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Abstract We study the dynamics of an elastic body whose shape and po-
sition evolve due to the gravitational forces exerted by a pointlike planet.
The main result is that, if all the deformations of the satellite dissipate
some energy, then under a suitable nondegeneracy condition there are only
three possible outcomes for the dynamics: (i) the orbit of the satellite is un-
bounded, (ii) the satellite falls on the planet, (iii) the satellite is captured in
synchronous resonance i.e. its orbit is asymptotic to a motion in which the
barycenter moves on a circular orbit, and the satellite moves rigidly, always
showing the same face to the planet. The result is obtained by making use
of LaSalle’s invariance principle and by a careful kinematic analysis showing
that energy stops dissipating only on synchronous orbits. We also use in quite
an extensive way the fact that conservative elastodynamics is a Hamiltonian
system invariant under the action of the rotation group.

1 Introduction

In this paper, we study the dynamics of an elastic satellite interacting with a
pointlike planet. Precisely, we study the dynamics of an elastic body, moving
in the gravitational field generated by a pointlike mass. We consider the
equations of motion of continuum mechanics, with body forces due to the
gravitational fields and internal traction arising from the body deformation,
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without introducing any further approximation. We prove that, if the internal
structure of the satellite is such that any deformation dissipates some energy
and if a suitable nondegeneracy condition is satisfied, then the dynamics of
the system has only three possible final behaviors:

(i) the orbit of the satellite is unbounded;
(ii) the satellite falls on the planet;
(iii) the satellite is captured in synchronous resonance.

By item (iii) we mean that the shape of the body reaches a final configuration,
that its center of mass moves on a circular orbit and that it always shows the
same face to the planet, i.e. the planet is at rest in a frame comoving with
the satellite.

Concerning the inner structure of the body we make as few assumptions as
possible. Precisely we assume that the stress tensor is the sum of two terms,
the first one being conservative, i.e. it is the L2 gradient of a “stored energy
functional”, and a second one being nonconservative. On the second term
we only assume that, as a consequence of its presence, there is dissipation of
energy at any time at which the time derivative of the Cauchy Green stress
tensor does not vanish.

The idea of the proof is to use LaSalle’s principle (see [15]), which is
a generalization of Lyapunov theorem. LaSalle’s principle ensures that any
precompact orbit approaches an invariant set which is contained in the man-
ifold where the Lie derivative of the energy vanishes. The core of the paper
consists in characterizing such an invariant set. Since in such an invariant set
the dynamics is conservative, it turns out that a convenient framework for
our study is that of Hamiltonian systems with symmetry as developed for
example in [19] or, in a form directly useful for our problem, in [23].

So we start by writing down the Lagrangian and the Hamiltonian of the
conservative part of the system and then we add to the equations of motions
the nonconservative forces.

Then we start analyzing the nondissipating manifold ND, namely the
submanifold of the phase space in which dissipation vanishes. We first prove
that ND consists of rigid motions, and then we show that the motions laying
on ND are actually circular orbits. Finally we show that they are relative
equilibria of the reduced Hamiltonian system obtained by exploiting the ro-
tational invariance of the original Hamiltonian. At this point the application
of LaSalle’s principle would allow to conclude that the orbit is asymptotic to
a manifold obtained by taking the union of all the synchronous orbits. In or-
der to prove that the system is actually asymptotic to a single synchronous
orbit we exploit the conservation of angular momentum and we assume a
nondegeneracy property stating that the relative equilibria are isolated. This
property is discussed in detail in Section 4 and we show that it is typically
fulfilled.

The present result still has some quite strong limitations. The main one
is that we do not discuss existence and uniqueness for the Cauchy problem
of the equations we study, which is not known (see below for a discussion of
this point). Here we limit ourselves to assuming that the system we study is
well posed and we defer to further work the actual proof of such a property.
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The second limitation of our result rests in the fact that we assume that
the system is described by differential equations. This means that we do
not consider the case where the system is described by an integrodifferential
equation with delay, a case which can occur in elasticity. The case we have
in mind is the one in which the dissipation is of the kind of that appearing in
Navier Stokes equation. We expect that our theory can be extended to the
case with delay, but for sure the methods should be adapted.

The study of the gravitational interaction between a deformable body and
a pointlike mass traces its origin back to the pioneering work by Darwin [7,8].
His work shows that, in some approximation, the effect of the internal dynam-
ics of the satellite is just that of producing an effective dissipating effective
force on the orbital and spin degrees of freedom of the satellite. Darwin’s
work was subsequently generalized by Kaula [13] and many other authors
(for instance, [2, 12, 18, 20]). Critical reviews of the work by Darwin, Kaula
and followers can be found in [9–11]. However, the Darwin-Kaula procedure
is heuristic and, from a mathematical point of view, its range of validity is far
from being clear. For this reason, in the present paper (as in [6]), the point
of view is that of starting from first principles in order to obtain a rigor-
ous mathematical proof of the phenomena under consideration. While in [6]
we gave a result of local asymptotic stability (i.e. asymptotic stability of the
synchronous rotation when the initial conditions are close to the synchronous
rotation) for a spherically symmetric satellite, the present paper deals with
the global dynamics of a satellite of arbitrary shape. However, the case of a
spherically symmetric satellite is not included in the setting of the present
paper, since it violates our non-degeneracy assumption (see also Remark 9).

