
A scheme for time-dependent resource reservation in
QoS-enabled IP networks♦

Roberto Canonico, Simon Pietro Romano, Mauro Sellitto and Giorgio Ventre

Dipartimento di Informatica e Sistemistica, Università di Napoli “Federico II”,
Napoli, Italy

Email: {canonico, sprom, sellitto, ventre}@grid.unina.it

Abstract. A number of distributed applications require communication services
with Quality of Service (QoS) guarantees. The QoS provisioning issue in the
Internet has been addressed by the IETF with the definition of the Integrated
Services (IntServ) and Differentiated Services (Diffserv) frameworks. Resource
reservation mechanisms on which these models are based are totally time-
unaware. Yet, we believe that, in some cases, associating a time interval to
network resource reservations could be useful for both users and network
providers. In this paper we present a distributed scheme for time-dependent
reservations in QoS-enabled IP networks. We also show how the standard
signalling protocol RSVP may support this new reservation style, with only a
few minor modifications. Finally, we present a first prototype implementation
of the major component of the proposed architecture and we provide some hints
on future applicability scenarios of the advance reservation paradigm and its
impact on related topics such as policing and charging techniques in QoS-
enabled IP networks.

1 Introduction

Existing communications systems are rapidly converging into an ubiquitous
information infrastructure that does not distinguish between computing and
communications, but rather provides a set of distributed services to users [1]. In this
scenario the ability of the network to provide the applications with end-to-end Quality
of Service (QoS) becomes a crucial issue. The best candidate infrastructure to support
these new distributed services is the Internet, due to the enormous number of hosts
already connected world-wide. Unfortunately, the communication service provided by
current Internet does not offer QoS guarantees to applications. Having recognized the
necessity of extending the basic best-effort service, the Internet Engineering Task
Force has defined two architectures: Integrated Services [2] and Differentiated
Services [3]. In particular, the former architecture enables applications to demand per-
flow end-to-end guarantees from the network. To provide applications with the

♦ This work has been partially supported by the Ministero dell’Università e della Ricerca

Scientifica e Tecnologica (MURST), Italy, in the framework of project MOSAICO

required QoS, all network routers along the path between sender and receiver must be
kept informed about the characteristics of the flows, so to reserve the necessary
resources. A resource reservation protocol is thus needed to distribute this information
over the network. For this purpose, the IETF has defined an appropriate signalling
protocol, RSVP (Resource reSerVation Protocol) [4], whose role is to install a per-
flow state in network routers, so to maintain a per-flow resource reservation along the
communication path. To keep the connectionless approach of the Internet Protocol,
RSVP mechanisms have been designed to continuously refresh resource reservations
(soft state).

A major limitation of the IETF model is that it is totally time-unaware, i.e.
reservations take place immediately and last for an unspecified duration. Many
authors have already discussed the usefulness of an Advance Reservation Service [5,
6, 7, 8, 9]. In [6], for instance, Reinhardt focuses on the importance of this new kind
of service for modern video conferencing and Video on Demand applications,
whereas in [7] Wolf and Steinmetz also indicate manufacturing control systems and
remote surgery as possible scenarios. In our opinion, the importance of time-
dependent reservations in a QoS-capable Internet is of extreme importance because it
allows a more efficient resource management in the network and can have a strong
impact on pricing policies.

In this paper we compare some of the proposals that have emerged so far to
support advance reservations in QoS-capable networks, and we present a new
approach for Advance Reservations management, which is totally compatible with the
Integrated Services Architecture. We also illustrate an implementation framework for
our scheme, which relies on only a few minor changes to the RSVP protocol.

The rest of the paper is organized as follows. In Section 2 we discuss issues arising
when time-dependent resource reservations are introduced in a QoS network. In
Section 3 we present a scheme for distributed advance reservation in IP networks. In
Section 4 the inner structure of the main component of our architecture is illustrated.
Section 5 is devoted to the presentation of a prototype implementation of this
component. Finally, Section 6 provides conclusions and discussion of future work.

