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IMBEDDING ESTIMATES AND ELLIPTIC
EQUATIONS WITH DISCONTINUOUS
COEFFICIENTS IN UNBOUNDED DOMAINS

PAOLA CAVALIERE - MARIA LONGOBARDI - ANTONIO VITOLO

In this paper we deal with the multiplication operator u € W57 () —
gu € L9(Q), with g belonging to a space of Morrey type M"*(Q). We
apply our results in order to establish an a-priori bound for the solutions
of the Dirichlet problem concerning elliptic equations with discontinuous
coefficients.

Introduction.

Let Q be an unbounded open subset of R”.
We consider on €2 the linear differential operator

(D) Lu:—ZaijDiju+ZaiDiu —+au
ij=1 i=1

with coefficients a;; = aj; such that

2) a;j € L*(Q) N VMO ()
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and satisfying the condition of uniform ellipticity

(3) > ayg& = vl ae inQ, VEeR",

i,j=1

where v is independent of x and &.

In the case of a bounded and regular domain 2 C R”, n > 3, F. Chiarenza
- M. Frasca - P. Longo (see [8], [9]) have proved that, if u € W2P(Q)N WOI”’] ()
and

n
— Z aijDiju S LP(Q),
i,j=1

with 1 < p; < p < +o0, then u € W»P(R2) and

n
) el 2y < €0 = D aijDyjulpa + lulp.0).
i,j=1

with ¢ independent of «.

In order to get an estimate of such a type for an unbounded domain €2 and
with L instead of — Z:’ =1 Gij D;;, we are led to find condition on the function
g which assure the boundedness of the multiplication operator

5) ue WhP(Q) — gue LP(Q),

with k =1, 2.

Recently, M. Transirico - M. Troisi (see [18], [19]) have introduced a class
of spaces, denoted by M"(2), 1 < r < +oo, consisting of the functions
gelL; () such that

loc

1

©) I8y =500 ([ 1ar)” < oo,
M) QNB(x,1)

xeQ

equipped with the norm defined in (6), where B(x, 1) is the ball centered at x
with radius 1.

The results of A.V. Glushak - M. Transirico - M. Troisi ([12]) show that, if
Q2 is endowed with the cone property, and g € M"(R2), withn/k < r < +o0,
then (5) defines a bounded operator, provided that 1 < p <r (1 < p < r if

p = n/k). Moreover, if g € M"(Q2) = LOO(Q)Mr(Q), then

<
@ 181l i) = Elltll gy F+ @Il g
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with c¢(¢) independent of u.

As proved successively in [20], by generalizing a well known theorem
of C. Fefferman [11] (see also [7]), the same conclusions hold true also with
M7 () instead of M (2) (M""~" () instead of M"(S2)), but for k = 1 and
1 < p <r <n. Here M"*(),0 < A < n, denotes a space of Morrey type,
to be defined in the following (see section 2), equivalent to the classical Morrey
space L"*(2) when 2 is bounded (see, for instance, S. Campanato [2], [3]) and
to M"(R2) for A = 0.

In this paper, by using a recent result of M. Schechter [16], we find
conditions more general than the above mentioned ones in order to have the
boundedness of the operator (5) and the estimate (7).

As an application, we consider the Dirichlet problem

) Lu=f, felL?’(Q), 1<p<+oo,

with ~ ~
a; € M”’M(Q), ae MVZ’AZ(Q),

for a suitable choice of rq, A1, 15, Ap, corresponding to p (see (3.7;), (3.8;)).
We prove that, if €2 is sufficiently regular and n > 3, any solution u of (8)

of class LP(Q) N W2P(@) N WL @), 1 < p; < p (i =0, 1), belongs to

loc
W?2P(Q) and verifies the estimate

1l oy < €U F1p.0+ 1l 0).

with ¢ independent of f and u.

1. Notations.

Let E be a Lebesgue measurable subset of R” ,n > 2, and X(F) the o-
algebra of the Lebesgue measurable subsets of E. We set |A| for the Lebesgue
measure of A € ¥(E), x, for the characteristic function of A, Z(A) for the
class of restrictions to A of the functions ¢ € C2°(R") with suppZ N'A C A,
L{;C(A) for the class of the functions g, defined on A, such that {g € L”(A) for
every ¢ € Y(A); if g € LP(A) we put

1gl,.. = llgll

LP(A) )

For every x € R" and r € R, we also denote by B,(x) the ball centered at x
with radius r and B, = B,(0).
We quote the following result (see [5], Lemma 1.1):
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Lemma 1.1. If p €[1, 4+o0[, r € Ry and E € X(R"), a function f belongs to
LP(E) ifandonlyif f € sz)c(f) and the function F(x) = | f|, eng,«) belongs
to LP(R").

