
Bringing Service Differentiation to the End System

Domenico Cotroneo, Massimo Ficco, Simon Pietro Romano and Giorgio Ventre

Via Claudio, 21
Dipartimento di Informatica e Sistemistica

Universith degli Studi di Napoli “Federico 11”
80125 Napolii, Italy

{ cotroneo,spromano,ventre} @unina.it ficcomax@ grid.unina.it

Abstract.
A number of distributed applications require communication

services with Quality of Service (QoS) guarantees. To the
purpose, resource management is required both in the end-system
and inside the network.

To date several approaches have been proposed, dealing either
with end-system issues or with those more strictly related to the
network, but no unified view exists. Furthermore, while network
QoS provisioning has come to a good level of standardization, no
standard proposals exist for the end-systems. We argue that a
single architectural model is needed, taking into account a more
exhaustive concept of “resource management”, where quality of
service is defmed at the level of user perception.

In this paper we propose an architectural model that enhances
the IETF Diffserv framework in order to provide service
differentiation even inside network end-points.

We also present a prototype implementation of such
architecture along with experimental results validating the
proposed solution.

Zndex terms - Quality of Service, Operating Systems,
Dfierentiated Services

A. INTRODUCTION

To provide applications with end-to-end guarantees,
network resource management alone is not sufficient. This is
particularly true when end-points become more sophisticated,
e.g., workstations with rich device support, multiprocessing
and multiple users. Distributed applications usually require a
diversity of resources and network bandwidth is just part of
them. Other features, such as processing capacity, have to be
managed in concert with the network to provide applications
with a guaranteed behavior [l].

With respect to the network, experiences over the Internet
have showed the lack of a fundamental technical element: real-
time applications do not work well across the network because
of variable queuing delays and congestion losses. The
Internet, as originally conceived, offers only a very simple
quality of service: point-to-point best-effort data delivery.
Thus, before real-time applications can be broadly used, the
Internet infrastructure must be modified in order to support
more stringent QoS guarantees.

Based on these assumptions, the Internet Engineering Task
Force (IETF) has defined two different models for network
QoS provisioning: Integrated Services [2] and Differentiated

Services [3]. These frameworks provide different, yet
complementary, solutions to the issue of network support for
quality of service.

Although network designers stress the point that the network
is more than its applications, we argue that the applications
themselves drive its evolution and deployment. A single
architectural model is thus needed, taking into account a more
exhaustive concept of “resource management”, where the
quality of the service is defined at the level of user perception.

We propose a framework that extends the concept of service
differentiation, introducing a schema for priority-based
communication mechanisms inside the end point operating
system. We also present a testbed implementation of this
framework running under Solaris 2.6 and provide a critical
discussion of the main experimental results.

The rest of the paper is organised as follows. In section B
we briefly introduce the QoS provisioning issue in the Internet,
taking a look at the Differentiated Services model proposed by
the IETF. In section C we present an overview of some
interesting proposals for end-to-end QoS support inside the
end system.

An innovative proposal for end-system resource
management is depicted in section D, where we introduce a
new component called the Priority Broker (PB). We describe
the overall structure of our enhanced differentiated services
end-to-end architecture in section E. In section F we illustrate
implementation issues related to the Priority Broker, while
presenting experimental results in section G.

Conclusions and directions for future work are provided in
section H.

B. NETWORKQOS

In the past several years work on scalable QoS-enabled
networks has led to the development of the Differentiated
Services (Diffserv) Architecture. A Diffserv network achieves
scalability by means of aggregation of traffic classification
state conveyed in an appropriate DS field set by IP-layer
packet marking [4].

In the Diffserv framework traffic entering the network is
sub.jected to a conditioning process at the network edges and
then assigned to one of different behavior aggregates,
identified by means of a single DS codepoint. Furthermore,
each DS codepoint is assigned a different per hop behavior,
which determines the way packets are treated in the core of the
network. Thus, differentiated services are achieved through the

436
0-7695-0777-8100 $10.00 0 2000 IEEE

appropriate combination of traffic conditioning and per-hop
behavior forwarding. To date, the most interesting proposals
are an Expedited Forwarding (EF) [111 per hop behavior and
an Assured Forwarding (AF) [lo] per hop behavior.

C. END SYSTEM QOS

A number of researchers dealt with the issue of providing
Quality of Service guarantees inside network end-points.

David K.Y. Yau and Simon S . proposed an end system
architecture designed to support network QoS [5] . They
implemented a framework, called Migrating Sockets,
providing performance-critical protocol services, such as send
and receive, via a user level library linked with applications.