We remark that the result of the present paper rules out the possibility
that periodic orbits different from synchronous resonance exist. This is quite
surprising, since many celestial bodies are known to be not in spin orbit
resonance or to be in a spin-orbit resonances different from the synchronous
one (for example Mercury). We think that this is due to the fact that our
result is valid as time goes to infinite and in particular it tells nothing on
the time scale needed in order to relax to equilibrium, which might be much
longer then the age of the solar system. Nevertheless we find interesting from
a conceptual point of view that the only possible asymptotic states can be
characterised completely and furthermore that they are so simple.

In Section 2 we state the main result of the present paper: to this end,
we recall the Lagrangian formalism for elastodynamics, we write down the
related Cauchy problem and we formulate the nondegeneracy assumption.
Section 3 is devoted to the proof of the main result: we recall the statement
of LaSalle’s invariance principle, prove that the only solutions which dissipate
no energy are synchronous orbits and apply La Salle principle to our system.
Finally, in Section 4 we discuss the nondegeneracy assumption and we prove
that typically it is fulfilled.
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2 Statement of the main result

2.1 The setting

We study the dynamical system consisting of:

(i) a pointlike mass M (which we will sometimes call “planet”), which is at
rest and which is chosen as the origin of a system of coordinates;

(ii) an elastic body, free to move in space; we will call this extended body
“satellite”.

To deal with elastodynamics we use the framework of [19] and [23] from
which we take some notations and formalism, that we now recall.

We denote by B ⊂ R3 the reference configuration of an elastic body and
assume that B is open and bounded with a smooth boundary ∂B. We define
the configuration space Q to be a Banach space of maps1 ζ : B → R3.
Typically in elastodynamics one assumes Q ⊂ Hs(B) with s large enough;
we will come back later to this point, for the moment we simply assume that
ζ admits as many derivatives as needed.

In the conservative case, classical three dimensional elasticity is a La-
grangian system, the Lagrangian L : TQ → R is the difference of kinetic and
potential energy. In our case there are also some dissipative forces that will
be added to the Lagrange equations. As usual TQ ' Q ⊕ Q is the tangent
bundle to Q.

We start by writing down the conservative part of the system. The La-
grangian L of the system is defined by

L = K − Ug − Usg − Ue , (2.1)

where

K(ζ̇) :=
1

2

∫
B
ρ0(x)

∣∣∣ζ̇(x)
∣∣∣2 d3x (2.2)

Ug(ζ) :=

∫
B
ρ0(x)Vg(ζ(x))d3x , (2.3)

Usg(ζ) :=

∫
B
ρ0(x)V ζsg(ζ(x))d3x , (2.4)

Ue(Dζ) :=

∫
B
W (x, Dζ(x))d3x , (2.5)

the functions Vg, V
ζ
sg are defined by

Vg(χ) := −kM
|χ|

, (2.6)

V ζsg(χ) := −1

2

∫
B

kρ0(x)

|ζ(x)− χ|
d3x , (2.7)

1 Actually we should restrict ourselves to the manifold of the maps s.t. detDζ >
0, however we will consider this as a condition on the domain of definition of the
system.
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and W is the stored energy function; k is the universal gravitational constant,
and ρ0 ∈ C∞(B) the density of the body in the reference configuration2.
The stored energy function is assumed to depend on ζ only through the
deformation gradient F := Dζ ≡ {∂ζi/∂xa}. We assume that W is frame
independent in the sense that

W (x,F) = W (x, RF) for all R ∈ SO(3) . (2.8)

As shown in [23] this implies that the Kirchoff stress tensor, namely

τ ij =
∂ζi

∂xa
∂W

∂(∂ζj/∂xa)
(sum over a understood) , (2.9)

is symmetric.
Assuming the stress free boundary condition, namely

∂W

∂(∂ζj/∂xa)
na

∣∣∣∣
∂B

= 0 , (2.10)

where n ≡ (n1, n2, n3) is the external normal to ∂B, one deduces the standard
Lagrange equations:

ρ0ζ̈ = −∇ζL ≡ −ρ0
∂Vg
∂χ

(ζ)− ρ0

∂V ζsg
∂χ

(ζ) +
∂

∂xa
∂W

∂(∂ζ/∂xa)
, (2.11)

where ∇ζL ≡ (∇ζ1L,∇ζ2L,∇ζ3L) is as usual the gradient with respect to
the L2 scalar product3 and is given by the expression at r.h.s. of (2.11).

