
An Extended ns-2 for Validation of Load Balancing
Algorithms in Content Delivery Networks

Francesco Cece
Dipartimento di Informatica e

Sistemistica
Federico II University of

Napoli, Italy
ing.frankcece@gmail.com

Valerio Formicola
Dipartimento di Informatica e

Sistemistica
Federico II University of

Napoli, Italy
valerio.formicola@unina.it

Francesco Oliviero
Dipartimento di Informatica e

Sistemistica
Federico II University of

Napoli, Italy
folivier@unina.it

Simon Pietro Romano
Dipartimento di Informatica e

Sistemistica
Federico II University of

Napoli, Italy
spromano@unina.it

ABSTRACT
This paper deals with the design, the development and the
usage guidelines of a novel Content Delivery Network library
for the ns-2 simulator. Such library allows evaluating new
application-level load balancing approaches, with special re-
gard to distributed content web servers. It includes some
typical load balancing algorithms proposed in the literature
and it can be extended to support new solutions. The pro-
posed tool extends the ns-2 simulator with new HTTP data
types and new application components which are in charge
of data treatment. Moreover a new agent has been added
to allow the simulation of data transferring. The library
has been designed to work in a non-hierarchical and peer to
peer cooperation environment. Several examples of testing
scenarios are proposed in the paper.

Keywords
Content Delivery Networks, Network Simulator, Load Bal-
ancing

1. INTRODUCTION
A Content Delivery Network (CDN) represents a solution

to effectively provide contents to users by adopting a dis-
tributed overlay of servers. By replicating content on sev-
eral servers a CDN is capable to partially solve congestion
issues due to high client request rates, thus reducing latency
at the same time increasing content availability. Usually, a
CDN consists of an original server (called back-end server)
containing new data to be distributed, together with one or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

more distribution servers, called surrogate servers. In some
typical scenarios there is a server called redirector, which
dynamically redirects client requests based on selected poli-
cies.

A critical component of a CDN architecture is the request
routing mechanism. It allows to direct users requests for a
content to the appropriate server, based on a specified set
of parameters. The proximity principle, by means of which
a request is always served by the server closest to the client,
can sometime fail. Indeed, the routing process associated
with a request might take into account several parameters
(like traffic load, bandwidth and servers computational ca-
pabilities) in order to provide the best performance in terms
of time of service, delay, etc.

In spite of his growing popularity, unfortunately only few
solutions have been proposed in the last years for testing the
CDN infrastructure. No suitable tools, in particular, have
been designed for both implementation and simulation of
novel solutions for load balancing.

In this paper we present an ns-2 extension for CDNs which
allows the comparative evaluation of innovative mechanisms
for load balancing based on a request redirection paradigm.
New algorithms can be easily integrated in the simulator for
testing purposes.

2. REQUEST ROUTING IN CONTENT DE-
LIVERY NETWORKS

Content Delivery Networks were born to improve accessi-
bility, while maintaining correctness: this is achieved through
content replication. They involve an orchestrated combina-
tion of heterogeneous techniques, like content delivery, re-
quest routing, information spreading and accounting.

Depending on the network layers and mechanisms involved
in the process, generally request routing techniques can be
classified in DNS request routing, transport-layer request
routing, and application-layer request routing [1]. In a DNS
based approach, a specialized DNS server is able to provide a
request balancing mechanism based on well-defined policies
and metrics [2] [5] [7]. With transport-layer request rout-

ing, a layer 4 switch usually inspects information contained
in the request header in order to select the most appropri-
ate surrogate server. With application-layer request routing,
the task of selecting the surrogate server is typically carried
out by a layer 7 application, or by the contacted web-server
itself. In particular, in the presence of a web-server rout-
ing mechanism the server can decide to either serve or redi-
rect a client request to a remote node. Differently form the
previous mechanism, which usually needs a centralized ele-
ment, a web-server routing solution is usually designed in a
distributed fashion. URL rewriting and HTTP redirection
are typical solutions based on this approach. In this paper
we will focus our attention on the application-layer request
routing mechanism.

