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Abstract. 
A number of distributed applications require communication 

services with Quality of Service (QoS) guarantees. To the 
purpose, resource management is required both in the end-system 
and inside the network. 

To date several approaches have been proposed, dealing either 
with end-system issues or with those more strictly related to the 
network, but no unified view exists. Furthermore, while network 
QoS provisioning has come to a good level of standardization, no 
standard proposals exist for the end-systems. We argue that a 
single architectural model is needed, taking into account a more 
exhaustive concept of “resource management”, where quality of 
service is defmed at the level of user perception. 

In this paper we propose an architectural model that enhances 
the IETF Diffserv framework in order to provide service 
differentiation even inside network end-points. 

We also present a prototype implementation of such 
architecture along with experimental results validating the 
proposed solution. 

Zndex terms - Quality of Service, Operating Systems, 
Dfierentiated Services 

A. INTRODUCTION 

To provide applications with end-to-end guarantees, 
network resource management alone is not sufficient. This is 
particularly true when end-points become more sophisticated, 
e.g., workstations with rich device support, multiprocessing 
and multiple users. Distributed applications usually require a 
diversity of resources and network bandwidth is just part of 
them. Other features, such as processing capacity, have to be 
managed in concert with the network to provide applications 
with a guaranteed behavior [l]. 

With respect to the network, experiences over the Internet 
have showed the lack of a fundamental technical element: real- 
time applications do not work well across the network because 
of variable queuing delays and congestion losses. The 
Internet, as originally conceived, offers only a very simple 
quality of service: point-to-point best-effort data delivery. 
Thus, before real-time applications can be broadly used, the 
Internet infrastructure must be modified in order to support 
more stringent QoS guarantees. 

Based on these assumptions, the Internet Engineering Task 
Force (IETF) has defined two different models for network 
QoS provisioning: Integrated Services [2] and Differentiated 

Services [3]. These frameworks provide different, yet 
complementary, solutions to the issue of network support for 
quality of service. 

Although network designers stress the point that the network 
is more than its applications, we argue that the applications 
themselves drive its evolution and deployment. A single 
architectural model is thus needed, taking into account a more 
exhaustive concept of “resource management”, where the 
quality of the service is defined at the level of user perception. 

We propose a framework that extends the concept of service 
differentiation, introducing a schema for priority-based 
communication mechanisms inside the end point operating 
system. We also present a testbed implementation of this 
framework running under Solaris 2.6 and provide a critical 
discussion of the main experimental results. 

The rest of the paper is organised as follows. In section B 
we briefly introduce the QoS provisioning issue in the Internet, 
taking a look at the Differentiated Services model proposed by 
the IETF. In section C we present an overview of some 
interesting proposals for end-to-end QoS support inside the 
end system. 

An innovative proposal for end-system resource 
management is depicted in section D, where we introduce a 
new component called the Priority Broker (PB). We describe 
the overall structure of our enhanced differentiated services 
end-to-end architecture in section E. In section F we illustrate 
implementation issues related to the Priority Broker, while 
presenting experimental results in section G. 

Conclusions and directions for future work are provided in 
section H. 

B. NETWORKQOS 

In the past several years work on scalable QoS-enabled 
networks has led to the development of the Differentiated 
Services (Diffserv) Architecture. A Diffserv network achieves 
scalability by means of aggregation of traffic classification 
state conveyed in an appropriate DS field set by IP-layer 
packet marking [4]. 

In the Diffserv framework traffic entering the network is 
sub.jected to a conditioning process at the network edges and 
then assigned to one of different behavior aggregates, 
identified by means of a single DS codepoint. Furthermore, 
each DS codepoint is assigned a different per hop behavior, 
which determines the way packets are treated in the core of the 
network. Thus, differentiated services are achieved through the 
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appropriate combination of traffic conditioning and per-hop 
behavior forwarding. To date, the most interesting proposals 
are an Expedited Forwarding (EF) [ 111 per hop behavior and 
an Assured Forwarding (AF) [lo] per hop behavior. 

C. END SYSTEM QOS 

A number of researchers dealt with the issue of providing 
Quality of Service guarantees inside network end-points. 

