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Abstract
The importance of fluid mechanics is often underrated. Besides studying the
mechanisms governing static and dynamic fluids, this discipline could have
a great role in the understanding of many principles, topics and concepts
of general mechanics. When approached in a proper way, fluid mechanics
provides numerous ‘case studies’ apt to clarify the physical content of several
mechanical laws. Unfortunately, fluid mechanics, in physics classes, is
generally viewed as a ‘lower branch’ of mechanics. Its rules and laws too
often are regarded as too particular, or even as special cases, to deserve the
same attention paid to other arguments. The help that fluid mechanics could
return in the learning process can be proved by some easy considerations. In
this frame, the so-called hydrostatic paradoxes could provide a tremendous
contribution to the learning processes.

We are too well acquainted with, or rather too well accustomed to, the
principles and concepts of modern mechanics, so well that it is almost
impossible for us to see the difficulties which had to be overcome for
their establishment. They seem to us so simple, so natural, that we do
not notice the paradoxes they imply and contain. [1]

1. On the didactic role of hydrostatics and paradoxes

Classical physics classes at university, in most cases, are divided into two main branches
usually named (often with ‘enlarged’ meanings) mechanics and electromagnetism. Many
phenomena described by classical mechanics are strongly related to everyday life. Therefore
this discipline has a more ‘intuitive’ nature: many aspects of it are immediately related to
their physical content, or concepts, and not simply descending, by a mere formalism, from
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some base assumptions. From this point of view, electromagnetism and also modern physics
branches such as quantum mechanics do not possess the same strong ‘emotional’ impact,
the same didactical ‘strength’, that some explanations of mechanical phenomena exhibit,
even if they are often more elegant. The study of mechanics represents one of the most
powerful tools to go over mathematics, to achieve the sense of the ‘physical weight’ of laws
and principles for a physicist, and to acquire the right way of thinking for a scientist other
than a physicist.

A branch of classical mechanics is fluid mechanics. In classical mechanics courses, fluid
mechanics is sometimes given very limited, if any, space and attention. According to our
didactic experience (otherwise stated in a previous paper on a quite different subject [2]) more
attention should be given to this discipline by physics teachers of basic courses at academic
level. This happens even for classes of physics faculties. The reader can easily verify this
assertion by checking the programmes of mechanics courses for some of the most prestigious
universities [3]. He would find that most of them do not contain any reference to fluid
mechanics or give a marginal treatment.

Why does it happen? The reason is probably the fact that fluid mechanics and its simplest
sub-discipline, hydrostatics, are viewed as a collection of quite particular phenomena and
laws, more or less ‘disconnected’ from the mechanics of material points and rigid bodies.
Nevertheless the absence of fluid mechanics does not depend on the prestige and level of
academic institutions. Instead, it seems to depend on the target of the course: for instance,
fluid mechanics is always present in physics courses for medicine students, while it is often
absent in engineering courses. It is a matter of choice: since fluid mechanics appears so
special, to partially or totally neglect some aspects of it seems a good way to save time in
the development of ordinary courses. Because of its very particular nature, the study of this
discipline is scheduled to specialist classes.

Under some respects, this point of view is not completely wrong: the mechanics of
continuous media needs approaches and formalisms somehow different from those used for
the study of discrete systems. However, it is surely wrong to make this idea too radical. Thanks
to fluid mechanics, thought and mathematical models were developed in the past centuries,
when differential calculus had not been completely formalized, allowing us to solve problems
otherwise not solvable. This occurrence proves how the study of fluids can be helpful in the
understanding of other branches of physics. Fluid mechanics, besides providing the study of
fluids themselves, could be extremely valuable because of its heuristic power, even if limited
to hydrostatics! Regarding the general principles of mechanics in the frame of continuous
media, it shows how their field of application covers an ensemble of phenomena larger than
the interactions between discrete systems.

In this paper, we focus our attention on the so-called hydrostatic paradoxes. The role of
paradoxes in physics has been recognized and treated by many authors [4–7]. They represent
peculiar physical situations that can illustrate how some principles act in some contexts. The
main purpose of this work is to point out the potential didactic role of some paradoxes and
to show how they are suitable to clarify the working of some general concepts and gain large
interest from students.