2 Issues related to time-dependent reservations

A number of architectures have been already proposed to introduce Advance
Reservation Services in a QoS network. A thorough description of them is presented
in [7]. Some common architectural elements can be found in most of the proposed
models. Both [8] and [9] propose a model relying upon a centralized approach. More
precisely, they may be defined server-based as well as routing-domain-based since,
for each Internet Autonomous System, they designate a host, named Advance
Reservation Server (ARS) in [9] and Advance Reservation Agent in [8], whose
purpose is to receive and manage all advance reservation requests. These works focus
on the problems associated to the implementation of a Reservation Management
System.

When adopting a server-based solution, an application may ask the ARS to set up
an advance reservation and, after receiving a confirmation message, may terminate

without any need to be active for the entire duration of the bookahead period. In this
scenario, all state information relating to the advance reservation may be stored into a
stable memory (hard-state), thus eliminating all the problems associated with the
existence of long-lived soft-state inside the routers.

A centralized solution has the advantage of relieving the routers from the burden of
performing all the actions related to Admission Control. In fact, the introduction of an
appropriate server relegates the routers to their normal forwarding and scheduling
tasks. Nevertheless, the resulting architecture also shows the typical disadvantages of
centralized systems: the creation of a performance and reliability bottleneck, poor
scalability, and the need to keep in the centralized reservation server a consistent and
up-to-date view of the present and future resource allocations throughout the network
[5]. Furthermore, most of the signalling traffic associated to reservations would be
concentrated on server nodes, causing them to become possible bottlenecks inside the
network. A distributed solution, on the other side, shows a high degree of robustness
with respect to crashes and uniformly allots control traffic across network nodes. The
major drawback of such a solution remains in the augmented complexity of the
routers.

All the proposed models for Advance Reservation Services rely upon a signalling
protocol. For this purpose, an extension to RSVP seems both natural and simple to
achieve. One could think of defining a new object used to specify Time as an
additional QoS parameter. Such an object would be transferred across the network
into RESV messages [10]. However, a number of issues arise, due to the specific
mechanisms upon which the protocol relies. In particular, the main limitations deal
with the receiver-oriented nature of RSVP and the soft-state paradigm that it adopts
[6].

In the following we describe a distributed approach for management of time-
dependent resource reservations which aims at introducing only a few modifications
to the IETF Integrated Services Architecture. Our approach relies upon an augmented
version of RSVP.

3 A distributed Advance Reservation scheme

Scope of this paper is to present a distributed solution for the implementation of a
Reservation Management System [7], where the role played by RSVP is of crucial
importance. It is our firm belief, in fact, that the advantages of such a solution largely
overwhelm the minor drawbacks associated to router complexity.

In the architecture we propose, network elements (routers and hosts) assume the
structure showed in Figure 1. The basic idea is to provide a Reservation Manager that
takes up the responsibility of processing advance reservation requests during the
negotiation phase, while relying on the well-known mechanisms of RSVP during the
usage phase. Its main purpose is to perform admission control, i.e. to check whether
enough bandwidth is available for the whole duration of the reservation interval. State
associated to each accepted reservation is stored in a Reservation-DB, which also
holds the information concerning bandwidth availability for each time slot. In this
model, we cope with both immediate and advance reservations in a fashion that

proves to be as less intrusive as possible with respect to existing RSVP-based QoS
frameworks. Immediate reservations, in fact, are handled according to the standard
IntServ model, with the only difference residing in the admission control module,
which is now in charge of taking into account the resources allocated both to
immediate and advance reservations. However, the negotiation phase for an advance
reservation is under the responsibility of Reservation Managers, which make use of
both standard and ad hoc defined signalling messages.

Fig. 1. Hosts and routers structure

Figure 2 depicts the steps associated with the negotiation of an advance reservation.