Request routing can usually be classified as either static or
dynamic, depending on the policy adopted for server selec-
tion [3]. Static algorithms select the server without relying
on any information about the status of the system at de-
cision time. The simplest static algorithm is the Random
(Rand) balancing mechanism. In such policy the incoming
requests are distributed to the servers in the network with
a uniform probability. Another well-known static solution
is the Round Robin (RR) algorithm. This algorithm se-
lects a different server for each incoming request in a cyclic
mode. Dynamic load balancing strategies represent a valid
alternative to static algorithms. Such approaches make use
of information coming either from the network or from the
servers in order to improve the request assignment process.
For example, the Least-Loaded (LL) algorithm is a well-
known dynamic strategy for load balancing. It assigns the
incoming client request to the currently least-loaded server.
Such approach is adopted in several commercial solutions.
Unfortunately, it tends to rapidly saturate the least-loaded
server until a new message is propagated [6]. Alternative
solutions can rely on Response Time to select the server:
the request is assigned to the server that shows the fastest
response time [4]. We cite also the 2 Random Choices algo-
rithm (2RC), which randomly chooses two servers and as-
signs a request to the least loaded one [8].

3. STATE OF THE ART IN CDN SIMULA-
TORS

For the evaluation of the content delivery infrastructures
some simulators have been proposed in the latest years, most
of which refer to a web-services scenario. In the following of
the section we will briefly introduce some of them.

To the best of our knowledge, CDNsim 1 is the only sim-
ulator for canonical content delivery networks. It has been
created for modeling Cooperative/Non-Cooperative push/pull
based content management policies in CDNs. The simula-
tor provides: (i) a utility for converting Apache log files into
CDNsim trace files, so to reproduce realistic request profiles,
(ii) the possibility to set the LRU cache replacement policy,
(iii) a static cache policy, and (iv) integration with TCP/IP
networking. This simulator has been designed based on a hi-
erarchical architecture with surrogate and origin servers. It
also implements simple load balancing approaches, namely
the random and the “least loaded” mechanisms. Unfortu-
nately CDNsim does not provide the possibility to intro-
duce new load balancing solutions and new overlay proto-

1CDNsim - http://oswinds.csd.auth.gr/~cdnsim/

cols. Moreover, peer-to-peer CDN scenarios cannot be eval-
uated.

Simulators for overlay peer-to-peer networks have been
proposed in the last years. OverSim2 is an OMNeT++3

extension used to reproduce several kinds of overlay net-
works; it has been specifically developed for supporting P2P
application experiments. The modular architecture of Over-
Sim allows to simulate a full protocol stack, and it supports
both structured and unstructured overlay architectures like
Chord, Kademlia, Koorde, Broose and GIA. The OverSim
code can be easily extended with its own architecture by im-
plementing several common procedures for interaction with
the simulator core engine.

Distributed web-services and web-caching can also be eval-
uated with ad hoc tools. The HttpTools4 simulator is again
an extension of OMNeT++ and provides modules to repro-
duce web-hosts behavior. Such modules adopt the underly-
ing ONNeT++ architecture to exchange information. Http-
Tools reproduces fine-grained interactions among HTTP servers
and clients. A centralized component, the HTTPController,
enables a client to find a specific server. It also distributes
randomly the requests among the servers based on either
uniform or zipf distributions.

The network simulator ns-25 can also simulate HTTP traf-
fic and web cache scenarios. The HTTP traffic generator
module just simulates HTTP packet size profiles: this means
that HTTP traffic is “virtual”, since it does not actually sim-
ulate the transfer of application level data, but just the size
and the time of such transfers. With the ns-2 Web-cache
environment it is possible to reproduce real HTTP data. It
implements HTTP client, server and cache applications as
well as several common HTTP methods. Since the TCP
protocol in ns-2 has not been realized to transfer real data,
a new TCP-like protocol has been implemented for the Web-
cache environment. Unfortunately neither error recovery nor
flow/congestion control and packet segmentation have been
realized.

As far as we know, the existing simulators do not include
any instruments for evaluating new solutions for both static
and dynamic request routing. In the following of this paper
we will introduce a new extension to ns-2 which allows to
easily implement and test new algorithms for request bal-
ancing among the CDN nodes.

4. A NEW NS-2 EXTENSION FOR CDN SIM-
ULATION

Due to the importance of the request routing mechanisms
and the implications that these issues have on the overall
performance of a content distributed infrastructure, we con-
sider fundamental the development of a tool which allows
to easily evaluate new algorithms for load balancing. We
propose a new library for extending the ns-2 with CDN sim-
ulation capabilities. In the following of this section we first
introduce the main components of the new ns-2 module and
their functionality. Then, we describe the integration of such
module in the simulator framework. Finally, we discuss the
implementation of a novel load balancing algorithm.