2. Background about hydrostatic paradoxes

What do we mean by the term ‘paradox’? Generally speaking, one states that a paradox occurs
if two (or more) argumentations about a topic, both apparently correct, lead to conflicting
conclusions. In our work we use the term paradox under a strictly definite acceptance. We refer
to what one can call ‘synergetic paradoxes’: the use of concepts bearing a ‘limited’ correctness,
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Figure 1. Graphic sketch of a ‘synergetic paradox’. The whole object has an ‘impossible
geometry’, but each part of it is possible and feasible. Note that the four parts in which the
‘cube’ in the middle has been split are twinned: part A to part C and part D to part B. The
‘impossible cube’ is from [8].

but leading to incorrect conclusions when ‘assembled’ to produce ‘global’ conclusions. The
concept just exposed is efficiently sketched and illustrated by the graph in figure 1. The whole
cube in the middle has an impossible geometry, but it can be viewed as a composition of four
parts, which separately are absolutely feasible [8].

Fluid mechanics provides many paradoxical situations, many of them referable to
the frame of synergetic paradoxes. An interesting example is given by [9], where
hydrodynamical paradoxes are described through a complete physical and mathematical
formalism. Nevertheless our attention will be restricted to hydrostatic paradoxes. They
are fully accessible with some basic mathematical tools, and, furthermore, they involve
basic principles of mechanics, which are major issues of most courses (for a historical and
philosophical discussion about them, see for example [10, 11]).

In the following, a brief discussion of some hydrostatic experiments is developed, focusing
on their paradoxical aspects and on the contribution that they make in illustrating the effects of
mechanical laws. The purpose is to show, with a few examples, how a simple study of some
of the hydrostatic paradoxes could illustrate, to students or even to experienced people, some
common errors in the usage of basic principles.

3. Discussion

3.1. Does the water lighten the wood?

As a first, simple, example let us consider the following situation.
On a scale pan there are a container with water and a piece of wood; they are equilibrated

by some weights placed on the other pan (figure 2(a)). Once the equilibrium is achieved, the
piece of wood is placed into the water (figure 2(b)), floating on the surface (let us suppose that
the liquid does not flow over the container).
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(a)

(b)

Figure 2. (a) A container with water and a piece of wood are equilibrated by some weights;
(b) how does the equilibrium change after having put the wood on the water surface?

How does the equilibrium change? Does the scale still remain in equilibrium or tip in
favour of the weight because of the lightened wood?

The correct answer can immediately be argued by thinking in terms of first principles.
The same mass is pushing on the first pan, when the wood either is on the water surface or
on the pan. It implies that the equilibrium is preserved after the wood has been placed in
the container. However, even this first example may have wrong answers from inexperienced
people or students. The following argumentation is not uncommon: in the second case the
scale is tipped in favour of the weight, because the hydrostatic force reduces the ‘effective
weight’ of the wood. Since the strong argumentation is previously exposed, it is obvious that
the latter one is not correct somewhere. Said better, it is an example of right statements, ‘the
hydrostatic force pushes the wood upwards’, therefore ‘the effective weight of the wood is
lower than before’, used in a wrong way to infer a wrong conclusion.

Indeed, it must be considered that the Archimedes force, which decreases the effective
weight of the wood, generates a reaction force on the water from the wood, of the same
intensity but oriented downwards. In other words, it is true that the hydrostatic force
is opposed by the weight of the water and the wood. But, with respect to the physical
system, it is an internal force and is balanced by an equal and contrary force according
to the third law of Newton. Therefore, the total sum of the forces is still equal to the
only weight forces, just as in the situation in which the wood was out of the water. This
hydrostatic situation, despite its simplicity, represents a good example of the application of
the action and reaction principle. The apparent paradox that arises by thinking in terms of
hydrostatic force alone makes it more effective for the didactical purpose to illustrate the
principle. A pair of variations of this example can easily be provided by slightly changing the
situation.
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(a)

(b)

Figure 3. (a) A container with water and a piece of iron are equilibrated by some weights;
(b) then, the iron is suspended into the water by a cord: in favour of which pan is the scale tipped?