1. The receiving application sends the local Reservation Manager its reservation
request.

2. To characterize the path between itself and the sender, the Reservation Manager of
the receiving host executes a rapi_session() call [11] to the local RSVP daemon. In
order to tell its counterpart on the sending side to start sending path
characterization messages, a new message is defined, called PATH_REQUEST,
which flows on the upstream direction from receiver to sender.

3. To appropriately trace the route between sender and receiver, the Reservation
Manager on the sender side makes use of a PATH_TRACE message containing an
object similar to the standard RSVP_HOP object. As it travels downstream, the
PATH_TRACE message is used to install path information in intermediate routers’
Reservation Managers, needed to forward advance reservation messages in a
further step.

4. Sender’s Reservation Manager, based on the information contained into the
PATH_REQUEST message it received, executes both a rapi_session() and a
rapi_sender() call, thus triggering the standard RSVP PATH sending phase. PATH
messages flowing in the downstream direction are intercepted also by the

Application

Reservation
Manager

RSVP

RSVPReservation
Manager

Traffic
Control

Admission
Control

Reservation-DB

Resource-DB

HOST

ROUTER

Reservation Managers of intermediate nodes, which use them to build messages
associated with advance reservations (ADV_RESV messages).

5. Receiver’s Reservation Manager notifies the receiving application of the arrival of
PATH messages from the sender, thus allowing the application to make all the
computations required to determine the parameters related to the desired QoS. The
application then executes an appropriate advance_reserve() call which triggers the
creation and forwarding of an ADV_RESV message from the receiver’s
Reservation Manager to the first router upstream.

6. Upon reception of the ADV_RESV message, the router’s Reservation Manager
performs an admission test by calling an appropriate function
(Add_New_Adv_Resv()); if this test is passed, the ADV_RESV message is further
forwarded to the next upstream router, eventually reaching the sending host.

7. In case of positive response from all admission tests along the path, the receiver’s
Reservation Manager is notified with an ADV_RESV_CONF message, whose
purpose is to confirm reservation acceptance; this in turn provides the application
with a specific reservation identifier that will be used in the following phase
associated with resource usage.

RSVP

Reservation
Manager

rapi session()

rapi sender()

4

RSVP

Reservation
Managerrapi session()

2

Receiver Application

1 Adv_Resc_Req()

Reservation
Manager

RSVP

Admission
Control

PATH_REQUEST

2

PATH_TRACE

3

PATH

4

5

ADV_RESV

Add_New_Adv_Resv()

6

7

ADV_RESV_CONF

Fig. 2. The negotiation of an Advance Reservation

After the negotiation phase for an advance reservation, there is no need for the
application that made the request to stay active even during the intermediate phase.

At the beginning of the usage phase, Reservation Managers automatically label the
required resources as allotted to a pending reservation: data structures necessary to
carry on classification and scheduling tasks are actually instantiated only when an
explicit usage request from the involved application arrives. For this purpose, the
receiving application uses a slightly modified version of the standard rapi_reserve()
call, containing a new parameter related to the identification of an already accepted
and registered advance reservation. As a consequence, usage requests for advance
reservations are easily handled as immediate reservations for which admission control
tests consist in just verifying the existence, in the Reservation-DB, of an advance
reservation with the same identifier as the one provided by the rapi_reserve() call.

Our model is thus able to cope with both the major problems associated with the
use of RSVP in an advance reservation framework, i.e soft state and receiver-oriented
approach. The issue related to the possible absence of the sender is, in fact,
accommodated by the introduction of the Reservation Manager entity, whereas all
problems concerning the soft state are eliminated thanks to the Reservation and
Resource databases, which guarantee that, for the entire duration of the intermediate
phase, no soft state has to be managed by network nodes.

4 Reservation Manager mechanisms

The goal of the Reservation Manager is to cope with the absence, in RSVP, of a set of
suitable mechanisms to handle reservations in advance. In the following we analyze in
more detail some of the relevant characteristics of the overall framework.