2OverSim - http://www.oversim.org/
3OMNeT - http://www.omnetpp.org/
4HttpTools - http://code.google.com/p/
omnet-httptools/
5NS2 - http://www.isi.edu/nsnam/ns/

4.1 Architecture Overview
The main novelties of our CDN architecture introduced

in ns-2 are: (i) new HTTP client and HTTP server which
act as CDN nodes, (ii) a new mechanism for introducing
load balancing algorithms at the servers. The client and
server can generate standard HTTP messages, like GET and
REDIRECT. In our architecture the server also includes load
balancing capabilities, and for this reason it can work as an
entity in a peer-to-peer overlay network of CDN servers. The
servers are inter-connected through the underlay network
infrastructure. In our extension we neglected the problem
of consistency of the data hosted by the servers. Therefore
no mechanism for updating the contents among the servers’
network has been provided; we rather supposed that all the
servers are hosting a coherent copy of the data.

The client sends a GET message to the “closest” server,
containing a request for a specific resource. Every content is
identified by a number and it requires some server process-
ing time, which translates into a delay time for serving the
request. The client can behave in two ways: it may send ei-
ther an infinite or a finite number of GET messages at regular
intervals without waiting for any server reply, or it may send
GET messages and then wait for the associated reply before
sending a new request. In the first case the module allows
to use a stochastic distribution for the sending interval; in
the “waiting mode” the module adopts a proper queue for
buffering the outgoing requests. The main novelty in the
HTTP client is its capability to handle explicit REDIRECT

messages. Indeed, based on a specific balancing criterium, a
server can redirect the client’s request to the proper server
which is able to serve it. The client receiving such REDI-
RECT message can issue a further request towards the new
server. In this simple description we can observe that the
behavior of our HTTP client takes into account both the
request arrival rate and the server’s computation time. The
module also provides utilities allowing the client to act not
just as a single HTTP client, but rather as a “clients’ cloud”
with different requests’ inter-arrival distributions.

The CDN server is in charge of both serving incoming re-
quests from clients, and managing the content distribution
with the other servers. From an implementation point of
view, the server adopts a simple FIFO queue for requests
buffering. When a new client request message is received,
the server enqueues it, and it serves the first request in the
queue. Any request needs a specific elaboration time; for
implementing a realistic server scenario a configurable pro-
cessing rate is provided for simulations. After elaborating a
request, the server replies to the client with the CONTENT mes-
sage. The implemented server module also acts as a member
of a peer-to-peer CDN network. This requires that every
server maintains a list of its partners. Such list contains
information about the neighbors which can be contacted
for the implementation of a distributed load balancing al-
gorithm. For example, in case of dynamic balancing mecha-
nisms it could contain servers queue lengths. According with
the “state-aware” mechanisms, such information should be
updated periodically. For this reason we provide the server
with a proper protocol for the exchanging of server status
information. Figure 1 depicts the sequence diagram of a dy-
namic load balancing algorithm: it shows the service status
exchange, as well as the redirection procedure.

In summary, several messages are exchanged between client
and server, which have been implemented in the proposed

Figure 1: Load Balancing Sequence Diagram

ns-2 extension for CDNs. As stated above, together with the
well-known client-server messages GET, CONTENT, and
REDIRECT, we introduce the CDN message which contains
information about the server load status and which can be
considered as a control message in the peer-to-peer network.

4.2 Integration in the ns-2 framework
Ns-2 is an object-oriented, discrete, event-driven network

simulator written in C++ and OTcl6. Primarily used for
simulating local and wide area networks, ns-2 includes dif-
ferent kinds of event schedulers, network components object
libraries, network setup module libraries. In order to re-
duce packet and event processing time (not simulation time),
the event scheduler and the basic network component ob-
jects in the data path are written and compiled using C++.
Through an OTcl linking it is possible to control C++ ob-
jects by means of an OTcl script. Anyway ns-2 also allows
to develop simulation objects entirely in the OTcl language.

Our CDN extension has completely been developed in
C++, and we have provided linking functions for control-
ling C++ objects through OTcl script. To integrate our ex-
tension in the ns-2 framework, we introduced several C++
classes (Figure 2): (i) a CdnData class for data messages,
(ii) a CdnAgent class for sending and receiving messages at
nodes, (iii) a CdnClient application class for generating re-
quests and for processing redirect messages, (iv) a CdnServer
application class for processing incoming requests, for exe-
cuting load balancing algorithms and for sending redirect
messages to clients, (v) auxiliary classes to manage clients
requests queue at the server and a couple of lists to man-
age peers directories and request indicators. Moreover, a
new packet header has been added to the original code, so
to properly identify the incoming packet application source
type.