3.2. On the role of a massless cord on the total weight

In figure 3, the wood is replaced by a piece of iron, which does not float. However, iron is not
simply placed inside the container, at the bottom of it, in which case the same reasoning as
before would apply (floating or not, there would be anyway the Archimedes and the reaction
forces). Rather, we should imagine the iron suspended by a cord (for simplicity, a massless
cord).

Is it, once again, the force at the bottom of the container, equal to the weight of the water
and the iron? Or does the suspension of the iron change the equilibrium?

At a first glance, it could ingenuously seem that the equilibrium is unchanged: on the pan
there are only the mass of the container with the water and the iron, since the mass of the cord
is negligible. The hydrostatic force is the same as if the iron were at the bottom, and the third
law of Newton, which establishes the vanishing of the total internal force, is of course still
valid. Once again, the previous sentences contain argumentations that are correct if considered
separately. True, the only masses are the water and the iron. True, the buoyancy is the same
when either the iron is left at the bottom or it is suspended (provided it is totally immersed).
True, the reaction arising from the buoyancy is still equal and opposite to the buoyancy itself.

Nevertheless, the situation is slightly more complicated than it was before. The difference
consists in the tension of the cord, which is another force acting on the iron. It must be summed
with the other forces, as an external force to the system exerted by the water and the iron. As
a consequence, the scale records a force lower than the sum of the two weights. Since the
tension of the cord is an unknown quantity in a problem of physics, the most convenient way
to face this problem, also for a quantitative (not only qualitative) answer, is to consider the
water alone. The water (through the container) is the body actually interacting with the pan:
all the forces acting on it are communicated to the plate. Two forces act on the water: its
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weight and the reaction to the Archimedes force, both downwards. The latter is equal to the
weight of the displaced water, i.e., to the volume of water which would occupy the space of
the iron; because of the density difference, it is obvious that the recorded force is lower than
the sum of the weights of iron and water. Quantitatively, let VF be the volumes of iron and of
displaced water (of course, they are the same), ρF and ρH are their densities, g the acceleration
of gravity and V the volume of water in the vessel:

FF = the weight of iron weight = ρF VF g

FH = the weight of the displaced water = ρH VF g
(1)

the recorded force = ρH Vg + ρHVF g < ρHVg + ρF VF g = sum of the weights. (2)

The difference between the sum of the weights and the actually recorded force is

FF − FH = (ρF − ρH)VF g. (3)

It corresponds, as can be seen by writing down the equilibrium equation on the piece of
iron, to the tension τ of the cord. The result is obvious if it is regarded in terms of external
forces: the total external force, which must coincide with the recorded force, is precisely given
by the sum of the weights minus τ . It could be reasonable to ask, reasoning in this way, why
the same argument does not apply to the original example, with the wood placed on the water
surface. By merely replacing, in (2), the density of iron with the density of wood, we would
obtain a resulting force greater than the sum of the weights, which is evidently a paradox!
In the first problem the result is obvious, and the difference with the second one is easily
acknowledged by taking into account the role of the tension of the cord; but from a didactical
point of view it would be interesting to spend a few words applying the reasoning on the water
alone, developed for the second example, to the first case. It could actually be applied. The
difference is in the floating of the wood: not all the volume of the wood is immersed, and not
all the volume of wood must be considered in the calculation of the reaction to the Archimedes
force. In other words, when replacing ρF with the density of wood ρW on the right side of (2)
it would be wrong to replace VF with the entire volume of the piece of wood; acting so would
lead to a reaction force exceeding the weight of the wood, while the correct calculation gives
a reaction force equal to such a weight (which is, on the other hand, just the essence of the
floating phenomenon!), as expected.

The heuristic content of the above discussion is striking. First of all, it is important in
clarifying the application of the Archimedes principle, comparing the cases of a ‘light’ floating
body and of a ‘heavy’, suspended, fully immersed body. Then, as already remarked, it points
out the role of the third Newton’s law. Furthermore, it puts in evidence the concept of a
physical system and the role of internal and external forces. It shows how the forces affect a
result of an experiment even when this connection is not so obvious (how the tension of the
cord, which is connected to the suspended iron, can affect the pan), illustrating the strength of
the principles of mechanics. Finally, the main achievement of the above example is to show
the way in which one must focus their attention on one part of the system more than another.
This helps the students to improve their skill to choose the more proper logical and physical
routes in problem solving.