4.1 Negotiation handshaking

The main function of Reservation Managers is to process advance reservation
requests. To accomplish this task, they exchange a number of messages needed to
decide whether or not a specified request must be accepted and register state
information inside the routers involved in the reservation process. Messages
exchanged during this phase are: PATH_REQUEST, PATH, PATH_TRACE and
ADV_RESV, as showed in Figure 3.

Future Sender Host Receiver Host

Admission Control

Create
RMS_Resv_State

ADVANCE_RESERVE()

REQUEST_PATH()

rapi_session()

rapi_sender()

Path_Trace

Path_Trace

Path

Path

Create
RMS_Path_State

Admission Control

Create
RMS_Resv_State

Intermediate Router

Adv_Resv

Adv_Resv

Path_Request

Fig. 3. Typical handshaking for the negotiation phase of an Advance Reservation

It is worth noting the introduction of a PATH_REQUEST message, to deal with the
possible absence of the sender at the time when an advance reservation request is
made from a potential receiving application. With this new message the receiving
application may solicit the Reservation Manager at the sender side to start sending
PATH messages, thus acting as if the actual sender were present. These PATH
messages, however, are only needed to gather all the information related to the path
from sender to receiver (contained, for example, in the ADSPEC object). The specific
format of this and other new messages introduced is detailed in [12].

Faults, as well as re-routings, occurring during the intermediate phase between
negotiation and usage should be taken into account by the Reservation Managers with
the help of Resource Managers; nevertheless, these issues are beyond the scope of a
trial implementation and we left it for further development of the overall framework.

4.2 Confirmation of reservation acceptance

Each node, upon reception of an ADV_RESV message, has to submit the request to
the Admission Control module. If the test is passed successfully, a local reservation
identifier is returned and a RMS_Resv_State object is built with the purpose of
storing all the information related to the advance reservation. This object is inserted
into the reservation database only when admission control has been successful on
each and every node along the path. This requires the introduction of a new message,
especially tailored to accomplish this task. This new message, called
ADV_RESV_CONF, is showed in the lower part of Figure 4.

Future Sender Host Receiver Host

Admission Control

Create
RMS_Resv_State

Save
RMS_Resv_State

ADVANCE_RESERVE()

REQUEST_PATH()

rapi_session()

rapi_sender()

Path_Trace

Path_Trace

Path

Path

Create
RMS_Path_State

Admission Control

Create
RMS_Resv_State

Intermediate Router

Adv_Resv

Adv_Resv

Path_Request

Adv_Resv_Conf

Save
RMS_Resv_State

Adv_Resv_Conf

Save
RMS_Resv_State

Fig. 4. Confirmation message for advance reservations

4.3 Flowspecs merging

Flowspecs merging in the case of advance reservations introduces a new dimension
with respect to immediate reservations. No merging is possible if the time intervals of
two different reservations do not intersect. Things change when at least a partial
overlapping exists, as depicted in Figure 5.

5B

Bandwidth Reserved

4B

6B

3B

RESV1

RESV4
RESV2

RESV3

T1 T3 T4 T5 T6 T7 T8T2
Time

Fig. 5. Flowspec merging in the case of advance reservation

A simple analysis of Figure 5 shows that merging is allowed if and only if the new
request arriving at a node is “fully included” into a reservation already in place, i.e. if
its flowspec turns out to be “less than or equal to” [4] the already existing one and the
reservation interval for the latter request is included into the time interval of the

former. The admission test for a new request, however, must always check whether
the interested flow had already been assigned a portion of resources, even in a sub-
interval of the one conveyed inside the request. For instance, when RESV3 arrives
(Figure 5), the bandwidth considered for admission test must be B, instead of 6B,
since the flow has already been assigned a bandwidth of 5B with RESV1.