An architectural model providing Quality of Service
guarantees to delay sensitive networked multimedia
applications, including end systems, has been proposed by K.
Nahrstedt and J. Smith [6] , who also designed a new model for
resource management at the end-points, called the QoS Broker
[7]. The broker orchestrates resources at the end-points,
coordinating resource management across layer boundaries. As
an intermediary, it hides implementation details from
applications and per-layer resource managers.

While we recognize that the cited works represent
fundamental milestones for the pursuit of quality of service
mechanisms inside the end-systems, we claim that the time is
ripe for taking an integrated view on QoS-enabled
communication.

A single architectural model is needed, integrating network
centric and end-system centric approaches and taking into
account the most relevant standards proposed by the research
community.

D. A NEW PROPOSAL: THE P R I O R m BROKER

A number of research studies [11 [5] show that the operating
system has a substantial influence on communication delays in
distributed environments. In particular, packet scheduling
policies inside the operating system turn out to be a crucial
issue for the provisioning of some guarantees which are of
paramount importance for end-to-end QoS enforcement.

To the purpose, we developed a schema for priority-based
communication mechanisms inside the operating system,
which we called the Priority Broker (PB).

The PB is an architectural model conceived to support
communication flows with a guaranteed priority level. It is
implemented as a new software module residing between
applications and the kemel and providing an additional level
of abstraction.

Figure 1 shows a conceptual view of the Priority Broker.

End-svstem

Figure 1. Simplified model for the Priority Broker

The PB offers a number of communication services,
belonging to the following three classes:

best-effort: no QoS guarantees;
0

0 high priority: for applications that are most
low priority: for adaptive applications;

demanding in terms of QoS guarantees.

The new module is part of a software architecture capable of
interacting with the operating system in order to provide the
applications with a well-defined set of differentiated services,
while monitoring the quality of the communication by means
of flow control techniques.

Four are the major components that build the broker (see
Figure 1): the sender-broker, the receiver-broker, the
communication sub-system, and the connection manager.

The sender-broker is responsible for the transmission of
packets with the priority required by end-users, while the
receiver-broker manages incoming packets. The
communication subsystem provides the I/O primitives that
allow discriminating outgoing packets in the kemel I/O
subsystem. Finally, the connection manager is in charge of
handling all service requests on behalf of the local and remote
processes.

To provide QoS guarantees, the Priority Broker exploits the
following mechanisms:

U0 primitives made available by the Operating
System to assure flow control on the sender side
when accessing the network;
Shared memory to avoid multiple copies between
applications and kemel to send and receive
messages;
Synchronization mechanisms to implement the
communication protocol between user applications
and PB;
Demultiplexing capabilities on the receiving side.

0

437

Our Priority Broker has been conceived as a daemon
process running on the end-systems. Communication between
users' applications and the broker is made possible by an ad
hoc defined library, which we called the Broker Library
Interface (BLI).

The PB, in turn, relies on the services made available by
both the transport provider and the U 0 mechanisms of the
operating system upon which it resides.

E. END TO END QOS PROVISIONING

We propose here an architecture that enhances Diffserv
communication paradigm in order to bring the concept of
differentiation even to the end-system, putting aside the
simplistic view that looks at it as an atomic point with no
specific requirements in terms of resource allocation and
control.

Thus, we envision a distributed environment where
resources are explicitly required by the applications and
appropriately managed by the local OS, which is also in charge
of mapping local requests onto the set of services made
available by the network.

More precisely, we enforce a correspondence between end-
system priorities and network classes of service, thus obtaining
an actual end-to-end Per Hop Behavior, where the f i s t and last
hops take into account transmission between end hosts and
network routers.

Communication in this scenario takes place with the
following steps:

A sender application chooses its desired level of service
among the set of available QoS classes and it asks the
local connection manager to appropriately setup the
required resources.
The connection manager tests for local admission
control and, in case of success, sets the particular DS
codepoint corresponding to the required class of
service. To cope with this issue, an appropriate
mapping must be defined between local classes of
service and network QoS levels. The solution we
propose is shown in the following table:

Local priority Network service
High EF
Low AF

Best Effort (no priority) Default

F. PB IMPLEMENTATION ISSUES

The prototype Priority Broker we implemented is a software
module placed between application and kernel space. It
provides a set of communication services, by means of a
library (BLI, Broker Library Interface), allowing applications
to request a communication channel with a fixed priority .

Next sub-sections describe in detail the PB components
mentioned in section D, and how they interact in an Inter-PB
communication scenario.