3.3. The floating mass which replaces the water

Figure 4 shows a further variation on the same theme of the previous subsections. On the pans
of a scale, two identical containers are placed, both of them filled with water up to the edge;
but in one of them there is a floating piece of wood. What does the scale display?
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Figure 4. On the two pans of a scale, there are a container filled with water and another, identical,
with water and a floating piece of wood; in both of them the water level reaches the edges; which
one among the two systems is heavier?

The scale could be in equilibrium; or it could tip in favour of the container with wood; or,
rather, the container with only water could be heavier. Which is the correct answer?

An answer could be that the container with the wood is heavier, because there the wood is
added to the water: but it can be soon realized that where the wood is placed there is a smaller
amount of water. Therefore, one could think that wood is replacing the water, and thus the
scale is tipped in favour of the pan with only water, since the density of water is greater then
that of wood. Also in this case we have an example of correct argumentations assembled in
such a way that the conclusion is incorrect. It is true that the containers are identical, it is
true that part of water is replaced by wood and it is true that the water, informally speaking,
is heavier than wood. But the equality of the containers does not imply the equality of the
volumes of the ‘bodies’ in them: actually, the volume occupied by the wood is larger than the
one occupied by the ‘replaced’ water. To solve the paradox, it is necessary to remember how
the Archimedes law works, and why the wood floats. The hydrostatic force must equilibrate
exactly the weight of wood, for the second law of Newton. On the other hand, the buoyancy
is given by the weight of the ‘replaced water’. It means that the weight of the wood exactly
equals that of the replaced water, and therefore the scale is in equilibrium.

In this case, the paradox can be answered in many ways, according to the followed
argumentation. It stimulates remarks on the Newton principles and on the equilibrium, and
once more on the hydrostatic force. The didactical impact of these simple problems is
enlightened by the following citation [12]:

. . . I asked various people this question and got conflicting answers. Some answered
that the pail with the wood would be heavier because ‘the pail has the water and the
wood.’ Others held that, on the contrary, the first pail would be heavier ‘since water
is heavier than wood.’

Both views are a mistake for both pails have the same weight. True, there is less
water in the second pail than in the first because the floating piece of wood displaces
some water. The immersed part of every floating body displaces exactly the same
weight of water as the whole of the body weighs. That’s why the scales will be in
equilibrium.

Another problem. Suppose I place on the scales a glass of water and put a weight
near it. When the system is balanced by the weights on the other pan, I drop a weight
into the glass. What will happen with the balance?
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Figure 5. (a) A stone is placed on a boat floating on a lake; (b) the stone is dropped into the lake:
does the lake level increase, decrease or stay the same?

According to the Archimedes principle the weight in the water becomes lighter than
before. It might be expected that the pan with the glass would rise but in actual fact
the scales will remain in equilibrium. Explain.

The weight in the glass has displaced some water, which has risen above the initial
level, with the result that the pressure on the bottom of the vessel has increased so
that the bottom is acted upon by an added force equal to the weight lost by the weight.

3.4. The old stone and the lake

One of the most effective examples illustrating the working, and the application, of the
Archimedes law, is probably the following.

Let us consider a boat floating on a lake. On the boat there are a man and a stone
(figure 5). At a certain point, the man drops the stone into the lake. The question is: how does
the level of the lake change?

Does it increase? Or decrease? Or does it remain the same?
Compared to what has been written up to now, this question is more complicated. The

question is not obvious, and many famous physicists were reported to have given an incorrect
answer: among them, George Gamow, Robert Oppenheimer, Robert Bloch [13]. When
proposing this problem, the most common answer is: the level of the lake increases, because
the dropped stone displaces part of the water. On the other hand, since the boat (together with
the man) and the stone are ‘acting’ on the water in both situations, with identical masses and
volumes, it should be concluded that the level of the lake does not change. Let us give short
comments to these argumentations. The first answer ingenuously considers the stone on the
boat as ineffective in moving the water. It is true that the stone moves the water when is in the
lake, but it is incorrect to forget it when it is in the boat (or even to consider it more effective
when in the water just because it is completely immersed). However, the second answer is
incorrect too! Correct ‘single pieces’ of reasoning are used: the boat and the stone are the



Hydrostatic paradoxes role in the formation of science students at academic level 1025

same before and after; their masses and their proper volumes are the same in both cases; they
‘interact’ with the water, experiencing a hydrostatic force, both before and after. So, why is
the answer wrong? When the stone is on the boat, the hydrostatic force equilibrates the sum
of the weight of both the objects. As the stone is plunged into the lake, that force equilibrates
the weight of the boat, which still floats, but does no longer equilibrate the weight of the stone,
which goes down. Therefore, in the second case the hydrostatic force is lower; it means that
the amount of displaced liquid is lower, and therefore the level of the lake is lower.