Remark 1 It is easy to check that, if a function U : Q → R is rotation
invariant, i.e. U(Rζ) = U(ζ), ∀ζ ∈ Q,∀R ∈ SO(3), then

[∇U ](Rζ) = R∇U(ζ) . (2.12)

All the terms of the Lagrangian have this property.

Since the Lagrangian is independent of time, the energy

H = K + Ug + Usg + Ue , (2.13)

is formally conserved for the system (2.11) with the boundary conditions
(2.10).

Furthermore, since the Lagrangian is invariant under the group action

Q× SO(3) → Q (2.14)

(ζ,R) 7→ Rζ ,

by Nöther’s theorem the quantity

L :=

∫
B
ζ(x)× ρ0(x)ζ̇(x)d3x , (2.15)

2 Of course we assume that ρ0(x) 6= 0 ∀x ∈ B.
3 i.e. it is defined by dL(ζ)h = 〈∇L(ζ);h〉L2 for all h ∈ Q.
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is conserved for the system. Of course L coincides with the total angular
momentum.

In order to get the equations governing the non conservative dynamics one
has simply to add the nonconservative forces4, G = G(ζ, ζt) i.e. to substitute
equation (2.11) with the equation

ρ0ζ̈ = −∇ζL −G . (2.16)

In order to write down the precise assumptions on G (which will be given
in the next subsection) we have also to introduce the (right) Cauchy Green
deformation tensor C := (Dζ)TDζ or, componentwise

Cij =
∑
a

∂ζi

∂xa
∂ζj

∂xa
. (2.17)

As it is well known C is symmetric, positive definite and allows to write Dζ
in the polar decomposition form Dζ(x) = R(x)

√
C(x), where R(x) ∈ SO(3)

is a rotation matrix.

2.2 The Cauchy problem

In the following we will always denote by y ≡ (ζ, ζ̇) ∈ TQ ' Q⊕Q a point
in the space of initial data for our system (which we keep distinct from the
phase space, in which the velocities will be substituted by the momenta).

The problem of existence of solutions for the system (2.11), (2.16) has
been widely studied in literature, in particular we point out the papers [21,22]
(see also [14] and [16]) in which existence and uniqueness has been proved
for equations of the from (2.16), but with Dirichlet boundary conditions.
Subsequently the theory of parabolic differential equations has been widely
developed (see e.g. [17]), however we were not able to find in literature results
for the case of stress free boundary conditions. The main difficulty being
that they turn out to be “nonlinear boundary conditions”. So the problem
of proving well posedness and dissipation of energy for this case seems to be
still open and we plan to investigate it elswehere. Here we will limit ourselves
to assuming the needed well-posedness properties. So we give the following
definition:

Definition 1 Given y0 ∈ TQ, a positive T and a function y ∈ C2((0, T );TQ)
we say that it is a solution of the system (2.16), (2.10) with initial datum y0,
if it fulfills the equations and the boundary conditions for all t ∈ (0, T ) and
one has

lim
t→0+

y(t) = y0 .

Then we also need the following definitions:

4 by this notation we mean that G is a function of the functions ζ, ζt, not of
their value ζ(x), ζt(x), so it can also depend on an arbitrary number of spatial
derivatives of such functions.
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Definition 2 A solution is said to be impacting (in the future) if

inf
t>0

dist(ζ(B, t), 0) = 0 .

Definition 3 A configuration is said to be non singular if det[Dζ] > 0.

Definition 4 A solution y(t), t ∈ (0, T ) is said to be regular if it is non
impacting and the corresponding configuration is non singular for all times.
An initial datum y0 ≡ (ζ0, ζ̇0) is regular if dist(ζ0(B), 0) > 0 and det[Dζ0] >
0.

Definition 5 A regular solution y(t), t ∈ (0,∞) is said to be precompact if,
for any increasing sequence {tn} ⊂ (0,∞) there exists a subsequence {tnk}
s.t. the limit limk→+∞ y(tnk) exists and the limit is non singular.

Assumption 1 We assume that

(i) for all regular initial data y0 ∈ TQ, the Cauchy problem for the system
(2.16) with the boundary conditions (2.10) is locally well-posed;

(ii) let y(t) be a non-impacting solution. Then its time of existence is infinite
and it is forever non singular.

(iii) Any regular solution fulfilling supx∈B,t>0 |ζ(x, t)| <∞ is precompact;
(iv) the angular momentum L is conserved along the solutions; the Lie deriva-

tive of the energy (2.13) is nonpositive and vanishes if and only if Ċ = 0,
where C is the Cauchy Green tensor (cf. eq. (2.17)).

