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ABSTRACT: We investigate electromagnetic propagation in
uniaxial dielectrics with a transversely varying orientation of
the optic axis, the latter staying orthogonal everywhere in the
propagation direction. In such a geometry, the field
experiences no refractive index gradients, yet it acquires a
transversely modulated Pancharatnam−Berry phase, that is, a
geometric phase originating from a spin−orbit interaction. We
show that the periodic evolution of the geometric phase versus
propagation gives rise to a longitudinally invariant effective
potential. In certain configurations, this geometric phase can
provide transverse confinement and waveguiding. The
theoretical findings are tested and validated against numerical
simulations of the complete Maxwell’s equations. Our results
introduce and illustrate the role of geometric phases on electromagnetic propagation over distances well exceeding the diffraction
length, paving the way to a whole new family of guided waves and waveguides that do not rely on refractive index tailoring.
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Several materials in nature feature an anisotropic, i.e.,
direction-dependent, electromagnetic response. Anisotropy

is usually modeled by second-order tensors, in general coupling
all the components of the electromagnetic field.1−5 The simplest
case corresponds to nonmagnetic anisotropic dielectrics,
described by the constitutive equations D = ϵ0ϵ·E and B =
μ0H, where ϵ is the relative permittivity tensor and ϵ0 and μ0 are
the vacuum permittivity and permeability, respectively. When the
permittivity tensor is constant in space, for a given wavevector
direction Maxwell’s equations support two mutually orthogonal
plane-wave eigensolutions with distinct refractive indices, i.e.,
exhibit birefringence. Orthogonality is no longer maintained
when the optic axis is inhomogeneously rotated in the plane
normal to the wavevector, yielding a pointwise accumulation of
Pancharatnam−Berry phase (PBP) upon propagation. Only
recently has it been recognized that the phase front of a beam can
be modified by means of the PBP.6−10

We refer to monochromatic waves (angular frequency ω, time
dependence ∝e−iωt, vacuum wavelength λ, and wavenumber k0 =
2π/λ) in uniaxial crystals (i.e., two out of the three eigenvalues of
ϵ coincide) with dielectric tensor ϵD = ϵ = (ϵ⊥,0,0; 0,ϵ∥,0; 0,0,ϵ⊥)
in the diagonal basis x′y′z′, corresponding to the principal axes.
The refractive indices for electric fields orthogonal or parallel to

the optic axis are = ϵ⊥ ⊥n or = ϵ∥ ∥n , respectively. We

consider a uniaxial with a point-dependent rotation of ϵ around

the principal axis ̂ = ′̂z z , the latter coinciding with the direction
of wave propagation. In such a configuration the ordinary and
extraordinary refractive indices always remain equal to n⊥ and n∥,
respectively, and waves experience no spatial walk-off. Defining θ
as the local angular rotation of x′y′z′ with respect to the
laboratory framework xyz (Figure 1) and using the circular
polarization basis L̂ = (x ̂ − iy)̂/√2 (LCP, left-circular) and R̂ =
(x ̂ + iy)̂/√2 (RCP, right-circular), plane waves in this uniaxial
dielectric evolve according to
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where δ(z) = k0zΔn is the retardation between ordinary and
extraordinary components, Δn = n∥ − n⊥ the birefringence, and
n ̅ = (n∥ + n⊥)/2 the average index of refraction.11 Owing to
birefringence, eqs 1 describe a continuous power exchange
between the two circular polarizations.
Let us consider a pure RCP at the input z = 0 by setting ER(0)

= 1 and EL(0) = 0. When δ = (2l + 1)π, with l an integer, the RCP
wave transforms into LCP: this change in polarization state is
accompanied by a dynamic phase changeΔϕdyn = (2l + 1)πn̅/Δn
and a phase shift Δϕgeo= 2θ of purely geometric origin, a
manifestation of PBP.11 Analogous dynamics occurs for an LCP
input, now leading to an inverted geometric phase, i.e., Δϕgeo=
−2θ. Equations 1 show that geometric phases can modify
electromagnetic wavefronts.11−15 However, since diffraction is
neglected, eqs 1 rigorously apply only to plane waves or
wavepackets propagating in the anisotropic material for distances
much smaller than the Rayleigh length. To study the propagation
over longer distances, we must go beyond the plane-wave limit
implicit in eqs 1 and investigate the interplay between diffraction
and the Pancharatnam−Berry geometric phase, as we will do in
the following.
We note that, while the PBP is maximum in the planes where