The problem deserves a brief quantitative approach. Let ρS and VS be the density and
the proper volume of the stone, FA1 and VH1 (FA2 and VH2) are the Archimedes force and the
volume of displaced water before (after) the stone has been dropped (we mean the force and
the displaced water due to only the stone: it is unessential to consider also the weight of the
boat and the man, since they are unchanged in the two situations). When the stone is in the
lake, we have of course

(after) VH2 = VS. (4)

Before dropping the stone, the correct procedure is to evaluate the Archimedes force (and
therefore the volume of displaced water) by imposing the equilibrium of all the floating bodies:

(before) ρH VH1 g = FA1 = ρS VSg ⇒ VH1 = VS ρS/ρH > VS. (5)

So we have VH2 < VH1, therefore the correct answer is: the level decreases. It is interesting
to understand which is the wrong passage in the second answer, since all the single pieces are
correct. It appears clear reading the explanation above. It is correct to consider in both cases
the hydrostatic forces on the same bodies having the same masses; however, it is incorrect to
infer that those forces should be the same as a consequence of the identical proper volumes.
They cannot be the same, as shown. In other words, when it is on the boat, the stone floats,
and this means that it displaces more water than when it is dropped; i.e., volume of water is
greater than its proper volume. In a certain sense, the boat acts, on the stone, as a ‘volume
amplifier’. There is probably no better example to show ‘the working of a boat’ in this sense.
Everybody knows that a metallic boat can float because of its shape which occupies a large
volume gaining a lower density. But almost nobody has a chance to think about heavy objects
placed on a boat, reducing the question to a mere, even technically correct, sum of masses
inside a given volume.

3.5. Does a kilogram of ice weigh more than a kilogram of water?

The experimental apparatus4 is shown in figure 6 [16]. A container has a mobile bottom part,
like a piston in a cylinder. This mobile part is connected to the pan of a scale, while the
remaining container is fixed independently, for instance to a wall. In this apparatus, therefore,
the scale records only the force acting at the bottom, mobile, part of the container. The
container has a bottle-like shape, i.e. with a large lower portion, where the piston can slide,
and a much narrower, long, neck on the top.

The question is: when is the largest amount of weight needed to equilibrate the scale?
When the container is filled with ice? Or when the ice melts? Or are the two situations
equivalent?

With this example, we are moving our attention from Archimedes’s to Stevin’s law, which
constitutes the other mainstay of hydrostatics [14]. What is described above constitutes a
famous experiment realized for the first time by Pascal [15].

4 These kinds of apparatuses were once available in every didactical laboratory of physics, and they are largely
discussed in basic laboratory textbooks; see, for example [16].
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(a)

(b) (c)

Figure 6. Representation of the Pascal paradox: (a) the weights on the scale equilibrate the
sliding floor of the bottle filled with ice; (b) how does the equilibrium change when the ice melts?
(c) Schematic representation of the bottle (cf text).

It should be useful to remember that, according to Stevin’s law, the hydrostatic pressure
P at the bottom of a container filled with a liquid having density ρL depends, linearly, only on
the height h of the liquid column, and not on the particular shape (and thus on the volume) of
the container:

(Stevin’s law) P = ρL g h. (6)

As a first case, let us consider the container filled with ice. We suppose that the ice is
not sticking to the lateral or upper walls; so, it only acts at the bottom, which experiences
all the weight of the ice mass inside the container. To reach the equilibrium, the scale will
need, on the second pan, a weight equal to the weight of ice. Now, let us suppose that the
ice melts, becoming water. What do we expect to happen to the scale? Well, a first ‘natural’
answer is: nothing. The ice is simply changing phase, the mass, and therefore the weight, are
still the same, and the force acting on the first pan is unchanged: the weight needed for the
equilibrium must still be equal to the weight of the water in the bottle. Nevertheless, let us
use the following argumentation. Let A be the area of the piston at the base of the bottle and
h the height (depth) of the water in it. According to Stevin, the hydrostatic pressure on the
piston is ρH g h. Therefore, the force on it must be

