
Mtools: a one-way-delay and round-trip-time meter

S. AVALLONE+, M. ESPOSITO+*, A. PESCAPÈ+*, S. P. ROMANO+, G. VENTRE+*

*ITEM - Laboratorio Nazionale CINI per l’Informatica e la Telematica Multimediali
Via Diocleziano, 328

80125 – Napoli
ITALY

+DIS, Dipartimento di Informatica e Sistemistica

Università degli Studi Federico II di Napoli
Via Claudio, 21
80125 – Napoli

ITALY

Abstract: - In this work we present a collection of tools (named Mtools) for analyzing network performance through the
measurement of the one-way-delay and the round-trip-time of packets that traverse the network. Mtools has many useful
features that will be shown in the following. Mtools is currently available at http://www.grid.unina.it/grid/mtools.

Key-Words: - Measurement Environment, Traffic Generator and Simulation Techniques Tools, One-way-delay, Round-trip-
time, Packet loss.

1 Introduction
Very often it is important to test the network behaviour
when it is subjected to different loads, e.g. for measuring its
capacity of serving incoming traffic. We also might want to
verify the accuracy of an analytic model which estimates
throughput and packet transmission time making some
assumptions on the traffic source. This raises the need to
simulate that particular traffic source. Moreover, we may
want to compare different configurations of the same
network, e.g. to compute the benefits introduced by
strategies such as DiffServ, MPLS, DiffServ over MPLS,
etc. In such situation it is useful to repeat many times the
same realization of the packet generation (random) process.
As we can see below, in all of these cases Mtools can help
us.
Mtools currently runs under Linux or FreeBSD operating
systems (we encourage everyone to port Mtools on other
platforms). It is made up of two instruments:
• One-way-delay Meter (OWDM)
• Round-trip-time Meter (RTTM)

each of which is constituted by two utilities, a sender and a
receiver. OWDM and RTTM have many common features,
which we will describe below, before delving into the
peculiarities of each one in the following sections. The
transport protocol used by senders is UDP. It is possible to
model both packets inter-departure and packets size as a
random process. Currently, three choices have been
implemented: constant, uniformly distributed and
exponentially distributed. However, thanks to the Robert
Davies’ random number generator library (included in our

distribution), it is very simple to add new random
distributions, so as to simulate very complex traffic sources.
A useful feature of Mtools is the possibility of specifying
the seed value for the packets inter-departure and packets
size random processes; in this way, it is possible to repeat
exactly a particular realization of these random processes.
This feature, as we said above, is interesting in several
circumstances. If the seed is not specified, its value is
random, that is it is a function of the time of day.
Moreover senders can be used both in command line mode
(generating only one flow) and in script mode (generating
multiple flows). The usage in these modes is described in
detail in the following sections.
To collect statistics it is necessary to store some information
in the sent packets. UDP payload of sent packets, in fact,
contains the number of the flow the packet belongs to, a
sequence number and the time it was sent (expressed in
seconds and microseconds since midnight, January 1, 1970).
The remaining bytes of the payload are filled with random
numbers.
Both senders and receivers can create a log file containing
the information stored in transmitted packets. The log file
format is the same as that used by MGEN (available at
http://manimac.itd.nrl.navy.mil/MGEN), so it is possible to
use its powerful utilities to analyze log files and obtain
statistics. Among these utilities, we mention here mcalc
(multi-calculator), which outputs statistics (packet and data
rate, number of dropped packets, average transmission
delay, jitter) on a per-flow and summary basis, and ez,
which provides delay and rate plots.

In the following sections we describe in detail the syntax of
OWDM and RTTM, both in command line mode and in
script mode.