δ(z) = (2l+1)π, it vanishes in the planes where δ(z) = (2l)π and
takes intermediate values in between.16 Hence, in homogeneous
media, the PBP oscillates along propagation, apparently without
cumulative effects. As we reported recently16 and in analogy to
quasi-phase matching in nonlinear optics, a periodic modulation
of the optic axis along the propagation direction z can yield a net
cumulative PBP versus propagation, provided the period equals

the beating length λ/Δn. Moreover, if the periodic modulation
along the direction of propagation is associated with an
inhomogeneous transverse distribution of the optic axis,
waveguiding via the PBP can be achieved.16

In this Letter we show that significant long-distance effects of
the PBP on wave propagation can be obtained even in media
perfectly invariant with respect to the propagation direction, that
is, in the absence of longitudinal modulations of the optic axis
distribution. We demonstrate, in particular, that the fast
longitudinal modulation of the geometric phase gives rise to an
effective z-invariant photonic potential through a Kapitza-like
effect.17 This potential can support lateral confinement, paving
the way to the realization of novel electromagnetic waveguides
not based on refractive index changes, but on spin−orbit
interactions between field polarization and a wavefront. At
variance with the case of longitudinally modulated media,16 such
PBP confinement is independent of the input polarization and it is
immune from distributed reflections, a relevant feature in
applications.

■ EFFECTIVE PHOTONIC POTENTIAL

For the sake of simplicity, we refer to a structure and fields
varying only in the plane xz, a (1 + 1)D geometry resulting from
setting ∂y = 0 in Maxwell’s equations. The inhomogeneity
consists of an x-dependent rotation of the principal axes of the
uniaxial crystal (as sketched in Figure 1). The principal
eigenvalues ϵ⊥ and ϵ∥ of the relative permittivity tensor remain
independent of the spatial position. Neglecting anisotropy in the

Figure 1.Material configuration in the transverse plane. Rotation angle θ of the principal axes x′y′ versus xywhen the distribution of θ is (a) Gaussian or
(b) hyperbolic tangent. The angle θ is positive when the rotation is counterclockwise from the observer’s point of view. The labeled points (A, B, C) in
the graphs correspond to orientation of the principal axes as sketched above. In the plane-wave limit and for δ(z) = (2l + 1)π, distributions (a) and (b)
yield a polarization-selective lens and a spin-dependent deflector based on the photonic spin-Hall effect, respectively. (c) 3D sketch of the optic axis
distribution corresponding to the case plotted in panel (a). The structure is continuous and invariant along the propagation coordinate z (only 6 slices
are shown for the sake of clarity). The black rods correspond to the local optic axis. Solid white lines represent the corresponding profile of the rotation
angle θ across x, also rendered by the superimposed color map.
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diffraction operator,18 in the laboratory framework xyzMaxwell’s
equations for paraxial waves can be cast as

∇ +
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with ∇xz
2 = ∂x

2 + ∂z
2. The paraxial approximation in eq 2 allows

neglecting the longitudinal electric field, the latter relevant only
for beam sizes comparable with or smaller than the wavelength.19

Next, we rewrite eq 2 in a rotating framework locally aligned to
the principal axes, introducing the 2D rotation operatorR around
the symmetry axis z:̂

θ
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−
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with θ varying only across x, as in Figure 1. Without loss of
generality, we assume that for θ = 0 the optic axis is parallel to y.̂
T h e e l e c t r i c fi e l d i n t h e r o t a t e d s y s t em i s
φ = ′ + ′̂ ̂E x z x x E x z y x( , ) ( ) ( , ) ( )o e , with Eo and Ee the local
ordinary and extraordinary components, respectively. After
introducing the tensor T = (0,−1; 1,0) (proportional to Pauli’s
matrix S2, T = −iS2), the application of eq 3 into eq 2 provides
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In eq 4 ϵD is a diagonal matrix, ϵD = (n⊥
2 ,0; 0,n∥

2), constant in space
due to the uniform distribution of n⊥ and n∥, and reduced to a 2×
2 tensor due to the transverse character of the electric field. The
presence of terms depending on geometry (i.e., θ and its
derivatives) resembles transformation optics.20 All the terms
containing T account for power exchange between ordinary and
extraordinary components: owing to diffraction, a purely
ordinary (extraordinary) wave at any given point is partially
coupled into neighboring (transverse) regions with different θ,

thus yielding a mutual interaction between the two orthogonal
polarizations, regardless of the reference system. Consistently,
the size of such terms depends on the spatial derivatives of θ.
Such non-Abelian evolution and the absence of invariant modes
were predicted earlier for light propagating in smoothly
inhomogeneous anisotropic media.21