F = AρH g h. (7)

It can immediately be argued that this force does not correspond to the weight of the water
contained in the bottle. It corresponds to the weight of the water which would occupy the
cylindrical volume having base A and height h. That is, a force exceeding the total weight
of the water! The experimental evidence proves that the second answer is correct, even if it
could appear, to a student, kindly absurd (the first one seems to descend from first principles,
as in the first discussed example). The paradox solution requires explaining where the first
argumentation is wrong.
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(a)

(b)

Figure 7. Representation of the Stevin paradox: (a) the three vessels, filled with water, have
the same base area and the same height: what do the dynamometers measure for each one?
(b) Schematic diagram of the lateral hydrostatic forces for the two non-cylindrical vessels.

To fully explain this, it is convenient to first describe the situation of the following
subsection.

3.6. Stevin’s paradox, and further considerations on Pascal’s experiment

The three vessels depicted in figure 7, filled with water, have the same base area and the
same height. But they have different shapes, as reported in the figure, and therefore different
volumes. What should a dynamometer (or a scale) read for each one?

The first vessel should be the lightest and the third vessel the heaviest, because of the
different amount of contained water; on the other hand, the recorded weight should be the
same for all the vessels, since the heights, and therefore the pressure according to Stevin’s
law, are the same, and so are the bases and therefore the products area times pressure. Which
is the correct answer?

This situation is often referred to as the hydrostatic paradox par excellence or Stevin’s
paradox. In our opinion, it underlines the greatest incidence of the paradoxical content of
what up to now has been exposed, also making it more evident to an expert reader who could
have recognized immediately the right argumentation.

Argumentations similar to the previous subsection can be developed. Indeed, there are
evidently three different masses of water in the vessels, and the measured weight must be
proportional to the corresponding masses; but, on the other hand, Stevin’s law can be applied
as before leading to expression (7), which states that the forces at the bottom, and therefore the
measured weights, are the same. And, as before, the paradox is enforced by the observation
that for vessel 1 the force (7) would exceed the total weight of the water (cf figure 7)!

In this case, the experiment shows that three different weights are recorded, corresponding
to the three different water masses. The two paradoxes, apparently so strongly related, exhibit
an opposite right answer, which could be regarded as a paradox within paradoxes. Then,
we should explain why in the latter experiment the argumentation with the Stevin law fails,
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while in the former it provides the right explanation making wrong the reasoning based on the
comparison of masses.

The application of Stevin’s law to Stevin’s paradox is definitely exemplar in showing how
single correct arguments can be managed to infer wrong conclusions. All the following are
correct statements: Stevin’s law; writing the hydrostatic pressure at the bottom by using this
law; finding, as a consequence, three identical hydrostatic pressures; the hydrostatic force
associated with this pressure, at the bottom, is given by (7); the dynamometer measures the
force acting at the bottom of each vessel. The mistake takes place when, implicitly, one
assumes that the force at the bottom is equal to the hydrostatic force. Indeed, as known by
physicists, the paradox is solved by considering the forces on the lateral walls of the vessels.
The hydrostatic force acts on these walls too, and is transmitted to the bottom through the
walls themselves; figure 7(b) shows how the lateral forces produce a contribution which must
be subtracted or summed to that at the bottom for vessels 1 and 3 respectively. A detailed
calculation, which is beyond the scope of this paper, shows how the correct sum or difference
of all the contributions provides a total force equal to the weight of the water.

