r = Route(“lbal.alg”);
Monitor m = Monitor();
SaaSActivity Services = List[instances];
PaaSActivity VirtualServers = List[instances];
VirtualServerData[] VSD= List[instances];
createInnerDataVector(VSD);
ServiceData[] SD= List[instances];
createInnerDataVector(SD);
connect(lbal,r,ControlFlow,true);
foreach (s : Services, vs : V irtualServers, c : Cbal,

i = (1 · · · instances)):
bind(Service,s);
bind(VirtualServer,v);
connect (s,vs,installedOn,0);
connect (r,s,ControlFlow,c);
connect (s,E,ControlFlow,true);
c.value = “false”;
connectMonitor(m,vs,monitors,VSD,i);

S.SpliCond = AND; E.JoinCond = XOR

Fig. 7. Load Balancer PGL. 

Fig. 8. Load Balancer workflow. 

 

 

 

 

 

 

 

 

condition true is the one that will connect the route activity R with chosen service in the Block. The Monitor activity Mon

stores load and performances measures in the Inner Data repository of the Process. 

Fig. 7 reports PGL definition for the Load Balancer; data flow is omitted for brevity’s sake. New elements to introduce are:

the instructions to create data into Inner Data Section (i.e. VirtualServerData and ServiceData, that contains all information

needed to record monitored values); the bind function that link a SaaS or a PaaS to the related activity. Notice that lbal.alg

contains the text that appears in the route activity box. If we instances this pattern with: 

LoadBalancer (S, Ser v , V ir tSer v , 2 , End) 

the generated workflow is the one depicted in Fig. 8 . 

This is the point where we define the semantics of the composite service. Composite service description is defined here

in terms of structure (patterns and OFL). We can use Preconditions and Effects definitions for adding semantics descriptions.

The goal here is to define a Load Balanced GPS navigator service. Hence, load balanced services must compute a path

between two GPS coordinates. The OFG we use for semantics analysis is in Fig. 9 that reports basic (IO)PE information near

each node. 
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Fig. 9. OFG with IOPE for Load Balancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is easy to prove that the precondition LoadBalanced on both S1 and S2 is satisfied for any service installed since it

is propagated from PH 

S1 
be f ore 

and PH 

S2 
be f ore 

: bounded services have to verify only the other preconditions. We can use as S1

service, any Cloud Service meeting all S1 precondition except LoadBalanced : the S1 service has to be a GPSNavigator service,

that computes a route from gps 1 to gps 2 coordinates; S1 must be installed on a monitored Virtual Server with a given avail-

ability. If all precondition are satisfied in the OFG, The End Activity has the hasRoute effects from gps 1 and gps 2 coordinates,

all preconditions in Start, S1 and S2 nodes, as well as minLoadBalanced . Information from transitions in Fig. 8 that is not

related to control flow (i.e. all dotted transitions) generates Precondition for the Start Activity, like installedOn or monitors

predicates. 

6. Related works 

In the early 20 0 0s service composition was introduced and investigated for web services [11,12] . In particular, BPEL4WS

[13] was elected by W3C consortium as reference language for composition of Web Services. NIST definitions and standards

for Cloud Computing included Composition of Services by means of Orchestration only in the last years [1] but they are

still far from formalizing composition and orchestration in the same way it was done for web services. The main effort in

composition during last years focused on the choice of services and resources to use in a composite Cloud Service in or-

der to improve Quality of Service [14] . Many works deal with optimization problems [15–23] . Anyway, the most of these

works lacks in a formal definition of the Orchestration problem. A tentative of providing a Cloud Orchestration Engine with

an orchestration language is in [24] where COPE (Cloud Orchestration Policy Engine) is presented. Peer-to-peer and collab-

orative approaches to composition have been proposed too: in [25–27] authors show the usefulness of the platform not

only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing [28] . The

only mature work on Orchestration was made by OASIS in the Topology and Orchestration Specification for Cloud Appli-

cation (TOSCA) [29] . Several works have been reported in literature about Cloud Pattern exploitation [30] , but in general

they contain only descriptions of different design patterns. At the best of our knowledge, this is the only work address-

ing composition in terms of both Cloud Computing Patterns and Workflow patterns. We think that these two concepts are

strictly related at different layers of abstraction. In addition, we address matching problem not as optimization problem. We

provide a way to cope matching and analyses of the orchestration process. We also provide a formal language to describe

composition in terms of workflow. The language is a workflow language, so it is different from the other declarative and

imperative-scripting language usually used in literature. 

7. Conclusions and future works 

This paper presents a methodology able to build and analyse composite Cloud Services. The methodology is based on

Cloud Patterns and Orchestration in terms of workflow activities. We enable Cloud Designers to specify patterns they need in

composite service creation. Pattern-based specification is then automatically translated into a workflow process. We provide

a formal language (OFL) for process description that takes into account of resources and services relationships at different

Cloud Service Layers. OFL is formally defined and its operational semantics can be used to prove soundness of composite

services. In addition we solve the problem of semantics-based matching and analysis of composite process by means of Con-

dition Propagation. Future works include the definition of model transformation algorithms for the study of other properties

like performances, deadlocks, availability etc. 
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