4.2.1 CdnData class
The CdnData class is the application level data exchanged

both between the client and the server and among the servers.
It is obtained as an AppData subclass and is made of an ap-
plication type descriptor (inherited from AppData and set
to HTTP), a sender identifier, a page requested identifier, a
server identifier for redirection, the HTTP message methods,
and a server status information.

6OTcl - http://sourceforge.net/projects/otcl-tclcl/

Figure 2: The CDN Framework in ns-2

4.2.2 CdnAgent class
A fully ns-2 compliant extension requires the development

of an agent module capable to send application level data,
receive such data from the upper layer and pass them to
the right application. For this reason we have implemented
a new agent class, the CdnAgent, which can be “attached”
through OTcl commands to an existing node. This class
inherits from the Agent class. For this reason it includes
a pointer for the reference to an application class object,
which is fundamental for the implementation of class meth-
ods. Indeed, based on the specific application exploiting
the agent, the sendto method properly creates the packet
to send, while the recv method can call the right applica-
tion data processing method. The CdnAgent module is also
capable to send packets to different destinations at simula-
tion time, differently from the standard ns-2 agents, which
require knowledge of the destination at configuration time.
This feature is fundamental for message redirections, be-
cause every client has to generate new GET messages towards
an unpredictable destination server.

4.2.3 CdnClient class
As any other ns-2 application, the CdnClient class, which

implements the client of the CDN architecture, has to be
attached to an agent. For this reason it must include an
agent pointer, initialized in the configuration script to the
CdnAgent. The client sends GET requests to the servers and
properly handles REDIRECT messages. The server to contact
and the page to require are set at configuration time with
specific commands. A client can send either an infinite or a
finite number of GET messages at either regular or random
intervals. The most important CdnClient method is called
processData and handles both CONTENT messages and REDI-

RECT messages.

4.2.4 CdnServer class
The CdnServer class has the same properties of the Cd-

nClient, but is more extended in functionality. Firstly, its
processData method is in charge of also buffering client re-
quests in a local queue. Furthermore, the CdnServer also
has to handle CDN messages from other peers in the CDN.
For this reason it is provided with a specific method called
processCdnData. Finally, the server includes a specific func-
tion, called cdnProcess, which implements the load balanc-
ing algorithm exploited in the network. Every server has
two timers: the former is used to periodically control the
requests queue in order to pop the first request to serve;
the latter is used to manage the periodical status informa-
tion exchange. Each server has several status variables and
flags. For example, the cdnp2p flag is useful for activating

############################ GLOBAL SETTINGS ############################ ## CDN ALGORITHM ("algo"): # OVERLAY TOPOLOGY ("topology"):# LL // Lowest Loaded Server: 0 # Full mesh: 0# RR // Round Robin: 1 # Ring: 1# RAND // Random: 2 # Chain: 2# R2C // Two Random Choices: 3 ## LWSB // Load-Weighted Stat.Bal.: 4 ## GWSB // Gradient-Weighted Stat.Bal.: 5 ## FSOB // Fictitious Starred Opt. Bal.: 6 ## REFS // Rate-Expectation Fict.Starred: 7 #set topology 0set algo 9set algo_rate 50set totaltime 5000set initial_peak 100set final_peak 3000############################ TRAFFIC SETTINGS ############################ Initial condition creation with a first load on servers$ns at 0.0 "$cc0 load-a-server [$s0 id] 1 20"…$cs0 set exp-avg 0.085…$cc0 set exp-avg 0.08…#Flash Crowd$ns at 200.0 "$cc0 set exp-avg 0.04“$ns at 250.0 "$cc0 set exp-avg 0.1“############################ SERVER SETTINGS ############################## SERVER AGENTset S0 [new Agent/CdnAgent]$s0 attach $S0 80set cs0 [new Application/CdnServer $S0]$cs0 set server-rate 200$cs0 set scan-rate 0.0001$cs0 exp-serv…############################ CLIENT SETTINGS ###############################Client Agentset C0 [new Agent/CdnAgent]$c0 attach $C0 80set cc0 [new Application/CdnClient $C0]$cc0 wait-mode off…#Load Balancing algorithm choice$cs0 algorithm 0#Peer insertion$cs0 peers [$s1 id] [$s2 id] [$s3 id]#Algorithm rate settings$cs0 set algo-rate 10…#Server start$ns at 0.0 "$cs0 start"
Figure 3: Menu Script

the distributed balancing mechanisms. The CdnServer also
includes a cdnPeerList containing the CDN peers. Finally,
several methods have been implemented to enable perfor-
mance analysis of the server.