So, why in the experiment of figure 6 is there no such ‘compensation’? Why does the
scale detect a force exceeding the weight of the water? It is because one should consider what
is really measured by the scale. In the described apparatus, only the force at the bottom is
measured, which corresponds exactly to what leads to the wrong explanation in the Stevin
paradox. In the Pascal experiment the base of the bottle is ‘decoupled’, and the hydrostatic
forces on the other walls cannot be transmitted to it. The topic effect of the lateral hydrostatic
pressure illustrates the correct aspect of the Stevin law, showing its role at any depth rather
than at the bottom alone, and the meaning of the Pascal principles (about the pressure acting
in any direction). It should also be considered that even students coming from physics classes
for physicists experience trouble, not only computational but even conceptual, if asked to
evaluate forces on the lateral walls of a swimming pool or a dike. By looking at the difference
between the cases of ice or water in the Pascal experiment, it is possible to fully realize the
differences between the physical descriptions to be adopted for rigid bodies and fluids. Once
again, the third law of Newton is involved when considering the correct balance of the forces
on the vessel walls and on the fluid. Furthermore, these paradoxes prove the importance of
a vinculum or a wall in the forces transmission, making evident the difference between the
decoupled and the connected walls. This is not an obvious concept. Stevin’s experiment
points out the existence, at the bottom, of forces other than the hydrostatic one, and that they
cannot be transmitted to the bottom itself if not through the walls.

A simple analysis of the Pascal paradox gives further quantitative information. Referring
to figure 6(c), the force acting on the piston when there is liquid water in the device is

FL = ρH g(h1 + h2)A1 (8)

while in the case of the ice the force is

FI = ρH g(h1A1 + h2A2) (9)

(in writing (9), we neglect the variation of volume and density of the ice compared to water;
actually, there are no approximations: it is easy to be convinced that the result is correct, since
it corresponds to the weight of ice/water, which does not change). Therefore,

FL

FI
= h1 + h2

h1 + h2
A2
A1

> 1. (10)

We would like to further emphasize the importance of these arguments and the
misunderstanding often circulating about them by reporting the following sentence found



Hydrostatic paradoxes role in the formation of science students at academic level 1029

in a very famous Italian encyclopaedia [17]:

. . . hydrostatic paradoxes, consisting in the fact that in different shaped vessels, but
having the same base and height, filled by a liquid at the same height, the force acting
on the base is the same, even if the amount (and therefore the weight) of the over
placed liquid is different (the apparent contradiction is solved by taking into account,
in the computation of total forces, also the reaction by the container walls)

By considering what has previously been discussed, this explanation is clearly incorrect.
The force at the bottom is not the same, as shown above. A reader could infer that, since the
force at the bottom would be the same, the scale should record the same weight (force), which
is not the case! The ‘direct’ hydrostatic pressures of the liquid are the same, while the total
force is different because of the different contributions coming from the walls. And it is very
surprising that this error is made despite the fact that the lateral forces are correctly cited by
the encyclopaedia as the solution of the paradox. The lack of clearness in this field is therefore
further proved by this citation.

We would also like to recall the work of Mach [18], where the Pascal paradox is
exhaustively discussed. In this book, the global solution is exposed by reasoning in terms of
the principle of virtual works. It allows us to recall that such a principle is another ‘sleeping
beauty’ in physics courses, which, for no apparent reason (neither relativity nor quantum
mechanics fights against this principle), is neglected; despite the fact that neither relativity nor
quantum mechanics fights against this principle, its heuristic power is still well grounded.

4. Conclusions

Despite the huge amount of work in studying the art of teaching basic physics (starting from
the never overtaken book by Arons [19], passing to the classical Feynman’s discussions [20]
and ending by the intriguing book by Knight [21] and plenty of specialist reviews on the
subject), the basic textbooks on physics often exhibit incomprehensible explanations, awful
demonstrations, astonishing errors or mistakes even on those subjects which have been firmly
and univocally established. There are many reasons for this. Among others, as Cromer simply
argues [22], science is anything but common sense: it requires a particular habit of mind that
does not come naturally. Thus each teacher must be acquainted to logical and epistemic tools
which in a more clear way can help pupils to catch ‘the scientific method’. Even if in our
daily life we are indebted to the ‘natural’ tools which ‘common sense’ furnishes us, we cannot
give way to its enticements as dealing with ‘the scientific view of the world’. Paradoxes are
efficient tools in this respect in many different fields of human thought (cf [23]). Hydrostatic
paradoxes of the 16th and 17th centuries have played this role and, even more, they helped us to
solve mathematical hard works when mathematical tools were still far from being developed.
It seems obvious that they can still play the same role in those young minds which are looking
for a scientific view and in which the mathematical tools have not yet fully entered.
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