We apply the slowly varying envelope approximation through
the transformation Eo = eik0n⊥zψo and Ee = eik0n∥zψe, i.e., factoring
out the dynamic phase responsible for polarization rotation
versus propagation. For paraxial beams, eq 4 yields
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Equations 5 and 6 indicate that the waves are not subject to any
refractive index gradients, as the transverse phase modulation is
due only to the pointwise rotation of the principal axes. For small
birefringence n⊥ ≈ n∥, eqs 5 and 6 resemble Pauli’s equation for a
c h a r g e d p a r t i c l e o f m a s s m ,

ψ ψℏ = − + · + ·ψ ψ∂
∂

ℏ ∂
∂

I Hi U x x t( ) ( , )
t m x2 LS

2 2

2 , where I is the

identity matrix.22 From the well-known analogy between 2D
quantum mechanics and paraxial optics in the monochromatic
regime, the propagation coordinate z plays the role of time.HLS is
a Hermitian matrix with zeroes in the main diagonal (i.e., a
hollow matrix), accounting for spin−orbit coupling.23 In this
analogy ψ is a two-component spinor with elements ψo and ψe,
respectively, and U(x) is a scalar potential acting equally on both
components. HLS(x,t) is proportional to S2 and equivalent to a
time-dependent magnetic field normal to the particle spin and

Figure 2. FDTD evolution in the plane xz of an input wavepacket linearly polarized along either (left) x or (right) y. Square of the electric field
component along x (upper row, a, b) and along y (center row, c, d) averaged over a time period. (Bottom row, e, f) Time-averaged intensity. The red
solid lines in (e) and (f) correspond to diffraction in a homogeneous sample (θ0 = 0) encompassing a Rayleigh length of 42 μm.Here θ0 = 360° and wθ =
5 μm. In this case diffraction losses and the initial focusing are mainly ascribed to a mismatch between the input profile and the guided mode.
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inducing spin-rotation (in our case a power exchange between
extraordinary and ordinary components).
Following the similarity drawn above, the second terms on the

RHS of eqs 5 and 6 correspond to a photonic potential V(x) =
−k0[n2(x) − nj

2]/(2nj) (j = o, e), as it appears in the paraxial

Helmholtz equation ψ= − +ψ ψ∂
∂

∂
∂

i V x( )
z n k x

1
2 j 0

2

2 in the presence

of a refractive index distribution n(x). In eqs 5 and 6 the potential
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arises from the transverse rotation of the dielectric tensor, which
acts equally on both ordinary and extraordinary components.
When the coupling terms on the RHS of eqs 5 and 6 are
negligible as compared to V(x) (see Supporting Information),
the latter can lead to transverse confinement and waveguiding
with wavelength-independent mode profiles determined only by
the spatial distribution of θ, i.e., the geometric arrangement of the
anisotropic dielectric. The wavelength independence of the
mode profile stems from the fact that both the photonic potential
given by eq 7 and the effective mass in the particle-like model are
inversely proportional to the vacuum wavenumber k0. The
effective potential eq 7 originates from the periodic oscillation of
the geometric phase Δϕgeo along z, as the latter phase can be
associated with a periodic potential W(x) sin(k0zΔn) acting on
the wave. Owing to the Kapitza effect which stems from the
transverse modulation of the effective kinetic energy,17,24 a z-

invariant potential proportional to( )W
x

d
d

2
arises (see Supporting

Information). Wave propagation strongly depends on the
symmetry of the distribution θ(x). When θ is bell-shaped
(Figure 1a), the effective photonic potential has an inverted-W
shape and supports leaky modes.17 When θ(x) has an odd

symmetry and >θ θ 0
x x

d
d

d
d

2

2 around x = 0 (Figure 1b), the photonic

potential is maximum in the center: light gets repelled from the
region around x = 0, and no lateral confinement is expected.