We implemented the PB on Sun Solaris 2.6 operating
system.

1st. Connection Manager

The connection manager is the PB component in charge of
handling all service requests on behalf of local and remote
processes. It provides the following services:

control information handling;
I/O buffers handling;
local database management.

control and data sockets management;
service requests scheduling on behalf of remote
processes;

This component also manages a local database containing
information needed for communication between local and
remote processes.
At startup a local process requests a communication service,
with a fixed priority, to the local PB, specifying the remote
host it wishes to communicate with. A control socket with the
remote PB is created and a request message is sent to the
remote PB connection manager.

Once the request message has been accepted, the remote PB
connection manager stores a new record into its local database
and sends back an acknowledgement message to the source
PB, indicating the Virtual Name of the remote process.

Upon reception of this acknowledgement message, the
source PB creates a data socket and appropriately configures
its Diffserv marker so to map the local priority level onto the
right level of service adopted over the Diffserv communication
network.

2nd. Sender subsystem

The Sender subsystem provides the following services:
Inter-PB data unit creation. An Inter-PB data unit is a
unit of information that travels from the sender PB to
the receiver PB. This data unit is created by adding a
header to the process message. Such header contains
two fields: the destination process ID, and the message
dimension.
Inter-PB data unit transmission with the requested
priority. The PB sends data units using the
communication channel made available by the
Connection Manager.

It is structured as a multithreaded process that manages a
pool of LWP threads [8]. Each priority level, requested form
local processes, is associated to one thread. Each thread is in
charge of transmitting data units with the assigned priority,
relying on the set of communication services defined in the
BLI (Broker Library Interface) library.

Data exchanging between transport and application layers is
obtained via a shared memory, thus avoiding unnecessary
copies. Each process connecting to the PB is assigned a
portion of such memory area, where all data coming from the
Receiver Broker are placed.

43 8

In order to achieve synchronization between user processes
and the Sender, we adopted a “1 producer n consumers”
paradigm, which we implemented by means of mutex[9].

3rd. Receiver subsystem

The Receiver Broker accomplishes the following tasks:
Message reconstruction. It extracts sender messages
from the packets received from the data socket (which
contain an additional header)
Message demultiplexing. It delivers received messages
to the appropriate processes.

The Receiver broker is implemented as a unique LWP
thread, taking into account all of the defined priority levels.

4th. Communication subsystem

As a general remark, it is obvious that the features of the
communication subsystem are heavily dependent on the
particular operating system adopted. For our implementation
we chose to exploit a general purpose OS.

Our PB runs under Solaris 2.6, which provides a powerful
I/O mechanism, the STREAMS framework [9]. This
mechanism consists of a set of system calls, kernel resources,
and kernel routines. The fundamental STREAMS unit is the
Stream. A Stream is a full-duplex bi-directional data-transfer
path between a process in user space and a STREAMS driver
in kernel space. It is composed of a Stream head, zero or more
modules, and a driver. Data on a Stream are passed in the form
of messages. Each Stream’s module has its own pair of queues,
one for reading and one for writing. Queues are the basic
elements by which the Stream head, modules, and drivers are
connected. When called by the scheduler, a module’s service
procedure processes queued messages in a first-in, first-out
(FIFO) manner, according to priorities associated with them.
Thus, STREAMS uses message queuing priority. All messages
have an associated priority field: default messages have a
priority of zero, while priority messages have a priority band
greater than zero. Non-priority, ordinary messages are placed
at the end of the queue following all other messages that can
be waiting. Priority band messages are placed below all
messages that have a priority greater than or equal to their
own, but above any with a smaller priority[9].

To discriminate among three different classes of service, we
found, by trial and error, that the best choice was to use a
priority of 0 for Best Effort, 1 for Low Priority and 255 for
High Priority.

5th. BLI Library

The Broker Library Interface (BLI) acts as an interface
between applications and the Priority Broker. It makes
available to the end-user a set of primitives that provide the
applications with the necessary support for differentiated
communication services. Two are the major entities involved
in the communication: the broker endpoint and the broker
provider. The former represents either local or remote process,

whereas the latter is the set of routines implementing the PB
upon the end-system.

Using BLI functions, an application may be granted access
to the services provided by the Priority Broker.

Figure 2 illustrates a functional schema describing the
client-server communication protocol implemented via the
BLI.

Figure 2. Client-server communication via the BLI

As depicted in the figure, the first step required is the
connection with the local PB @-open() call both on client and
on sender side). Afterwards, a client invokes b-connect() to
ask a server application for a specific service. After accepting
such request (b-accept() on the server side), the next step is
the invocation of b-alloc(), which results in memory allocation
for both reading and writing buffers.