David K.Y. Yau and Simon S .  proposed an end system 
architecture designed to support network QoS [5 ] .  They 
implemented a framework, called Migrating Sockets, 
providing performance-critical protocol services, such as send 
and receive, via a user level library linked with applications. 

An architectural model providing Quality of Service 
guarantees to delay sensitive networked multimedia 
applications, including end systems, has been proposed by K. 
Nahrstedt and J. Smith [6] ,  who also designed a new model for 
resource management at the end-points, called the QoS Broker 
[7]. The broker orchestrates resources at the end-points, 
coordinating resource management across layer boundaries. As 
an intermediary, it hides implementation details from 
applications and per-layer resource managers. 

While we recognize that the cited works represent 
fundamental milestones for the pursuit of quality of service 
mechanisms inside the end-systems, we claim that the time is 
ripe for taking an integrated view on QoS-enabled 
communication. 

A single architectural model is needed, integrating network 
centric and end-system centric approaches and taking into 
account the most relevant standards proposed by the research 
community. 

D. A NEW PROPOSAL: THE P R I O R m  BROKER 

A number of research studies [ 11 [5] show that the operating 
system has a substantial influence on communication delays in 
distributed environments. In particular, packet scheduling 
policies inside the operating system turn out to be a crucial 
issue for the provisioning of some guarantees which are of 
paramount importance for end-to-end QoS enforcement. 

To the purpose, we developed a schema for priority-based 
communication mechanisms inside the operating system, 
which we called the Priority Broker (PB). 

The PB is an architectural model conceived to support 
communication flows with a guaranteed priority level. It is 
implemented as a new software module residing between 
applications and the kemel and providing an additional level 
of abstraction. 

Figure 1 shows a conceptual view of the Priority Broker. 

End-svstem 

Figure 1. Simplified model for the Priority Broker 

The PB offers a number of communication services, 
belonging to the following three classes: 

best-effort: no QoS guarantees; 
0 

0 high priority: for applications that are most 
low priority: for adaptive applications; 

demanding in terms of QoS guarantees. 

The new module is part of a software architecture capable of 
interacting with the operating system in order to provide the 
applications with a well-defined set of differentiated services, 
while monitoring the quality of the communication by means 
of flow control techniques. 

Four are the major components that build the broker (see 
Figure 1): the sender-broker, the receiver-broker, the 
communication sub-system, and the connection manager. 

The sender-broker is responsible for the transmission of 
packets with the priority required by end-users, while the 
receiver-broker manages incoming packets. The 
communication subsystem provides the I/O primitives that 
allow discriminating outgoing packets in the kemel I/O 
subsystem. Finally, the connection manager is in charge of 
handling all service requests on behalf of the local and remote 
processes. 

To provide QoS guarantees, the Priority Broker exploits the 
following mechanisms: 

U0 primitives made available by the Operating 
System to assure flow control on the sender side 
when accessing the network; 
Shared memory to avoid multiple copies between 
applications and kemel to send and receive 
messages; 
Synchronization mechanisms to implement the 
communication protocol between user applications 
and PB; 
Demultiplexing capabilities on the receiving side. 

0 
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Our Priority Broker has been conceived as a daemon 
process running on the end-systems. Communication between 
users' applications and the broker is made possible by an ad 
hoc defined library, which we called the Broker Library 
Interface (BLI). 

The PB, in turn, relies on the services made available by 
both the transport provider and the U 0  mechanisms of the 
operating system upon which it resides. 

E. END TO END QOS PROVISIONING 

We propose here an architecture that enhances Diffserv 
communication paradigm in order to bring the concept of 
differentiation even to the end-system, putting aside the 
simplistic view that looks at it as an atomic point with no 
specific requirements in terms of resource allocation and 
control. 

Thus, we envision a distributed environment where 
resources are explicitly required by the applications and 
appropriately managed by the local OS, which is also in charge 
of mapping local requests onto the set of services made 
available by the network. 

More precisely, we enforce a correspondence between end- 
system priorities and network classes of service, thus obtaining 
an actual end-to-end Per Hop Behavior, where the f i s t  and last 
hops take into account transmission between end hosts and 
network routers. 