Remark 2 One expects the nonconservative equations we are studying to
behave like parabolic equations, for which Assumption 1 is typically fulfilled.
In particular, for the motion of a deformable body with Dirichlet boundary
conditions, the well-posedness and precompactness assumptions (i) and (iii)
hold as a consequence of [21,22]. The case of stress free boundary conditions
introduces a further technical difficulty, since roto-translations of the body
produce a degeneration of the linearised operator. However we expect that
this problem can be overcome, also applying more recently developed tools,
like the ones in [17].

Remark 3 A situation in which Assumption 1 is fulfilled is that in which the
space Q is finite dimensional. A typical situation we have in mind is that in
which the space Q is composed by maps obtained by cutoff from some of the
maps belonging to the original infinite dimensional configuration space. For
example one could decide to keep only a finite (arbitrarily large) number of
spherical harmonics of the maps describing the configuration.

2.3 The nondegeneracy assumption

In the following (see Subsection 3.2) we will prove that the nondissipating
orbits are relative equilibria of the Hamiltonian system obtained by Legendre
transforming the Lagrangian (2.1). We are now going to recall the notion of
relative equilibrium and to state the nondegeneracy condition we need.
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Define the momentum
π := ρ0ζ̇ , (2.18)

then the Hamiltonian of the system coincides with the function H given by
(2.13), where however K is defined in terms of the momentum π by

K :=

∫
B

|π(x)|2

2ρ0(x)
d3x ; (2.19)

and the Lagrange equations (2.11) are equivalent to the Hamilton equations
of (2.13).

The Hamiltonian is invariant under the action of the symmetry group
SO(3) defined by

Rz ≡ R(π, ζ) := (Rπ,Rζ) , (2.20)

and the total angular momentum L (written in terms of positions and mo-
menta) is the corresponding conserved quantity. Then one can use Marsden-
Weinstein reduction procedure, that can be summarized as follows.

(1) Fix a value L0 of L and consider the manifold

ML0
:= {z ≡ (π, ζ) : L(z) = L0} ;

(2) Consider the subgroup GL0 ⊂ SO(3) leaving invariant ML0 , namely the
group of the rotations around the axis L0. Consider the quotient manifold
ML0

/GL0
. Such a manifold has a natural symplectic structure. Further-

more, the Hamiltonian H defined in (2.13) and the corresponding Hamil-
ton equations pass to the quotient with respect to the action of GL0

and
therefore define a Hamiltonian system on ML0/GL0 .

We denote by HL0
the Hamiltonian of such a reduced system.

Definition 6 The critical points of HL0
are called relative equilibria of the

Hamiltonian system H, at angular momentum L0.

Definition 7 A relative equilibrium is said to be topologically nondegenerate
if it is not an accumulation point of relative equilibria with the same angular
momentum.

By abuse of notation, a representative ze of the equivalence class of a
relative equilibrium is also called a relative equilibrium of H.

Remark 4 It is well known (see e.g. [1]) that ze is a relative equilibrium if
and only if the Hamiltonian vector field of H at ze is tangent to the orbit of
SO(3) through ze.

Remark 5 If ze is a relative equilibrium then the corresponding orbit z(t)
(under the flow of the Hamiltonian systemH) is formed by relative equilibria.
In the nondegenerate case there are no other relative equilibria with the same
angular momentum in a neighborhood of the orbit ∪tz(t).

Of course a relative equilibrium ze corresponding to a value L0 of L is
topologically nondegenerate if and only if the same is true for the relative
equilibrium Rze, where R ∈ SO(3) is arbitrary.
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Definition 8 A value ` ∈ R of the modulus of the angular momentum is
said to be nondegenerate if all the relative equilibria with angular momentum
L satisfying |L| = ` are topologically nondegenerate relative equilibria of H.

Remark 6 In Section 4 we will comment on this condition and show that it
is in general fulfilled.

2.4 The main result

With the definitions and concepts introduced in the previous subsections,
our main result can be rigorously stated as follows.

Theorem 21 Under Assumption 1, let y(t) be a solution of eq. (2.16) with
the boundary condition (2.10), and let ` be the corresponding value of the
modulus of the angular momentum. Assume that ` is nondegenerate, then
one and only one of the following three (future) scenarios occurs:

(i) the trajectory of B is unbounded;
(ii) the solution impacts the planet;

(iii) the solution is asymptotic to a synchronous non-dissipating orbit, which
is a relative equilibrium with angular momentum `.

3 Proof of Theorem 21

3.1 LaSalle’s invariance principle

In order to study the dynamics of the system, we make use of LaSalle’s in-
variance principle which is a refinement of the classical Lyapunov’s theorem.
We now recall its statement and proof.

Let Y be a Banach space and let U ⊂ Y be open. Consider a system of
differential equations

ẏ = f(y) y ∈ U , (3.1)

We denote by ϕ the flow of (3.1), which we assume to be locally well defined.

Definition 31 Let γ be the orbit of (3.1) with initial condition y0. A point η
is said to be an ω-limit point of γ if there exists a sequence of times tn → +∞
such that

lim
n→+∞

ϕtn(y0) = η . (3.2)

Definition 32 The ω-limit set of an orbit γ is defined as the union of all
the ω-limit points of γ.