4.4 Reservation cancellation

An advance reservation may be cancelled from the requesting application via the
delete_adv_resv() function, which causes all the state information stored into the
receiver’s database to be deleted. To achieve the same goal on all the nodes along the
path, the Reservation Manager at the receiving side sends upstream a
DEL_ADV_RESV message that triggers the cancellation process on each
intermediate element while crossing the network. The cancellation process becomes a
little tricky in the presence of merged reservations. A thorough discussion of the
issues involved in this case may be found in [12]. Furthermore, it should be
considered the case of a lost DEL_ADV_RESV, resulting in persistance of state
information associated to a deleted reservation into some of the intermediate nodes’
databases. To solve this problem, an acknowledgement message, called
DEL_ADV_RESV_ACK, has been introduced, with the purpose of confirming the
cancellation of a specified reservation. The reservation cancellation process is showed
in Figure 6.

Future Sender Host Receiver Host

DELETE_ADV_RESV(

Cancel
RMS_Resv_State

Del_Adv_Resv_Ack

Cancel
RMS_Resv_State

Intermediate Router

Del_Adv_Resv

Del_Adv_Resv

Cancel
RMS_Resv_State

Del_Adv_Resv_Ack

Fig. 6. Reservation cancellation

4.5 Error handling

An advance reservation request which fails the admission control test on a node,
causes an error message, called ADV_RESV_ERR, to be generated and sent
downstream towards the receiving host. Each intermediate node that gets this message
deletes all state information concerning the request, whereas the receiving host also

uses an upcall routine to inform the receiving application about the error. The same
technique is used to deal with other errors, such as those relating to the absence of a
suitable RMS_Path State object for a session, as well as to the presence of an
unknown or conflicting reservation style.

4.6 QoS Enforcement phase

QoS enforcement for advance reservation does not differ from the setup of an
immediate reservation. As already mentioned, this new kind of reservations may be
seen, during this phase, as usual immediate reservations for which the admission
control test simply consists in a check into the Reservation-DB aiming at verifying the
existence of a RMS_Resv State object matching the parameters contained in the usage
request. This object includes information concerning the time interval for which the
reservation is being requested and a handle for reservation authentication inside the
node database. These new parameters must thus be included in the usage request too.
This is accomplished by exploiting the RSVP standard interface by means of the
reserve() function, slightly modified to the purpose. The execution of such primitive
causes modified (i.e. including time interval and reservation handle) RESV messages
to be generated at the receiving application’s side. Upon reception of this modified
RESV message, each node is able to realize whether the request is for an immediate
or an advance reservation and may consistently choose the right admission control
algorithm to be performed.

5 A prototype Reservation Manager

The Reservation Manager is responsible for the management of time-dependent
reservations in the overall system. Its main role is admission control. State associated
to each accepted reservation is stored in a Reservation-DB, which also holds the
information concerning bandwidth availability for each time slot. The system is also
responsible for monitoring reservation state changes, with special regard to transitions
from established to pending states, and from pending to expired state [7]. The main
components of the Reservation Manager are showed in Figure 7.

A time-dependent reservation may be required via the user interface provided by
the rms_main module. Following a reservation request, the
admission_ctrl module is activated to perform the admission test for that
flow. To the purpose, it interacts with the Reservation-DB, both to retrieve
information concerning bandwidth availability in the specified time interval and to
store data structures associated to new reservations. The last module showed in the
figure relates to timer management. It manages a sorted time slots list. An appropriate
timer is set so to expire as soon as the time slot on top of the list starts, thus triggering
the activation of a handler. This function is in charge of doing all the actions
associated to the transitions from established to pending states (for reservations
waiting to be activated) and from pending to expired (for reservations which were
supposed to be activated during the previous slot).

A prototype of a Reservation Manager compliant with the model presented in
Figure 7 has been implemented for the FreeBSD operating system. This module
interacts with a traffic control module based on a WFQ packet scheduler [13].