Moreover

1
(1.1) /Elfl”dx =B /R 15 0m, 0 4% -

Let Q be an unbounded open subset of R”.

As usual, we denote by wWkr(Q), ke N, p €[1, +oo[, the Sobolev space
of k-times weakly differentiable functions with L?-summable derivatives D*u
(le] < k) endowed with the norm

1/p

I o P
Nl ey = ngw ulPdx |

loe|<k

by WP () the closure of C(8) in W7 () and by W7 (@) (resp. W £7(Q))
the space of the functions ¥ : © — R such that cu € WEP(Q) (resp.
cu € WeP(Q)) for any ¢ € 2(Q).

In the sequel we use the following notations:

n

1
n 2
2 2
Uy = <§ Mx,») ’ Uxx = E Mx,»xj
i=1

ij=1

2. The spaces M7,

In this section we recall some definitions concerning the function spaces
that we need in the sequel.
For every E € X(£2), we set

E(x,r)=EN B,(x), E, =EQ,r),

and we denote by MPXRQ,t), pell,+oo[, A €[0,n[, t € Ry, the subset of
Ll’:)c(Q) consisting of the functions g for which

2.1 = sup r_“plglp’g(x’r) < 400,

7€]0.1]
xeQ

1810y
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endowed with the norm defined in (2.1).
In particular we set

MPHQ) = MPHQ, ), MP(Q) = MPQ),
MQ) =M\ (Q), MP* = MPAYRY).
It is known that (see [20])

A — _
MIY(Q) < MPHQ), if p<gq, norTn

p q
Moreover we define:
V MP*(Q) as the subspace of M”*(R2) of the functions g such that

Lim gl =0

MP*(Q) as the closure of L®($2) in MP*().

We recall (see [20]) that MP*(R2) is smaller than V M?-*(§2) and it can be
characterized as the space of the functions g € M”*(Q) such that:

Q) = S ., .—>0 as —>0.
olg, Q2I(r) sup X8 1 30
supyeq |E(x, D)<t

We say modulus of continuity of g € MP*(Q) a function o :10, 1] — R,
such that

olg, Ql(r) <o(r) Vtelo, 1], o(t) -0 as 7v—0.

Following G. Di Fazio [10], now we prove

Lemma 2.1. If A € [0, n[ and ¢ e R, then

. 2A+8
—At+e &
su X — dy < t -
sup /B'(x)lf(y)ll Yl Y= o I s

forevery t €10, 1] and f € M"*.
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Proof. Proceeding as in Lemma 1.1 of [10] and observing that

/ |FDllx = y| 7o dy = Zf |FOllx =y 7+ dy <
B,(x) k1 <‘x y‘<_
oo oo
=S [ ey <2 Z RTINS
+ B (x) 28
k=0 o3
we have the result. U

Now let us consider the parameters p, q, k, r, A satisfying one of the
following conditions:

1 1 k&

25) keN,1<p<g<r<+400,0<i<n, yi=———4+->0,
q p n
withr > g when p = £ > 1 and A = 0, and with A > n(1 —ry) when
ry < 1;
2.51) k=1, l<p=gq<r<n, A=n-—r.

Lemma 2.2. If (2.5) or (2.5) holds and if g € M"*, then gu € L9 for every
u € W5 and there exists ¢ = c(n, k, D, q,r, A) such that

(2.6) lgulg e < cligll s Nluell i, -

Proof. 1f (2.51) holds, the result follows from a theorem of C. Fefferman [11]
(see also [7]).
Otherwise, we have to consider the two different cases: A = 0 and A > 0.
In the first case, it turns out that ry > 1 and, setting t := 2 we have

(T— 1)>i

ot K Then (2.6) is a consequence of Theorem 3.1 of [12].

In tﬁe second case, we observe that there exists « such that:
2.7 n—A<a<nry, oa<n.