Communication in this scenario takes place with the 
following steps: 

A sender application chooses its desired level of service 
among the set of available QoS classes and it asks the 
local connection manager to appropriately setup the 
required resources. 
The connection manager tests for local admission 
control and, in case of success, sets the particular DS 
codepoint corresponding to the required class of 
service. To cope with this issue, an appropriate 
mapping must be defined between local classes of 
service and network QoS levels. The solution we 
propose is shown in the following table: 

Local priority Network service 
High EF 
Low AF 

Best Effort (no priority) Default 

F. PB IMPLEMENTATION ISSUES 

The prototype Priority Broker we implemented is a software 
module placed between application and kernel space. It 
provides a set of communication services, by means of a 
library (BLI, Broker Library Interface), allowing applications 
to request a communication channel with a fixed priority . 

Next sub-sections describe in detail the PB components 
mentioned in section D, and how they interact in an Inter-PB 
communication scenario. 

We implemented the PB on Sun Solaris 2.6 operating 
system. 

1st. Connection Manager 

The connection manager is the PB component in charge of 
handling all service requests on behalf of local and remote 
processes. It provides the following services: 

control information handling; 
I/O buffers handling; 
local database management. 

control and data sockets management; 
service requests scheduling on behalf of remote 
processes; 

This component also manages a local database containing 
information needed for communication between local and 
remote processes. 
At startup a local process requests a communication service, 
with a fixed priority, to the local PB, specifying the remote 
host it wishes to communicate with. A control socket with the 
remote PB is created and a request message is sent to the 
remote PB connection manager. 

Once the request message has been accepted, the remote PB 
connection manager stores a new record into its local database 
and sends back an acknowledgement message to the source 
PB, indicating the Virtual Name of the remote process. 

Upon reception of this acknowledgement message, the 
source PB creates a data socket and appropriately configures 
its Diffserv marker so to map the local priority level onto the 
right level of service adopted over the Diffserv communication 
network. 

2nd. Sender subsystem 

The Sender subsystem provides the following services: 
Inter-PB data unit creation. An Inter-PB data unit is a 
unit of information that travels from the sender PB to 
the receiver PB. This data unit is created by adding a 
header to the process message. Such header contains 
two fields: the destination process ID, and the message 
dimension. 
Inter-PB data unit transmission with the requested 
priority. The PB sends data units using the 
communication channel made available by the 
Connection Manager. 

It is structured as a multithreaded process that manages a 
pool of LWP threads [8]. Each priority level, requested form 
local processes, is associated to one thread. Each thread is in 
charge of transmitting data units with the assigned priority, 
relying on the set of communication services defined in the 
BLI (Broker Library Interface) library. 

Data exchanging between transport and application layers is 
obtained via a shared memory, thus avoiding unnecessary 
copies. Each process connecting to the PB is assigned a 
portion of such memory area, where all data coming from the 
Receiver Broker are placed. 
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In order to achieve synchronization between user processes 
and the Sender, we adopted a “1 producer n consumers” 
paradigm, which we implemented by means of mutex[9]. 

3rd. Receiver subsystem 

The Receiver Broker accomplishes the following tasks: 
Message reconstruction. It extracts sender messages 
from the packets received from the data socket (which 
contain an additional header) 
Message demultiplexing. It delivers received messages 
to the appropriate processes. 

The Receiver broker is implemented as a unique LWP 
thread, taking into account all of the defined priority levels. 

4th. Communication subsystem 

As a general remark, it is obvious that the features of the 
communication subsystem are heavily dependent on the 
particular operating system adopted. For our implementation 
we chose to exploit a general purpose OS. 

Our PB runs under Solaris 2.6, which provides a powerful 
I/O mechanism, the STREAMS framework [9]. This 
mechanism consists of a set of system calls, kernel resources, 
and kernel routines. The fundamental STREAMS unit is the 
Stream. A Stream is a full-duplex bi-directional data-transfer 
path between a process in user space and a STREAMS driver 
in kernel space. It is composed of a Stream head, zero or more 
modules, and a driver. Data on a Stream are passed in the form 
of messages. Each Stream’s module has its own pair of queues, 
one for reading and one for writing. Queues are the basic 
elements by which the Stream head, modules, and drivers are 
connected. When called by the scheduler, a module’s service 
procedure processes queued messages in a first-in, first-out 
(FIFO) manner, according to priorities associated with them. 
Thus, STREAMS uses message queuing priority. All messages 
have an associated priority field: default messages have a 
priority of zero, while priority messages have a priority band 
greater than zero. Non-priority, ordinary messages are placed 
at the end of the queue following all other messages that can 
be waiting. Priority band messages are placed below all 
messages that have a priority greater than or equal to their 
own, but above any with a smaller priority[9]. 