4.2.5 Simulation Commands
In order to setup and control the simulation environment

we extended the standard ns-2 OTcl commands with new
ones specifically conceived for a CDN scenario. Figure 3
reports examples of OTcl scripts. In particular, it shows
the creation of a new client and a new server node, together
with their settings.

4.3 Queue and Traffic Characterization
In order to evaluate the performance of the different tech-

niques, we implemented the ns-2 modules in such a way that
we can set the client request rate and the server service time
according to a stochastic distribution. Every server has been
implemented based on a standard queueing model; in partic-
ular we adopted D/D/1 and M/M/1 models for determinis-
tic and exponential distribution processes, respectively. Fur-
thermore, we associate each server with an unlimited length
for the buffer. Another important feature of our simulator

is the possibility to set up an initial number of pending re-
quests for each server. Furthermore, it is possible to change
the request rate with a specific command during the simu-
lation, in order to reproduce unusual traffic behaviors like
the well-known flash-crowd phenomenon (Figure 3).

4.4 Implementation of new Balancing Algo-
rithms

The main novelty of our solution is the possibility to eas-
ily extend the CDN infrastructure with new algorithms for
request balancing. In order to guarantee such capability
we have organized the server code in such a way as to iso-
late the main mechanisms for the balancing process. The
server implementation, indeed, provides the following meth-
ods: (i) the send_cdn_data() which extracts server sta-
tus information and sends such data to the server’s neigh-
bors, (ii) the process_cdn_data() method which collects
and elaborates the status information coming from neigh-
bors, (iii) the choose_server() method which selects, for
each incoming request, the most suitable server for the redi-
rection process. Each method includes a switch structure
which, based on the algorithm specified in the OTcl script,
allows to select the right balancing mechanism. This guar-
antees that new algorithms can be easily added to the frame-
work by including a new case in the switch structure.

4.5 Metrics for Performance Evaluation
In order to compare different algorithms, we have included

in the client and server implementation some variables for
performance evaluation. The main client parameters are:
the Mean Response Time (i.e. the RTT, Round Trip Time),
which includes the propagation time on the network links,
the intermediate routers queue waiting time, the servers
queue waiting time and eventually the service time; the Re-
sponse Time Standard Deviation, which provides informa-
tion about both the worst and the best latency situation.

For server analysis we provide instruments for periodical
Queue Length monitoring. Furthermore the server “balanc-
ing attitude” of an algorithm is evaluated through a param-
eter called Unbalancing Index, which is obtained by comput-
ing firstly, for every sampled time, the variance of the values
of the queue length on the total number of the servers and
then averaging it on the number of samples. Another impor-
tant parameter is the Multiple Redirection Overhead, which
is the ratio of the total number of redirected GET messages to
the total number of GET messages generated by the clients.
The above measurements are realized by an ad-hoc OTcl
procedure.

5. A PERFORMANCE EVALUATION EXAM-
PLE

In this section we want to provide a simple example of
how to perform a comparison of several load balancing algo-
rithms with our ns-2 extension. We have implemented three
mechanisms: Random (Rand), Least Loaded (LL), and Two
Random Choices (2RC).

We have modeled each server as an M/M/1 queue with
service rate µ. The frequency of requests generated by the
clients is a Poisson process with rate λ.

In Figure 4 we show preliminary simulation results related
to the LL algorithm in a simple 3-node ring topology. Every
server is set with a different initial load and the same request

Figure 4: Queues length in a 3 node ring topology

S1

S7

S3

C1

S2

S8

S9

S5

S4

S10

S6

C2

C3

C7

C8

C9

C10

C4

C5

C6

Figure 5: Simulation Topology

Table 1: Servers Parameters
1 2 3 4 5 6 7 8 9 10

Q.L. 20 10 5 25 20 10 5 25 10 20

λi [req/s] 11 12 13 15 7 9 8 5 6 10

µi [req/s] 10 7 5 6 12 8 9 13 15 11

rate. According with the expected results, we observe the
balancing of the queue length over time.

A more complex scenario (Figure 5) has also been consid-
ered in order to evaluate the soundness of our simulations.
We have set different values for the request arrival rate, ser-
vice rate, and initial load at each server, as reported in Ta-
ble 1.