In fact, if ry > 1, itis sufficientto take &« € Jn — A, n[; if ry < 1 then, by
assumption, we have
n—A<nry<n

and again there exists « satisfying (2.7).
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Applying Lemma 2.1 we obtain:

xeRn

A(g) = sup </ lgWI"|x — yl“‘”dy) <
By (x)

<aller|’

On the other hand, as a consequence of Theorem 1 of [16], we obtain:

|gulg e < 2 ANl i, -

From the previous inequalities we deduce (2.6). Ol

3. Embedding theorems for M ?-*(R) spaces.
In [20] (see also [1], [17]) the following result has been shown:

Lemma 3.1. For every open subset 2 of R" having the cone property with cone
C and every dy € R, there exists a sequence (£2;);en of open subsets of R" such
that

(31) UieNQi = Q,‘
3.2) diam Q; < dy VieN;

3.3) there exists m € N such that every collection of m + 1 elements of the
sequence {2;};en has empty intersection;

(3.4 Q;, i € N, has locally Lipschitz boundary with Lipschitz coefficient
depending only on C,

3.5) foreach i € N, there exists a linear extension operator
E; : WEP(Q) — WEPRY),  keN, pell, +ool,

such that

I E: () clvl

<
whr R = whr @)’

where ¢ depends onlyonn, p,m, k, C, dy.

We prove the following:
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Theorem 3.2. Let 1 < p < g <r < 400, ke N,0 < A < n as in the
hypothesis of Lemma 2.2.

If Q is an open subset of R" having the cone property with cone C and
g € M"*(Q), then, for every u € WKP(Q), it turns out that gu € L1(Q2) and
there exists a constant c = c(n, p, q, k, r, ., C) such that

If Q has not the cone property, then the same result holds with Wg 7(Q)
instead of W5P(Q2) and with ¢ = c(n, p, q, k,r, X).

Proof. First we recall (see [20] or [6]) that, if g € M"*(R2), then the zero
extension g of g outside Q belongs to M"* and the following estimate holds:

180l o = COlIEl yyngy -
where ¢y = co(n, 2, A).

Then, using Lemma 2.2, we have

. q q . q
/Rn(l)(szigollEl(M)l) dx = aillgl,. o, 1ECON, g0 -

By (3.1), (3.2) with dy = 1, (3.5) we have

[tsurar <3 [ xasollEsol dx <
Q R~

ieN

<cllght, o 2 ullt, o
ieN l

where ¢, € R, is independent of gy, # and the index i € N. Since g > p, we
deduce that

q
P
Iy < ¢ q ul|?
/Q lgultdx < eslgllt (ZN; || ||Wk,p(9,,)>
S

and therefore, by (3.3),

q q 4
u dx <C . u ’
/Q lguldx < callgll?,, o ul?,,

that is the desired result when €2 has the cone property.
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If  has not the cone property, but u € Wé‘ (), the zero extension ug of
u outside 2 belongs to W57 (R") and the zero extension g, of g outside € is in
MP*(R™). So we can immediately apply Lemma 2.2 with g, and u, instead of
g and u, respectively. ([l

Corollary 3.3. If the hypotheses of Theorem 3.2 hold and g € MP*(2), then
|gu|q,§2 =< 8||u||Wk,p(Q) + Celulp,ﬂ y

whereNCS depends only on n, p, q, k,r, A, C, ¢ and on modulus of continuity of
g in MP*(Q).

Proof. Since g € MP*(2), there exists g, € L>(€2) such that

g = 8ell yyraqy = %

where c is the constant defined by (3.6).
Using (3.6) we have:

&
|gulq,§2 =< —||M|| kp + |gs|oo,§2 |M|q,§2-
2 WeP(Q)

On the other hand, as a consequence of é > % — 'ﬁ there exists ¢, such
that |
Celll P,
lulgo < -——————lull ipey + —/— >
T 2e(gele + 1T WO g + 1
from which the assert. U

Corresponding to p € ]1, +oo[, we consider the numbers A; and r;,
i =1, 2, satisfying

(3.7) rp>p, n<irp, A=0
or
(3.8;) rp>p, n=>irp, n—irp <iA; <n.

Moreover, let p’, 6 be numbers such that

/ 1 P’
A) 1<p <p, =>1-——,
0 n

r ri . ’ n
1505—/, 0<—/ if p:T>1 and XA; =0,
p 1

1 1 1 !
- > l—p’(i——) if r> E , - > l—p—(ki—n+iri) if
0 n o r; i 0 rin

As a consequence of Theorem 3.2 we have

IA
- =
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Corollary 3.4. Fixed p € ]1,+o0o[ and i € {1,2}, let A, r;, p',0 be as in
(3.7;) and A) or in (3.8;) and A). If Q has the cone property with cone C and
g € M (Q), then gu € LP9(Q) for every u € WP () and there exists a
constant ¢; = ¢;(n, p, i, A;, C) such that

(3.9) 18ul0.0 < Cill8l o) 120 i g -

If Q has not the cone property, then the same result holds with W;’p ()
instead of WP () anc{ with ¢; = c;(n, p,ri, ;).
Moreover, if g € M""*1 (), then we also have

(3.10) gulpo.0 = ellully,.q +c@lulpya,

where c(¢) depends only on the above-mentioned parameters, ¢ and the modu-
lus of continuity of g in M"*(Q).