Definition 9 A solution y(t) ⊂ U , t ∈ (0,∞) is said to be precompact if, for
any increasing sequence {tn} ⊂ (0,∞) there exists a subsequence {tnk} s.t.
the limit limk→+∞ y(tnk) exists and belongs to U .

Remark 7 It is well known that the ω-limit of a precompact orbit is a con-
nected set (see e.g. [1]).
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LaSalle’s invariance principle can be stated as follows:

Theorem 33 Suppose that H : U → R is a real-valued smooth function,
such that £fH(y) ≤ 0, ∀y ∈ U , where £f is the Lie derivative. Let I be
the largest invariant set contained in ND := {y ∈ U|£fH(y) = 0}, then the
ω-limit of every precompact orbit is a non-empty subset of I.

Proof Let γ := {ϕt(y0)|t > 0} be a precompact orbit, and let Γ ⊂ U be the
ω-limit of γ. We prove now that Γ is invariant. Indeed, let η ∈ Γ , then there
exists a sequence tn → +∞ such that ϕtn(y0)→ η. But we have

ϕt(η) = ϕt( lim
n→+∞

ϕtn(y0)) = lim
n→+∞

ϕt+tn(y0) ∈ Γ .

We prove now that the ω-limit is contained in ND. Let η0 ∈ Γ . Then
there exists a sequence tn → +∞ such that ϕtn(y0)→ η0. Now, let

c := H(η0) = lim
n→+∞

H[ϕtn(y0)] .

Since H[ϕt(y0)] is a time-nonincreasing function, limn→+∞H[ϕtn(y0)] = c is
independent of the subsequence tn, and thus H = c on the whole Γ . By the
invariance of Γ it follows that £fH = 0 on Γ , and therefore γ ⊂ I.

3.2 Non-dissipating orbits

Consider the non dissipating manifold defined by

ND :=
{
y ∈ Q⊕Q : Ḣ(y) = 0

}
, (3.3)

where, for short we denoted by Ḣ(y) the Lie derivative of H along the vector
field corresponding to the equations (2.16). In this section we prove that the
subset I ⊂ ND invariant under the dynamics is formed by relative equilibria
of the Hamiltonian system (2.13).

Remark 8 On ND the Lagrange equations (2.11) coincide with the non con-
servative equations (2.16).

First we prove that the motion of the body is rigid along any orbit in
I (we think that this should be well known, but we were not able to find a
reference).

Lemma 1 Let y ∈ C2((0,+∞),Q ⊕ Q) be a solution of (2.16) s.t. y(t) ≡
(ζ(t), ζ̇(t)) ∈ ND ∀t ∈ (0,+∞), then, for all x,y ∈ B, one has

d

dt
|ζ(x)− ζ(y)| = 0 . (3.4)
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Proof Fix two arbitrary points x,y ∈ B and consider a path γ ⊂ B connecting

x to y. Let s be the arclength parameter, so that |dγ(s)
ds | = 1 and in the

reference configuration the path γ has length

length(γ) =

∫
γ

ds .

The length of the deformed path ζ(γ) is expressed in terms of the Cauchy
Green tensor C by (see e.g. [24])

length(ζ(γ)) =

∫
γ

[(
dγ(s)

ds

)T
C

(
dγ(s)

ds

)] 1
2

ds . (3.5)

Therefore, since Ċ ≡ 0, we have d
dt [length(ζ(γ))] ≡ 0. Now, take two arbitrary

times t0, t1 and let ζ0, ζ1 be the corresponding body configurations. We have
that ζ1 ◦ (ζ0)−1 : ζ0(B) → ζ1(B) is a length-preserving map between the
ζ0(B) ⊂ R3 and ζ1(B) ⊂ R3, both equipped with the restriction of the
Euclidean metric on R3. Moreover, ζ1 ◦ (ζ0)−1 is a diffeomorphism.

Using the fact that the segments minimize the distance it is easy to con-
clude the proof of the lemma (some care is needed in order to take care of
the fact that ζ1(B) could fail to be convex).

Corollary 1 Let y = (ζ, ζ̇) be as in the statement of Lemma 1 then there
exist ξ ∈ Q, R ∈ C2((0,+∞), SO(3)) and Y ∈ C2((0,+∞),R3) s.t.

ζ(x, t) = R(t)(ξ(x) + Y(t)) . (3.6)

The reference frame with origin Y(t) and coordinate axes R(t)ei is usually
called comoving frame. In this frame all the points of the satellite are at rest
along the orbit y(t). In particular −Y(t) is the position of the planet M in
the comoving frame.