To discriminate among three different classes of service, we 
found, by trial and error, that the best choice was to use a 
priority of 0 for Best Effort, 1 for Low Priority and 255 for 
High Priority. 

5th. BLI Library 

The Broker Library Interface (BLI) acts as an interface 
between applications and the Priority Broker. It makes 
available to the end-user a set of primitives that provide the 
applications with the necessary support for differentiated 
communication services. Two are the major entities involved 
in the communication: the broker endpoint and the broker 
provider. The former represents either local or remote process, 

whereas the latter is the set of routines implementing the PB 
upon the end-system. 

Using BLI functions, an application may be granted access 
to the services provided by the Priority Broker. 

Figure 2 illustrates a functional schema describing the 
client-server communication protocol implemented via the 
BLI. 

Figure 2. Client-server communication via the BLI 

As depicted in the figure, the first step required is the 
connection with the local PB @-open() call both on client and 
on sender side). Afterwards, a client invokes b-connect() to 
ask a server application for a specific service. After accepting 
such request (b-accept() on the server side), the next step is 
the invocation of b-alloc(), which results in memory allocation 
for both reading and writing buffers. 

Finally, data transmission and reception is achieved via 
b-snd() and b-rcv() invocations. 

G. EXPERIMENTAL RESULTS 

In this section we present some of the experiments we made 
in order to validate the behavior of our Priority Broker and we 
provide a critical analysis of the most significant results we 
obtained. 

Test I - Service guarantees provided by the PB 

The first experiment was run to investigate the kind of 
guarantees the Broker is able to provide. 

A server application was run on one workstation, whereas 
two client applications were run concurrently on another 
workstation. Both clients were connected to the server through 
PB communication services. The former (A) asked for a Best- 
Effort treatment, while the latter (B) required a High Priority 
service. Both clients were sending 20000 messages, each 1200 
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bytes long. Communication was activated first by client A; 
client B came into play some seconds afterwards. 

Figure 3 shows the results obtained with this experiment. 

Figure 3. Results of the first experiment 

It is worth observing that client A transmission is preempted 
as soon as client B starts sending packets. Transmission from 
A is resumed only when B stops. 

Test 2 - Broker’s degree of intrusion on standard 
communication 

A testbed was set up to evaluate the impact of the Broker 
module on applications using standard communication 
libraries, while running concurrently. 

Bandwidth measures show that the increase in the number of 
clients exploiting PB services (varying-blue columns) has only 
a small effect on the resources assigned to the client that uses 
standard sockets (red column). 

clinusocria 
C l i d  B m k a  

created by the broker; thus, they do not affect that much the 
standard sockets client. 

H. CONCLUSIONS 

In this paper we discussed some of the issues involved in the 
design of a framework that extends the concept of service 
differentiation. We proposed an architecture that enhances 
Diffserv communication paradigm in order to bring the 
concept of differentiation even to the end-system, putting aside 
the simplistic view that looks at it as an atomic point with no 
specific requirements in terms of resource allocation and 
control. 

Thus, we introduced a schema for priority-based 
communication mechanisms inside the end point operating 
system. We also presented a testbed implementation of this 
framework and provided a critical discussion of the main 
experimental results. 

Work is in full swing to integrate our Priority Broker 
component in the framework of a Diffserv network testbed we 
set up at our Laboratory. Ongoing experiments are dealing 
with the refinement of the interaction between the PB and the 
edge routers of the Diffserv network and with the validation of 
the mapping process we implemented.. 

Our aim is to design a distributed environment where 
resources are explicitly required by the applications and 
appropriately managed by the local OS, which is also in charge 
of mapping local requests onto the set of services made 
available by the network. 
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Figure 4. Results of the third experiment 

This is due to the fact that the processes represented by blue 
columns in the figure belong to the same stream, that has been 
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