■ FDTD SIMULATIONS
A first validation of the theory consists in verifying that the
electromagnetic propagation is essentially independent from the
input polarization. To this extent we assumed θ to be Gaussian by

setting θ θ= −
θ

( )x( ) exp x
w0

2

2 . According to the theory, both

polarizations sense the potential eq 7, thus should undergo
confinement around x = 0. Figure 2 shows the time-averaged
wavepacket evolution for inputs linearly polarized along either x
or y, respectively. The corresponding snapshots of the electric
field can be found in the Supporting Information. The simulation
results are in excellent agreement with eq 2 and confirm the
theoretical predictions: the wave propagation depends negligibly
on the input polarization, a result that is counterintuitive when
considering the birefringence. The overall electromagnetic
intensity is plotted in Figure 2e,f: in agreement with eq 7, the
optical wavepacket undergoes a marked lateral confinement as

Figure 3. FDTD simulations for (a, b) the defocusing regime [θ θ=
θ( )x( ) tanh x

L0 with Lθ = 5 μm] and (c−f) the waveguiding regime

[θ θ= −
θ( )x( ) exp x

w0
2

2 with wθ = 5 μm]. (a) θ0 = 180°, (b) θ0 = 360°, (c) θ0 = 90°, (d) θ0 = 180°, (e) θ0 = 270°, and (f) θ0 = 360°. The red solid lines

show beam diffraction in a homogeneous medium, i.e., θ0 = 0°. The white dashed lines correspond to the air/medium interface.

Figure 4. PBP guides featuring a V-shaped potential. (a) Rotation angle θ (blue solid line) and the corresponding potential V from eq 7 (green dashed
line) for x0 = 10 μmand a = 3× 1011 m−2. Time-averaged intensity extracted from FDTD simulations with (b) and without (c) the guiding structure. Red
dashed lines mark the edges of the guide in |x| = ±x0.
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compared to a homogeneous sample, where the same input beam
would diffract with a Rayleigh length of about 42 μm (red solid
lines in the figure). Figure 2 also demonstrates that eq 2
satisfactorily approximates the complete set of Maxwell’s
equations for Δn = 0.2. Figure 3 compares the propagation of
a wavepacket in confining or repelling inhomogeneous
structures, confirming the theoretical predictions. Confine-
ment/repulsion become more effective for larger θ0, owing to a
correspondingly stronger photonic potential.

■ WAVEGUIDE DESIGN
Although the guides analyzed above support leaky modes, eq 7
can be used to design a V-shaped photonic potential, thus
canceling losses in the bulk region. For example, let us consider a
rotation angle θ given by ax2 for |x| < x0, with a linear profile for |x|
> x0, its slope determined by the continuity of θ (see Figure 4a).

Equation 7 provides a potential =V x x( ) rect ( )a x
n k x

2
2 2

j

2 2

0 0
support-

ing a finite number of guided modes (see Figure 4a). The FDTD
simulations in Figure 4b,c confirm that light gets confined,
without coupling to the radiation modes in the bulk.

■ CONCLUSIONS
We investigated electromagnetic wave propagation in inhomoge-
neous uniaxials with a continuous rotation of the dielectric tensor
around the wavevector direction. We found that the evolution of
the wavepacket profile is governed by the geometric phase. A
beam of arbitrary wavelength can be either focused or defocused
according to the spatial dependence of the optic axis rotation in
the transverse plane, leading to lateral trapping for a bell-shaped
distribution. Quite counterintuitively, in the absence of walk-off
an inhomogeneously twisted anisotropic medium can provide an
overall isotropic response. The results apply to all frequencies in
the electromagnetic spectrum and were validated against
numerical simulations. They could find applications toward a
brand new class of waveguides based on geometric phases.
Potential systems for the experimental demonstration include
liquid crystals,25 metastructures,26,27 and laser-nanostructured
glasses.28 Future developments include investigating the
connections with gauge optics5,29 and the interplay between
PBP and spin redirection Berry phase.30

■ METHODS
For the numerical simulations we employed the open-source
finite-difference time-domain (FDTD) code MEEP31 and
continuous-wave excitation, corresponding to λ = 1 μm. The
used frequency was chosen in the optical spectrum due to its
relevance for applications, although our findings are valid
regardless of the wavelength. The source was a Gaussian-shaped
dipole ensemble, 3 μm wide across x, infinitesimally narrow
along z, and centered in x = z = 0. The uniaxial medium starts at z
= 2 μm, with refractive indices n⊥ = 1.5 and n∥ = 1.7, respectively,
corresponding to standard nematic liquid crystals, where the
optic axis can be rotated locally.11
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