Lemma 2 Let y ∈ C2((0,+∞),Q ⊕ Q) be a solution of (2.16) s.t. y(t) ≡
(ζ(t), ζ̇(t)) ∈ ND ∀t ∈ (0,+∞), then the quantity Y(t) in (3.6) evolves in
such a way that

∀i, j, k, ∂3Vg
∂χi∂χj∂χk

(Y(t)) (3.7)

is independent of time.

Proof Inserting the expression (3.6) in the Lagrange equations (2.11) and
exploiting the rotational invariance of the r.h.s. (cf. Remark 1) one gets the
following equation for ξ, R and Y:[

Ÿ + ( ˙̂ω + ω̂ω̂)Y + 2ω̂Ẏ + ( ˙̂ω + ω̂ω̂)ξ
]

(3.8)

= −∂Vg
∂χ

(ξ + Y)−
∂V ζsg
∂χ

(ξ) +
1

ρ0

∂

∂xa
∂W

∂(∂ζ/∂xa)
(Dξ) ,
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where as usual ω̂ := RT Ṙ. Denote for short

L := ( ˙̂ω + ω̂ω̂) (3.9)

and take the time derivative of (3.8). Taking into account that ξ does not
depend on time one gets{

d

dt

[
Ÿ + LY + 2ω̂Ẏ

]
+ L̇ξ

}
=

d

dt

[
−∂Vg
∂χ

(ξ + Y)

]
. (3.10)

Take now the derivative of such a quantity with respect to xa, one gets the
componentwise equation(∑

k

L̇ik
∂ξk

∂xa

)
=
∑
k

d

dt

[
− ∂2Vg
∂χi∂χk

(ξ + Y)
∂ξk

∂xa

]
, (3.11)

or using the invertibility of the matrix ∂ξk

∂xa

L̇ik = − d

dt

[
∂2Vg
∂χi∂χk

(ξ(x) + Y(t))

]
. (3.12)

This equation implies in particular that the r.h.s. is independent of x (since
the l.h.s. is also independent of x). Due to the invertibility of ξ and to the
analyticity of Vg this means that the function of χ

− d

dt

[
∂2Vg
∂χi∂χk

(χ+ Y(t))

]
(3.13)

is actually independent of χ. Thus taking the derivative with respect to χj

and evaluating at χ = 0 one gets the thesis.

Lemma 3 Let y ∈ C2((0,+∞),Q ⊕ Q) be a solution of (2.16) s.t. y(t) ≡
(ζ(t), ζ̇(t)) ∈ ND ∀t ∈ (0,+∞), then the quantity Y(t) in (3.6) is actually
independent of time.

Proof We write down explicitly (3.7). We denote
(
Y 1(t), Y 2(t), Y 3(t)

)
=

Y(t) and (Y 1)2 + (Y 2)2 + (Y 3)2 = r2. One has

∂3Vg
∂(χ1)3

(Y) =
3kMY 1(5(Y 1)2 − 3r2)

r7
(3.14)

∂3Vg
∂(χ1)2∂χ2

(Y) =
3kMY 2(5(Y 1)2 − r2)

r7
(3.15)

∂3Vg
∂(χ1)2∂χ3

(Y) =
3kMY 3(5(Y 1)2 − r2)

r7
. (3.16)

Choose now the comoving frame in such a way that Y 2 = Y 3 = 0 and Y 1 = r
at t = 0 (which is possible up to redefinition of R and ξ). By (3.15) and (3.16),
for all t one must have

Y 2(5(Y 1)2 − r2) = 0
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Y 3(5((Y 1)2 − r2) = 0

which by continuity implies (locally in time) Y 2(t) ≡ Y 3(t) ≡ 0 and Y 1(t) ≡
r(t). Substituting in (3.14), one has

1

(Y 1(t))4
=

1

(Y 1
0 )4

,

whose only solution is Y 1(t) ≡ Y 1
0 . Then the proof follows by classical boot-

strap arguments.

Remark now that, given a non dissipating solution, one can associate to
it a shape of the body described by the function ξ(x) + Y, and the shape
evolves by a rigid motion about the fixed point M . Introduce the angular
velocity which is defined as usual as the vector ω s.t. the two operators

ω × · = ω̂

coincide. Then the velocity of the motion, in the comoving frame, is given by
ω × (ξ + Y).

We have now that, for a non dissipating solution, ω does not depend on
time.

Lemma 4 The angular velocity ω of a nondissipating solution y is indepen-
dent of time.

Proof Consider again equation (3.12). Since we now know that Y is indepen-

dent of time it follows that the operator L (cf. eq. (3.9)) fulfills L̇ = 0. This
means that, for any vector χ one has

d

dt
[ω̇ × χ+ ω × (ω × χ)] = 0 . (3.17)

To exploit such an equation take χ = ei and project the square bracket on
ei. Using standard vector identities this implies

d

dt
|ω × ei|2 = 0 ∀i .

An explicit computation shows that this implies ω̇ = 0.

Corollary 2 Let y(t) be a nondissipating solution as above, then it is the
orbit of a relative equilibrium of the system (2.13).