2 One-way-delay Meter
One-way-delay Meter (OWDM) enables to send UDP
packets to a specific host (at a given port) and measure the
transmission time of each packet. As we have already said,
OWDM is made up of a sender and a receiver. Sender can
be used both in command line mode and in script mode; in
the last case, the syntax is:

owdmSend <script_file> [<log_file>]
where script_file is the file that contains the specification of
the flows to be generated (a flow for each line, except blank
lines and lines beginning with ’#’). Each flow is assigned a
flow identifier equal to the number of the line of the script
file in which it is specified. The syntax of each line is the
same as that used in command line mode (described later
on). If log_file is specified, OWDM sender records packets
transmission times in a file named log_file. This file can be
then analyzed by MGEN’s utilities to produce, for example,
the bit rate graph of generated traffic (in section 4 we will
show some examples). This is a very useful tool, since it
allows us to retrieve information not only about received
traffic but also about transmitted traffic.
In command line mode you can generate only one flow,
whose properties are defined by the list of options you type.
It is possible to specify, besides destination IP address and
port, DS field of packets, probability distribution of packets
inter-departure and packets size processes, seed value,
generation duration, initial delay and the name of the file in
which OWDM sender records packets transmission times
(this option, -l, is available only in command line mode).
Available options are listed and explained in the online
project page. If no options are specified, an help screen will
be printed.
OWDM receiver (owdmRecv) listens for and records
packets arrived at the ports specified with the –p option. It
can be used only in command line mode and has few
options. Note that OWDM receiver always produces a log
file and, if it is invoked without options, it will monitor port
8999 and write log info in “/tmp/owdmRecv.log”.

3 Round-trip-time Meter
Round-trip-time Meter (RTTM) enables to transmit UDP
packets to a specific host (at a given port), which sends
them back to the sender. It is possible to log both packets
arrived at the receiver and packets returned at the sender.
RTTM is made up of a sender and a receiver, which differ
slightly in the usage from those of OWDM. RTTM sender
can be used both in command line mode and in script mode;
in the last case, the syntax is:

rttmSend <script_file> [<log_file>]

where script_file is the file that contains the specifications
of the flows to be generated (same format as an OWDM
script). Round-trip-time of returned packets is stored in a
log file, whose name is log_file, if it is specified, or the
default value “/tmp/rttmSend.log”. In command line mode
you can generate only one flow, whose properties are
defined by the list of options you specify. Available options
are the same as those of OWDM sender; the only difference
regards the –l option (valid only in command line mode): if
it is not specified, the default value “/tmp/rttmSend.log” is
used, otherwise the log file name to be used must be
specified. RTTM receiver (rttmRecv) listens for packets
arrived at specified ports and sends them back to the sender.
It optionally logs received packets, so it is possible to get
also one-way delay. RTTM receiver can be used only in
command line mode and its options are the same as those of
OWDM receiver. The only difference regards the –l option:
if it is not present packets arrived at the receiver are not
logged, otherwise they are logged in the specified file or, if
no file name is specified, in the default file
“/tmp/rttmRecv.log”.

4 Software architecture
We begin by describing the software architecture related to
OWDM; with regard to RTTM, we will stress only the
differences. Both OWDM and RTTM are written in C++
language. As we said above, OWDM sender can be used in
script mode by providing a script file which contains the
specification of the flows to be generated in the same format
as that would be used in command line mode. Multiple
flows are handled in this way: the flow specified in the first
line is handled by the parent process; for each other line a
child process is created to handle the corresponding flow.
This allows us to write the remaining code as we had only
one flow, and this obviously makes data structures and code
simpler. Then each process parses its own line and
recognized tokens are analyzed by the option parser, which
checks for their correctness and sets the appropriate
variables. On success, a datagram socket is opened; then, if
necessary, the initial delay is awaited and the socket option
for setting DS field is set. After calculating the ending time
of the packet generation process, a do cycle is repeated until
this time is reached. Two operations are performed in a
cycle: the transmission of a packet and the wait for the
inter-departure time.The first operation is constituted by the
generation of a random value for the packet size (using the
Next method of the class that implements a random variable
in the Newran random number generator library), the
storage in the packet of the information used to collect
statistics, the effective transmission of the packet and, if a
log is required, the storage of the above information in a
file. We note that the last operation can cause problems
when multiple processes try to write into the file at the same
time; this problem has been avoided by making the log file
a line buffered stream (that is, buffered output is flushed

