
Pinball Caching: Improving Performance of a
Framework for Dynamic Web-Content Adaptation

and Delivery
S. D’Antonio

ITEM Laboratory, CINI Consortium
Via Diocleziano 328
80124 Napoli, Italy

Email: sdantonio@napoli.consorzio-cini.it

M. Esposito
CRIAI Consortium

P.le E. Fermi 1
80055 Portici (NA) Italy

Email: m.esposito@criai.it

S. P. Romano
University of Napoli Federico II

Via Claudio 21
80125 Napoli, Italy

Email: spromano@unina.it

Abstract— In this work we deal with a multi-layer caching ar-
chitecture capable to optimize delivery of dynamically produced
web content. With reference to such architecture, we propose a
technique named Pinball Caching, representing a useful means
to estimate attainable performance improvement with respect to
the trend of the main parameters characterizing the system. The
application of such instrument allows clearly identifying where to
concentrate efforts in order to optimize the joint utilization of the
content adaptation architecture on one side and the hierarchical
caching pool on the other.

Keywords: Content Adaptation, Caching, Performance Eval-
uation.

I. INTRODUCTION

Networks and services are moving toward end-users, aim-
ing at satisfying their needs with an ever-growing level of
granularity and reaching more and more people as the time
goes by. Ironically, the less the users technical skills the
more the intelligence they expect from the network. For this
reason, common people often have an irritating relationship
with technology. From their point of view, a non-negligible
delay perceived during a VoIP session is a big defeat, and
they wonder why for years phone calls quality has been much
better than nowadays. It is unlikely that a common person
is able to place an order for something he likes, exploiting
the current e-business infrastructures. And he would not ever
understand the need for inserting login and password when
buying milk.

Nevertheless, standing the above problems, it is more and
more difficult to compete without the support of technology,
regardless of the particular context. Technology is intrusive. It
tends to pervade each field of human activities as witnessed
by the proliferation of email and web addresses on buses,
billboards, and business cards.

One of the great challenges of current IT research consists
in easing anytime and anywhere access to technology by
regular people in order to “move Internet from an opaque

Research outlined in this paper is partially funded by the Ministero
dell’Istruzione, dell’Università e della Ricerca (MIUR) in the framework of
the FIRB Project “Middleware for advanced services over large-scale, wired-
wireless distributed systems (WEB-MINDS)”

companion to a seamless, transparent partner in our daily
lives” [1]. The main issue to face consists in leveraging current
infrastructures to fill the gap between services and the concept
users have about them, by exploiting an infrastructure which
grants continuous, reliable and high quality access.

A prerequisite underpinning the realization of the above
envisaged scenario is the definition of an architecture able to
provide optimal adaptation of contents in order for Internet
services to be effectively accessed through the population of
heterogeneous devices that are recently spreading. Such de-
vices are progressively increasing Internet availability, but they
demand for content adaptation in order to let services follow
users, anywhere and at anytime, so as to foster pervasive
computing scenarios.

In this work, starting from current achievements dealing
with the definition of effective architectures for content adap-
tation and delivery (section II), we first introduce an exten-
sion for coping with highly dynamic contents (section III).
Then, based on the consideration that high dynamicity implies
heavy computation activities, we present a multi-layer caching
approach, namely Pinball Caching (section IV), which helps
mitigate performance figures. A heuristic analytical model is
adopted in order to estimate the speed-up order of magnitude
(section V). Finally, the paper presents a prototype implemen-
tation of the overall adaptation architecture (section VI), which
also validates the pinball caching technique we introduced. In
order to resume the achieved results, we provide in section VII
some concluding remarks.

II. RELATED WORK

Many existing works separately address content adaptation
issues and content caching for performance improvement.

A complete architectural framework for content adaptation
is presented in [2]. In order to assure client-side adaptation,
this work defines a distributed architecture composed of dif-
ferent components which perform the necessary tasks along
the service delivery chain. Our work draws some inspiration
from this one. Though, it definitely departs from it in that the
work in [2] suffers from the inability to effectively perform

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

DATA
SOURCE

ADAPTED
CONTENT

CACHE

DATA
CACHE

RAW
CONTENT

CACHE
HTTP

User
Agent

Business
Logic

S
O

A
P

CLIENTS

Adapter
Engine

Transcoding
Modules

Xcoding
policies

Adaptation
Module

Fig. 1. The proposed content-adaptation and caching architecture

adaptation of fully dynamic contents. Only the possibility to
deliver static contents, possibly available in several different
copies for several different terminals, is natively considered by
the cited architecture. We focus on a more dynamic context
where content is possibly created on demand and, as such,
it is highly tailored to the user’s request. Furthermore, our
content is supposed to be produced by a dynamic web-based
application (e.g. query to search engines, web-mail, stock
quotes surfing). In such a scenario, the availability of pre-
existing available contents, obviously makes no sense.