Proof We have proved that along a non dissipating solution ζ(t) = R(t)ζ0
with a suitable configuration ζ0 and a rotation matrix R(t) that we can choose

in such a way that R(0) = I. It follows ζ̇(t) = R(t)[ω×ξ] = Rζ̇(0). Passing to

the phase space one gets that along such an orbit π(t) = ρ0ζ̇(t) = R(t)π(0).
This shows that the solution is actually an orbit of the symmetry group, and
this is a characterization of being a relative equilibrium.

Thus we have that the manifold I is the union of the trajectories of all
the possible relative equilibria of the system.
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3.3 End of the proof

Applying La Salle principle to our system, with U defined to be the set of
regular configurations, we get the following Lemma.

Lemma 5 Under Assumption 1, for any solution to (2.16) with the boundary
condition (2.10), one of the following three (future) scenarios occur:

(i) the trajectory is unbounded;
(ii) the solution impacts the planet;

(iii) the solution is asymptotic to the non-dissipating invariant manifold I.

The difference with Theorem 21 is that in Lemma 5 there is no nondegen-
eracy assumption on the modulus ` of the angular momentum. This reflects
in item (iii) of Lemma 5, where we deduce that the solution is asymptotic
to I but we cannot deduce that the solution is asymptotic to a single non-
dissipating orbit. Therefore, we now plug in the nondegeneracy assumption
and conclude the proof of Theorem 21.

End of the proof of Theorem 21. Let L0 be the initial value of the angular
momentum, then a regular bounded solution is asymptotic to

I ∩
{

(ζ, ζ̇) ∈ TQ : L(ζ, ζ̇) = L0

}
, (3.18)

but, by the nondegeneracy assumption the set (3.18) is formed by orbits

which are isolated in the invariant manifold
{

(ζ, ζ̇) ∈ TQ : L(ζ, ζ̇) = L0

}
.

Thus, by Remark 7 the ω-limit set of an orbit is a single orbit in the set
(3.18), i.e. a synchronous orbit. ut

4 On the nondegeneracy assumption

The first aim of this section is to prove that if the restoring elastic forces
described by the potential (2.5) are strong enough, then the nondegeneracy
of a relative equilibrium for the system (2.1) is implied by the nondegeneracy
of the relative equilibrium for a rigid body having the shape given by the
asymptotic configuration of the satellite.

For simplicity, in this section we limit the discussion at the formal level,
namely we forget all the difficulties related to the existence of unbounded op-
erators. All what follows is rigorous if Q is finite dimensional. It can also be
made rigorous in the case of PDEs by detailing most of the assumptions, fol-
lowing the ideas of [3] and exploiting the ellipticity properties of the elasticity
tensor (see [19]), however this is outside the aims of the present paper.

First of all, having fixed a configuration ζ̄ we introduce the dynamical
system describing the evolution of a rigid satellite with shape ζ̄. The config-
uration space SO(3) × R3 3 (R,χ) and the dynamics is obtained from the
Lagrangian obtained by restricting the Lagrangian (2.1) to the set of motions
of the form

ζ(t) = R(t)[ζ̄ + χ(t)] . (4.1)
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Denote by Lζ̄ such a Lagrangian. One also has a corresponding Hamilto-
nian system, which is deduced from (2.1) in the standard way and whose
Hamiltonian coincides with the restriction of the Hamiltonian (2.13) to the
phase space of the rigid body. Denote by Hζ̄ the Hamiltonian of the rigid
body. Such a Hamiltonian is invariant under rotations so one can pass to
the reduced system and to introduce again the relative equilibria and define
the nondegenerate relative equilibria for such a system and a nondegenerate
value of the modulus of the angular momentum.

In order to make a connection between the nondegeneracy of the relative
equilibria for rigid motions and the nondegeneracy of the elastic motions we
need to specify an assumption on the elastic potential energy Ue. Essentially
we are going to assume that the elastic potential has a very steep, isolated
(up to the symmetries) minimum at some shape.

First remark that Ue is invariant under the action

(SO(3)× R3)×Q → Q (4.2)

((R,χ), ζ) 7→ R[ζ + χ] ,

and, given a point ζ, consider the group orbit Gζ := (SO(3)×R3)ζ ⊂ Q, so,
if ζ̄ is a critical point of Ue, then all the orbit Gζ̄ is critical for Ue.

Assumption 2 One has Ue = 1
ε Ũe, and Ũe is a smooth function invariant

under the group action (4.2) with the further property that the set of its
critical points is formed by finitely many orbits Gζ(i) and each critical point

is nondegenerate in the direction transversal to the group orbit5.

Under this assumption we have the following

Proposition 1 Fix a value L0 of the angular momentum, and assume ε
is small enough; let ζεe be a relative equilibrium of the Hamiltonian system
H with angular momentum L0. If (R, 0) ∈ SO(3) × R3 is a nondegenerate
relative equilibrium for the rigid system with Hamiltonian Hζεe

, then ζεe is a
nondegenerate relative equilibrium for the elastic Hamiltonian system with
Hamiltonian H.