when newline is encountered) and writing into the file by
means of a unique fprintf call for each packet (the printed
string ends with newline). Inter-departure time (obtained
from a Next method call) is awaited by means of a select
function call; however, since Linux and FreeBSD support of
real-time applications is not very efficient (due to their
scheduling mechanism and the inevitable timer granularity),
it was necessary to use a trick. That is, a variable records the
time elapsed since the last packet was sent; when the inter-
departure time must be awaited, this variable is updated. If
its value is less than inter-departure time the remaining time
is awaited, otherwise the inter-departure time is subtracted
from the value of this variable and no time is awaited. This
trick guarantees the required bit rate, as shown by the
example of the next section.
OWDM receiver is simpler and does not create any child
process. It opens a datagram socket for each port on which
it will listen for packets, then it enters in an infinite cycle
(while(1)) in which a select function call blocks the
program until input is ready on a socket descriptor (a packet
is arrived) or on the standard input. When a packet arrives,
the information it carries is written into the log file; when
Enter key is pressed, the program terminates.
The architecture of RTTM sender is very similar to that of
OWDM sender; the only difference regards the do cycle,

which is replaced by an infinite while cycle. Inside this
cycle, a boolean variable is used to indicate that the end of
the packet generation process has been reached. This time,
besides the transmission of a packet and the wait for the
inter-departure time (performed until the above boolean
variable is false) the cycle contains a non-blocking check
for arrived packets, realized with a select function call with
a null timer. When a packet arrives, the information it
carries is written into the log file; when Enter key is
pressed, the process terminates.
RTTM receiver is even closer to OWDM receiver; the
unique difference is in the case a packet arrives: besides to
write log information, it sends the packet back to the sender.

5 Usage example
We now show an example of how to use our tools and
MGEN’s utilities to analyze log files. We used OWDM and
the following script:
-a helios –p 5000 –C 100 –c 958 –t 2000
-a helios –p 5001 –E 200 –c 958 –d 500 –t 2000
This script tells the sender to generate two flows addressed
to the host named helios, one at port 5000 and the other at
port 5001. The payload size of all packets is 958, that is,

Figure 1: bit rate plot

considering Ethernet, IP and UDP headers, their full size is
1000 bytes. The first flow lasts 2 seconds and packet
generation process is a constant process, characterized by
the transmission of 100 packets per second (this means a bit
rate of 0.8 Mbps); the second flow starts after half a second
and lasts two seconds; packet generation process is a
gaussian process, characterized by the transmission of 200
packets per second on average (this means a bit rate of 1.6
Mbps). OWDM sender logs sent packet in a file that we
process using ez, in order to obtain the bit rate graph of
generated flows (we set the temporal window on which the
bit rate is calculated equal to 50 milliseconds). The resulting
plot is shown in Figure 1. As we can see, the required
specifications have been met.

6 Conclusion
The idea of creating a new traffic generator arose from the
lacks of existing ones (MGEN, Rude/Crude, etc.), emerged
when we used them to analyze the different behaviour of the
network when some strategies that provide QoS are
implemented. The features we needed were the possibility
of simulating more complex traffic sources, repeating many
times exactly the same traffic pattern (not only its mean
values) and getting information not only about received
packets but also about transmitted packets. So we decided to
build a traffic generator which satisfies these requirements
and also includes a tool for measuring the round trip time.
Mtools is easily extensible to support other features; as new
needs arise, we are ready to add them to our program. At the
moment, anyway, we believe that Mtools owns such
features that it proves useful in several circumstances (e.g.
those mentioned in section 1).

References:
[1] Almes, G., et al. “A One-way Delay Metric for IPPM”,
RFC 2679, 1999.
[2] Almes, G., et al. “A Round-trip Delay Metric for IPPM”,
RFC 2681, 1999.
[3] Naval Research Laboratory (NRL), The MGEN Toolset
on http://manimac.itd.nrl.navy.mil/MGEN/
[4] Davies, R., Newran02A – a random number generator
library on http://webnz.com/robert/nr02doc.htm