4. BMO and VMO spaces.

Let us denote by S(€2, t), t € R,, the family of the balls in R” centered in
Q withradius 7 < ¢.
We assume that Q2 satisfies the following condition:

|B

= sup < 400
Bes,1) 1B N Q|

Under this assumption we define the space BMO (€2, 7) of the functions
ge L! () such that

loc

1
sup
Bes@,n 1B N Jpna

[&lgmo . = ig - gBﬂSZ\ < +00,

where
. 1

8 = 8
Bne BN Q| Jpna
It is known (see [21]) that if " is an open subset of R” containing €2, then,
forevery r € R, and g € BMO (€', 1), the restriction of g to €2 is in BMO (2, )
and

4.1 200

[&lgmo . = 8lemo @)
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where

) |B|
Olt = Sup .
Bes,n |B N Q|

As in [21], we set
BMO (2) = BMO (2, t,),
where t, :=sup{te R, : o < a}.

Moreover, we define BMO1(£2) as the space BMO (€2, 1)NM(£2), endowed
with the norm

I8l gp0, () = [81BMO @1y T 18140 -
In [6] it has been proved that BMO;(2) C BMO (£2) and the following

Lemma 4.1. For every A € [0, n[ we have:
BMO,(Q) ¢ VM'"*(Q).

Moreover, for a fixed k € R, there exists a constant ¢ = c(k, n, A) such that
lgll <ct"*lo (E)II |
8 MY Q1) — g ¢ 8 BMO, ()

Vi €10, ke”77], ¥ g € BMO ().

Following D. Sarason [15], we denote by VMO (£2) the subspace of
BMO (£2) consisting of the functions g such that :

nlg. 211 == [8lgyo @y — 0 as 1 —>0.

We say modulus of continuity of g € VMO (£2) a function 7 :]0, 1] — R such
that:

nlg, 1) < n() Vtel0, 1], n(i)—0 as t—0.

Now let us consider the following assumptions on €2:

h) there exist §, M € R, m € N, a locally finite open covering (U;);c; of
0 and diffeomorphisms ®; : U; — B; of class W', i € I, such that:

4.2) {x € Q: dist(x, Q) < 8} C Uie; @' (B, %)) ;
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“4.3) any intersection of m + 1 sets of the collection (U;);¢; is empty ;
4.4) O,U;,NQ) ={xeB;:x,>0}, Viel;

(4.5) the components of ®; and ®; ' i eI, have W"*-norm bounded by M .

It is known that (see [22], [4], and Theorem 5.1 of [21]), under suitable
hypotheses of regularity on €2 that are satisfied when h) holds, there exists a
linear extension operator

Pt Lioo(R) = Lig (R")
endowed with the following properties:
(4.6) if g € MPX(Q), then p(g) € MP*(R") and there exists ¢ =
c(n, §, m, M) such that:
1PN ypogen y = N8 o,y YEE10, 115

“4.7) if g € BMO(€2), then p(g) € BMO;(R") and there exist ¢ =
c(n,8,m, M) and 8 = B(n, M) such that:

[p(g)]BMO(R”,/Sf) S C([g]BMO(Q,t) + ||g||M1'”71(Q,t)) ’
Vt €10, min{1, 8}[,

(4.8)  if g€ L™(RQ), then p(g) € L™(X).

We remark that, as an obvious consequence of (4.7) and of Lemma 4.1, we
have that if g € VMO (2) N M(L2) then p(g) € VMO (R").

5. Applications to elliptic equations.

Here we suppose that n > 3 and Q2 satisfies the condition H), that is h)
with C"! instead of W1,

Let us fix p € ]1, +o0[ and consider in €2 the elliptic linear operator with
real coefficients:

5.1 Lu =— 2”: Ajjlly,x; + Xn:aiux,. +au,
i=1

ij=1
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where

(5.2) a;j = aj; € VMO () N L™(Q), i,j=1,...,n,

n
(5.3) > ayEE = vlE? aeinQ, VEER', veR.,
i, j=1

(5.4) aeMM(Q), i=1,...n, aeM>™Q),

with r{, Ay, r2, A, are the numbers defined in (3.7;) or (3.8;).