Finally, data transmission and reception is achieved via
b-snd() and b-rcv() invocations.

G. EXPERIMENTAL RESULTS

In this section we present some of the experiments we made
in order to validate the behavior of our Priority Broker and we
provide a critical analysis of the most significant results we
obtained.

Test I - Service guarantees provided by the PB

The first experiment was run to investigate the kind of
guarantees the Broker is able to provide.

A server application was run on one workstation, whereas
two client applications were run concurrently on another
workstation. Both clients were connected to the server through
PB communication services. The former (A) asked for a Best-
Effort treatment, while the latter (B) required a High Priority
service. Both clients were sending 20000 messages, each 1200

439

bytes long. Communication was activated first by client A;
client B came into play some seconds afterwards.

Figure 3 shows the results obtained with this experiment.

Figure 3. Results of the first experiment

It is worth observing that client A transmission is preempted
as soon as client B starts sending packets. Transmission from
A is resumed only when B stops.

Test 2 - Broker’s degree of intrusion on standard
communication

A testbed was set up to evaluate the impact of the Broker
module on applications using standard communication
libraries, while running concurrently.

Bandwidth measures show that the increase in the number of
clients exploiting PB services (varying-blue columns) has only
a small effect on the resources assigned to the client that uses
standard sockets (red column).

clinusocria
C l i d B m k a

created by the broker; thus, they do not affect that much the
standard sockets client.

H. CONCLUSIONS

In this paper we discussed some of the issues involved in the
design of a framework that extends the concept of service
differentiation. We proposed an architecture that enhances
Diffserv communication paradigm in order to bring the
concept of differentiation even to the end-system, putting aside
the simplistic view that looks at it as an atomic point with no
specific requirements in terms of resource allocation and
control.

Thus, we introduced a schema for priority-based
communication mechanisms inside the end point operating
system. We also presented a testbed implementation of this
framework and provided a critical discussion of the main
experimental results.

Work is in full swing to integrate our Priority Broker
component in the framework of a Diffserv network testbed we
set up at our Laboratory. Ongoing experiments are dealing
with the refinement of the interaction between the PB and the
edge routers of the Diffserv network and with the validation of
the mapping process we implemented..

Our aim is to design a distributed environment where
resources are explicitly required by the applications and
appropriately managed by the local OS, which is also in charge
of mapping local requests onto the set of services made
available by the network.

I. REFERENCES

[I] Henning SChUhiMe, “Operating System Issues for Continuous
Media,” Multimedia Systems, vol. 4, no. 5 , pp. 269--280, Oct. 1996.

[2] R. Braden, D.Clark, and S. Shenker. “Integrated Services in the
hternet Architecture: an Overview”. RFC 1633, July 1994.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z . Wang, and W. Weiss.
“An Architecture for Differentiated Services”. RFC 2475, Dec. 1998.

[4] K. Nichols, V. Jacobson, and L. Zhang. “A Two-bit Differentiated
Services Architecture for the Internet”. Internet draft, draft-nichols-diff-

David K.Y.Yau and Simon S. Lam “Migrating Sockets-End System
:Support for Networking with Quality of Service Guarantees”,
IEEE/ACM Trans. On Networking. VOL. 6, December 1998.

[6] K. Nahrstedt and J. Smith “A Service Kernel for Multimedia
Endsrations”, Technical Report, MS-CIS, University of Pennsylvania.

[7] K. Nahrstedt and J. Smith, “The QoS Broker”, IEEE Multimedia
:Spring 1995,Vo1.2, No.1, pp. 53-67.

[SI John R. Graham, Solaris 2 4 internal and architecture, Mc. Graw
Hill, 1995.

[9] Uresh Vahalia, UNIX Internals, The new frontiers, Prentice Hall
International, 1996.

[IO] J. Heinanen, F. Baker, W. Weiss and J. Wroclawski. “Assured
Forwarding PHB Group”. Internet draft, draft-ietf-diffserv-af-04.txt.
January 1999

V. Jacobson, K. Nichols, K. Poduri. “An Expedited Forwarding
PHB”. Internet draft, draft-ietf-diffserv-phb-ef-01 .txt. November 1998

!jvc-arch-OO.txt, NOV. 1997.
[5]

[I l l

Figure 4. Results of the third experiment

This is due to the fact that the processes represented by blue
columns in the figure belong to the same stream, that has been

440