DB-Interface

• load_slots_in_interval()

• save_new_slot()

• save_new_slot_list()

• save_new_resv()

• load_pending_resv()

• del_expired_resv()

• update_first_slot()

• read_first_slot_t_begin()

• read_first_slot_t_end()

• load_all_slot()

• print_pending_resv()

• print_resv()

• init_DB()

admission_ctrl

• Add_New_Adv_Resv()

rms_timer

• init_rms_timer()
• update_rms_timer()

rms_main

Fig. 7. Structure of the Reservation Manager

6 Conclusions and future work

In this paper we have presented a scheme for distributed advance reservation in QoS-
enabled IP networks. Our original contribution consists in the design of a distributed
solution both efficient and simple to implement. As for applicability is concerned, we
went into the details of a solution especially suited to extend the IETF Integrated
Services model. Since we are firmly convinced that, while taking into account user
expectations and needs, it is compulsory to consider Quality of Service as an end-to-
end issue, we assumed the IntServ model as a starting point. In our framework, we are
now finished with the development of a prototype Reservation Manager and work is
currently in full swing to integrate this new model inside current RSVP protocol
implementations.

Work is in progress to design a model for Virtual Private Networks comprising
both IntServ and Diffserv components and aiming at the definition of a general
environment, exploiting advanced policing and charging mechanisms to provide QoS
at different levels of granularity. More specifically, we envision the use of our
signalling protocol both at a microflow level, as discussed in this paper, and at a
higher hierarchical level, as a means for implementing the handshaking required
between Bandwidth Brokers [14] for dynamic negotiation of Service Level
Agreements. In this scenario the network is considered as an entity which is able to
provide a service general enough to include both immediate and advance reservations
while leveraging on charging to enforce differentiation according to specific service
parameters.

References

1. D. Clark, J. Pasquale et al.. "Strategic Directions in Networks and Telecommunications".
ACM Computing Surveys, No. 4, Dec. 1996, pp. 679-690.

2. R. Braden, D.Clark, and S. Shenker. "Integrated Services in the Internet Architecture: an
Overview". RFC 1633, July 1994.

3. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. "An Architecture for
Differentiated Services". RFC 2475, Dec. 1998.

4. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. "Resource ReSerVation
Protocol (RSVP) -- Version 1 Functional Specification". RFC 2205, September 1997.

5. D. Ferrari, A. Gupta, and G. Ventre. "Distributed Advance Reservation of Real-Time
Connections." In Proc. of the Fifth Int. Workshop on Network and Operating System
Support for Digital Audio and Video, Durham, NH, USA, April 1995.

6. W. Reinhardt. "Advance Resource Reservation and its Impact on Reservation Protocols".
Proceedings of Broadband Island ’95, Dublin, Ireland, September 1995.

7. L. C. Wolf, R. Steinmetz. "Concepts of Resource Reservation in Advance". Special Issue
of Multimedia Tools and Applications on “The State of The Art in Multimedia“, May
1997 (Vol. 4, No. 3).

8. O. Schelén, S. Pink. "An agent-based architecture for advance reservations". In IEEE 22nd
Annual Conference on Computer Networks, Minneapolis, Minnesota, November 1997.

9. S. Berson, R. Lindell, R. Braden. "An Architecture for Advance Reservations in the
Internet". USC Information Sciences Institute, July 16, 1998.

10. J. Wroklawsky. "The use of RSVP with IETF Integrated Services". RFC 2210, September
1997.

11. R. Braden and D. Hoffman. "RAPI -- An RSVP Application Programming Interface -
Version 5". IETF Internet Draft draft-ietf-rsvp-rapi-01.txt, Aug. 1998.

12. M. Sellitto. "Uno schema per la riservazione time-dependent di risorse in reti IP a Qualità
di Servizio". (In Italian). M.SC. Thesis, University of Naples, July 1999.

13. R.D'Albenzio, S.P. Romano and G. Ventre. "An Engineering Approach to QoS
Provisioning over the Internet". Lecture Notes in Computer Science no. 1629, Springer,
May 1999, pp. 229-245.

14. K. Nichols, V. Jacobson, and L. Zhang. "A Two-bit Differentiated Services Architecture
for the Internet". Internet draft, draft-nichols-diff-svc-arch-
00.txt, Nov. 1997.