We remark that u — Lu is a linear bounded operator from W?7() to
LP(Q).

Let us denote:

n;; the modulus of continuity of the coefficient a;; in VMO (£2);

1
n= (sz':l ’71'21)2;
o; the modulus of continuity of a; in M"-*1();
0o the modulus of continuity of @ in M"*2();
K = max{la;j|c.@, lla:l lall 1.

Theorem S5.1. Let p,, p1 € [1,+oo[, pe]l,+ool, pi < p (i =0,1). Then
for all u such that:

M(Q)° M"272(Q)

(5.5  ueWERP@NWLI@NLYQ), LueL’(SQ),

loc

we have u € W>P(2) and

(5.6) < c(|Lulp.o + ulp,2)

el

where ¢ = c(n, p, v, n, 0;, 0y, K, Q).

Proof. Firstly, we prove that
(5.7) ueWol(Q).

Obviously, we have to consider only the case p; < p. We observe that, if
& € 9(2), we have

(5.8) Eue WP (Q).
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Then, letus fix k e Nand 6y, ..., 0, €1, ﬁ] such that

k
1
[To. =%, —>1-2 n=1..k,
h=1 P On n

and moreover, fori =1, 2,

1 ] 1
s l—p(m =) i >, h=1, ..k,
9h n r; 1

1

ﬂ()Li—n—l—iri) if riSnT, h=1,..,k.
n i

On ri

From the above relations we deduce that, for h = 2, ..., k,

h—1
P 1_[9j
1 =

0}1 = p ) - > 1 - = )

= o n

P 1_[9j

j=1

1 h—1

1 1 n
—>1- 0i(-——) if ri>—
o P 1/1_11 i =) i

h—1
Pll_[9j
—>1—J—:l(ki—n+iri) if r <
9h rin

- =

By applying &k times Corollary 3.4, from (5.8) we get

(5.9) > aiEu)y, +ague L) = LI(@),

i=1

and therefore, by (5.5),

(510) - Z aijux,-xj € Lﬁ)c(ﬁ) .

ij=1
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As a consequence of known results (see Theorem 4.2 of [8] and Theo-
rem 3.2 of [9]), (5.5) and (5.10) yield (5.7).

Moreover, from H) we deduce that there exists d € ]0, 1[ such that, for
every x € 2, we have B(x,d) C Q or B(x,d) C U;, forsome i € I.

Let us consider 7, 7" € Ry such thatr <7’ < d, ¢ € Cj°(£2) such that:

¢p, =1, suppp C By, sup|D*@| < co(r' —r)7, Vo eNg,

where c, is a constant dependent only on «.
Fixed x € 2, we put

Y=y :iyeR" = ¢(y —x).
As a consequence of (5.5) and (5.7), we have:
(5.11) wueWZ’”(Q)ﬂWOl’p(Q).

Moreover, since supp (Yu) C B(x, d), from the recalled results of [8] and
[9], we deduce the bound:

G512 Wl o || = D a@un,

+ |¢M|p,§2 )
= Ay
i,j=1

where c; depends only on n, p, v, n, K, Q.
Let us observe that, as a consequence of Corollary 3.3, we have that

(5.13) };awu)x,, Fayu| < eyl g, +eclvul,

where c(¢) is a constant dependent on €, p, r;, A;, C. From (5.12) and (5.13) we
have the bound

(5.14) 19l o0y < ULAWIp0 + Yuly ),
whence
(515 Nl gy = €2(ILulpacm +

+ D10 + v ulp. ) + 1 + ¥ Dulp0)

i=1
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From Corollary 3.3 we have

(5'16) |al“//X,u|p,Q S C3||‘//X,u||wlp(9) .

Further, setting

X=‘/f+Zi//x,»+ Zv/x,»xja
i=1

ij=1

from Theorem 3.1 in [12], it follows that there exists b € ]%, 1[ such that

1-b

(5.17) 120 10y < €allX0xxlp QXU + X122 -

From (5.15), (5.16) and (5.17) we get

(5.18) [[ael

/ —2(1+b)
W2P(Q(x,r)) <cs(r'—=r) (lLulp,Q(x,r’)) +

b 1-b
+ |M|p0,§2(x,r/) + |Mxx|[7,Q(X,V/)|M|p0,ﬂ(x7r’)) y

which, by a well known lemma (see Lemma 3.1 of C. Miranda [13]), yields:

el 2 n @, 2y = CollLttlp.aay + [l 00xa)) -

From the last inequality and from Lemma 1.1 we have the assert. (]
REFERENCES
[1] R.A. ADAMS, Sobolev spaces, Academic Press,1971.