Proof The proof is based on ideas from Lyapunov-Schmidt decomposition
(see e.g. [3]). First of all it is useful to introduce suitable coordinates in Q
in a neighborhood of ζe (following the ideas of [6]). They are constructed
as follows: let Σ ⊂ Q be a codimension 6 affine subspace transversal to the
group orbit Gζe , then a suitable set of coordinates about ζe is locally obtained
by the map

Σ × SO(3)× R3 3 (ξ,R, χ) 7→ R(ξ + χ) . (4.3)

We now recall (and adapt to the present situation) some results of [23].
Using the method of Lagrange multipliers one immediately sees that the
relative equilibria can be obtained by finding the critical points of H − ω ·
(L− L0) under the condition

L = L0 . (4.4)

5 Transversal nondegeneracy means that the restriction of Ũe to any hyperplane
transversal to the group orbit has a differential which is an isomorphism.
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Here ω is the Lagrange multiplier. In [23] it was shown that this is equivalent
to finding the critical points of the “augmented Hamiltonian” HL0

defined
by

HL0 := KL0 + UL0 , (4.5)

KL0 :=
1

2

∫
B

|π − ρ0(ω × ζ)|2

ρ0
d3x , (4.6)

UL0
:= U − 1

2

∫
B
ρ0 |ω × ζ|2 d3x (4.7)

again under the condition (4.4) (actually in the present case this is a straight-
forward computation). As pointed out in [23] the interest of this formulation
is that the equations for the critical points of HL0

take the form

πe = ρ0ω × ζe , (4.8)

∇U(ζe) + ρ0ω × (ω × ζe) = 0 . (4.9)

In particular the second equation is independent of π. This allows to study
separately (4.9). To this end we use the set of coordinates (4.3). However
one has to pay attention to the fact that in general the section Σ is not
orthogonal to the group orbit, so first we rewrite (4.9) in the (original) dual
form:

dU(ζe)h+ 〈ρ0ω × (ω × ζe);h〉L2 = 0 , ∀h ∈ Q , (4.10)

which in terms of the coordinates (4.3) takes the form (at R = I)

dχUg(ξe + χe)hχ + 〈ρ0ω × (ω × (ξe + χe);hχ〉L2 = 0 , ∀hχ ∈ R3 , (4.11)

dξ[Ug(ξe + χe) + Usg(ξe + χe) +
1

ε
Ũe(ξe + χe)]hξ (4.12)

+ 〈ρ0ω × (ω × (ξe + χe));hξ〉L2 = 0 , ∀hξ ∈ TζeΣ .

which have to be solved together with

πe = ρ0ω × (ξe + χe) , (4.13)

and the condition (4.4). In particular the system (4.11), (4.13), (4.4) is iden-
tical to the system for the reduced equilibrium of the rigid body with shape
ζe, so by Assumption 2 it determines uniquely (up to a finite choice) χe
and ω (and πe). We analyze now (4.12). Of course it is a perturbation of

dξŨe = 0, whose critical points are all nondegenerate (as functions of ξ they
are nondegenerate in the standard sense), so, by the implicit function theo-

rem a solution ξe of (4.12) must be close to a critical point of Ũe and is also
nondegenerate. This concludes the proof of the proposition.

So we have reduced the problem of checking nondegeneracy to the prob-
lem of checking nondegeneracy of the relative equilibria for the motions of
rigid bodies. This problem has been studied for example in [25] who obtained
a complete characterization of the relative equilibria of a triaxial rigid body,
provided the gravitational potential is approximated by its quadrupole ex-
pansion. In [25] the author obtained that, provided the distance χe of the
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center of mass from the planet is large enough, there are exactly 24 families
of stationary points of the reduced system. These stationary points are such
that the principal axes of inertia are one pointing to M and a second one in
the plane orthogonal to the plane of motion. The number 24 appears as the
number of possible choices of the orientations of the body with prescribed
principal axes of inertia.

Remark that in particular it turns out that such critical points are nonde-
generate. Furthermore we expect that, if χe is large enough, then it should be
possible to use the implicit function theorem to prove that the critical points
are nondegenerate also for the system in which the gravitational potential is
not subjected to any approximation.

Remark 9 In [6] the authors study a problem in which Assumption 2 is vi-
olated due to the fact that the satellite is assumed to have a spherically in-
variant reference equilibrium configuration. In this case the orbit is no longer
asymptotic to a single synchronous orbit; however, the result is that also in
this case the orbit is asymptotic to a synchronous resonance, but the asymp-
totic elastic configuration need not be fixed, in the sense that the shape of
the satellite is fixed but principal axes of inertia could slowly rotate in the
satellite.
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