In order to consider a more realistic scenario we have also
simulated a flash-crowd event by changing the arrival rate at
server 7 to λ7 = 100 reqs/s in the interval between t0 = 200s
and t1 = 250s.

In Figure 6 we show the queue behaviors over time for
Rand, LL, and 2RC algorithms, respectively (for readability
reasons we have reported only four nodes). These graphs
match the theoretical expectation for the queues length and
they represent a quick way to compare the effectiveness of
the balancing mechanisms. For the Random solution (6-a),
due to the absence of a balancing mechanism, the queues
at servers 2 and 4 diverge since their request rates are big-
ger than service rates. As expected, server 8 is unloaded
since the incoming request rate is lower than the service rate.
For server 7 the queue length has an intermediate behavior

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700

Q
ue

ue
 le

ng
th

Time [seconds]

server 2
server 4
server 7
server 8

(a) Rand

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700

Q
ue

ue
 le

ng
th

Time [seconds]

server 2
server 4
server 7
server 8

(b) LL

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700

Q
ue

ue
 le

ng
th

Time [seconds]

server 2
server 4
server 7
server 8

(c) 2RC

Figure 6: Queue Behaviors

Table 2: Unbalancing Index

Normal Flash-crowd

Random 344.10 337.06

Least Loaded 123.00 126.37

2 Random Choice 34.37 60.74

Table 3: Performance Evaluation with Flash-crowd
AvgRT [s] σRT [s]

Rand 68.03 207.29

LL 23.94 14.82

2RC 12.97 8.16

since arrival and service rates are comparable. For the LL
algorithm (6-b) the queue length follows the attended oscil-
lations due to the time interval required for updating the
status of the servers’ load. For the 2RC algorithm (6-c) we
observe that the queue lengths at servers 2 and 4 have a
similar trend, due to the comparable traffic rates; server 7 is
subject to a traffic peak, which propagates to server 8, which
is close to it; the behavior of such servers is quite similar due
to their isolation in a stub of the topology. In this case the
flash crowd effects are quite visible on the involved elements.

On the other hand, from tables 2 and 3 we observe that
the Random algorithm has no attitude in load balancing (see
the unbalancing index), while the Least Loaded algorithm
produces a better balancing, though with both a great excur-
sion in the instantaneous queue length and a huge Response
Time. The 2RC algorithm shows the best performance glob-
ally with respect to both servers queue stability and clients’
RTTs.

6. CONCLUSIONS
In this paper we proposed a novel ns-2 extension for the

evaluation of load balancing algorithms in content delivery
networks. We developed and implemented new C++ com-
ponents representing the client, the server and the transmit-
ted data. New OTcl commands for controlling client and
server have also been provided. Finally, procedures for the
evaluation of the performance of the load balancing mecha-
nisms have been included in our software.

In the future we are going to exploit such instrument as

a support means for the definition of original solutions for
optimized request balancing.

This ns-2 extension also represents a valid starting point
for the implementation of new instruments for optimization
problems in distributed systems. In particular we are con-
fident that the capability of our library to work in non-
hierarchical environments assures the possibility to design
new simulation tools for the analysis of peer-to-peer overlay
routing mechanisms.

7. ACKNOWLEDGEMENT
The research leading to these results has received fund-

ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement No.
225553 (INSPIRE Project).

8. REFERENCES
[1] A. Barbir, B. Cain, and R. Nair. Rfc 3568 - known

content network (cn) request-routing mechanisms.
Internet draft, IETF, July 2003.

[2] T. Brisco. Rfc 1794 - dns support for load balancing.
Internet draft, IETF, April 1995.

[3] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S.
Yu. The state of the art in locally distributed
web-server systems. ACM Computing Surveys,
34(2):263–311, June 2002.

[4] R. L. Carter and M. E. Crovella. Server selection using
dynamic path characterization in wide-area networks.
In Proceedings of IEEE INFOCOM ’97, volume 3,
pages 1014–1021, April 1997.

[5] M. Colajanni, P. S. Yu, and D. M. Dias. Analysis of
task assignment policies in scalable distributed
web-server systems. IEEE Transactions on Parallel and
Distributed Systems, 9(6):585–600, June 1998.

[6] M. Dahlin. Interpreting stale load information. IEEE
Transactions on Parallel and Distributed Systems,
11(10):1033–1047, October 2000.

[7] D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari. A
scalable and highly available web server. In Proceedings
of IEEE Computer Conference, pages 85–92, Febraury
1996.

[8] M. D. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems, 12(10):1094–1104,
October 2001.