(2]

(3]

(4]

(5]

S. CAMPANATO, Proprietd di inclusione per spazi di Morrey, Ricerche Mat., 12
(1963), pp. 67-86.

S. CAMPANATO, Proprietd di una famiglia di spazi funzionali, Ann. Scuola
Norm. Sup. Pisa Cl. Sci., (3) 18 (1964), pp. 137-160.

A. CANALE - P. DI GIRONIMO - A. VITOLO, Functions with derivatives in
spaces of Morrey type and elliptic equations in unbounded domains, to appear.

A.CANALE - M. LONGOBARDI- G. MANZO, Second order elliptic equations
with discontinuous coefficients in unbounded domains, Rend. Accad. Naz. Sci.
XL, Mem. Mat., (1) 18 (1994), pp. 41-56.



(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

IMBEDDING ESTIMATES AND ELLIPTIC. .. 103

A. CAVALIERE - G. MANZO - A. VITOLO, Spaces of Morrey type and BMO
spaces in unbounded domains of R", to appear in Rend. Accad. Naz. Sci. XL,
Mem. Mat..

F. CHIARENZA - M. FRASCA, A remark on paper by C. Fefferman, Proc. Amer.
Math. Soc., 108 (1990), pp. 407-409.

F. CHIARENZA - M. FRASCA - P. LONGO, Interior WP estimates for non
divergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40
(1991), pp. 149-168.

F. CHIARENZA - M. FRASCA -P. LONGO, W?? solvability of the Dirichlet
problem for non divergence elliptic equations with VMO coefficients, Trans. Amer.
Math. Soc., 336 (1993), pp. 841-853.

G. DI FAZIO, Holder-continuity of solutions for some Schroedinger Equa-
tions, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 173-183.

C. FEFFERMAN, The uncertainly principle, Bull. Am. Math. Soc., 9 (1983),
pp- 129-206.

A.V. GLUSHAK - M. TRANSIRICO - M. TROISI, Teoremi di immersione ed
equazioni ellittiche in aperti non limitati, Rend. Mat., 7 (4), 9 (1989), pp. 113-
130.

C. MIRANDA, Alcune osservazioni sulla maggiorazione in LY delle soluzioni
deboli delle equazioni ellittiche del secondo ordine, Ann. Mat. Pura Appl., (4) 61
(1963), pp. 151-169.

C. MIRANDA, Sulle equazioni ellittiche di tipo non variazionale a coefficienti
discontinui, Ann. Mat. Pura Appl., (4) 63 (1963), pp. 353-386.

D. SARASON, Functions of vanishing mean oscillation, Comm. Math. Helv., 49
(1974), pp. 260-276.

M. SCHECHTER, Imbedding estimates involving new norms and applica-
tions, Bull. Am. Math. Soc., 11 (1984), pp. 163-166.

E.M. STEIN, Harmonic Analysis: Real variable methods, Orthogonality and
Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993.

M. TRANSIRICO - M. TROISI, Equazioni ellittiche del secondo ordine a coeffi-
cienti discontinui di tipo non variazionale in aperti non limitati, Ann. Mat. Pura
Appl., (4) 152 (1988), pp. 209-226.

M. TRANSIRICO - M. TROISI, Sul problema di Dirichlet per le equazioni
ellittiche a coefficienti discontinui, Note Mat., 7 (1987), pp. 271-3009.

M. TRANSIRICO - M. TROISI - A. VITOLO, Spaces of Morrey type and elliptic
equations in divergence form on unbounded domains, Boll. Un. Mat. Ital., (7) 9-B
(1995), pp. 153-174.



104 PAOLA CAVALIERE - MARIA LONGOBARDI - ANTONIO VITOLO

[21] M. TRANSIRICO - M. TROISI - A. VITOLO, BMO spaces on domains of R", to
appear on Rend. Mat..

[22] A. VITOLO, Functions with derivatives in spaces of Morrey type, to appear.

DIIMA,

Universita di Salerno,

Sede distaccata, Via S. Allende,
84081 Baronissi (SA) (ITALY)