In [3] the authors present a high level description of
concerns in the context of web-content adaptation to mobile
devices. The concepts of server-side, intermediate-side, and
client-side adaptation are discussed and it is stated how a
suitable mix of these three paradigms is mandatory in order
to address a wide range of possible scenarios in the context
of pervasive computing. This aspect fits our approach very
well, since our presented architecture allows for a customiz-
able distribution of adaptation tasks. Anyway, apart from
some general considerations, in [3] the caching issue is not
addressed at all. In our view, information management and
delivery in such highly dynamic contexts impose the adoption
of caching techniques, since caching is necessary in to preserve
good performance. In [4], the authors present an approach
to assure consistency in the context of dynamic caching
activities. Their DUP (Data Update Propagation) algorithm,
detects dependencies among objects and uses a tree-based
structure to store them. Each object update triggers updates
of dependent objects, which are pushed into the caches. This
approach looks interesting to us, since we organize caches
in multiple layers, and a cache update should trigger cascade
updates in order to avoid high cache-miss rates, which might
severely compromise overall system performance.

III. AN ARCHITECTURE FOR DYNAMIC CONTENT

ADAPTATION AND DELIVERY

Our architecture is presented in Figure 1. It is composed
of several modules which separate concerns along the service
delivery chain. From the client perspective, the architecture
allows to place web-requests to a User Agent. This module

is in charge of managing a set of user-level facilities. Be-
sides those belonging to any classical web-oriented system
(e.g. authentication, authorization, accounting, user profiling),
in this case the need arises for a thorough context-detection
mechanism, including the following tasks:

• device detection, aimed at identifying hardware device
capabilities and its current state (e.g. input/output device
type, battery state);

• context identification, which detects current context
variables (e.g. user-preferences, localization);

• network channel identification, describing the details
about the available connections along the path between
the User Agent and the user terminal.

The outcome of all these tasks influences the overall
content-adaptation results, assuring the best possible matching
between requested information and presented results.

The User Agent is transparent to the service semantics, and
acts as a simple broker between users and the service providers
(also opening an interesting market opportunity). In order to
obtain the needed information, it forwards the user request
together with the inferred context information to the service
oriented-part of the architecture.

Upon reception of a request from the User Agent, the
Adaptation Module extrapolates data related to context, and
forwards the remaining part of the request to the Business
Logic module. The request is herein managed, by accessing
raw data from a generic data source. In this context, the data
source is a generic source of raw information. Most likely,
it is represented by a classical DBMS, but might also be
an analytical model belonging to the targeted business realm.
Once processed, the information coming back from the data
source is passed to the Adaptation Module, which adapts it
according to the previously stored context information. The
result is sent back to the User Agent which simply forwards
it to the user.

The operations performed inside each component of the
architecture might be computationally intensive, depending
on many factors: kind of requested information, raw-data
processing algorithm, adaptation type, etc. This undermines
scalability, i.e. the possibility for the architecture to handle
a large population of different devices, which is a common
case in a pervasive computing scenario. The presence of the
User Agent module represents the first countermeasure we
adopted to help mitigate this problem. In fact, User Agents
are directly hosted by user domains and, due to their semantic
transparency, they can be easily replicated and dimensioned
according to the expected number of subscribers for each
domain. In order to further improve the overall performance of
the architecture, we decided to introduce a cache for each stage
of the request fulfillment process. Caches are conceptually
independent of each other and contain data at the level of
abstraction of the stage they belong to. The cache level closer
to the Business Logic module stores raw data, thus decreasing
the total number of transactions executed on the data source
(e.g. SQL queries to a DBMS). Most likely, this cache will
contain the most interesting (e.g. the most recent, the most

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

famous, or the most important) data. The middle-level cache
stores data processed by the Business Logic. This cache will
likely contain the most requested application-level informa-
tion. For instance, it might contain the latest NASDAQ value
and the trend of the five best stocks, even if these stem from
processing the same raw data (containing the trend of all the
stocks). Finally, the User Agent level cache contains the most
used data presentations. This relieves the Adaptation Module
from performing many times the same content-adaptation task.
The fewer the classes of devices simultaneously active, the
better the attainable performance improvement.

IV. THE PINBALL CACHING TECHNIQUE

In this section we analyse how caching helps improve the
performance of the presented architecture.

Requests issued by users follow different paths depending
on whether and where a request happens to raise a cache miss.
In order to formalize all the possible cases, we defined the
diagram depicted in Figure 2. Each request follows just one
path through this diagram, from the topmost box (“Request”)
to the bottommost one (“End”), i.e. from user request until its
fulfillment. This behavior resembles that of a ball in a pinball:
after having shot the ball, it will eventually fall in the hole, but
no one can predict through which of all the possible paths. For
this reason we call this diagram the Pinball Caching Chart.

The first decision point (“Cacheable?”) separates requests
for cacheable content from those for non-cacheable one. For
instance, if a request asks for a non-cacheable content (path 1
— e.g. a frame of a live video-surveillance session), the
information necessary to compute the content is fetched from
the data source; then, the raw content is produced, adapted,
and sent back to the user. Alternatively, in case of cacheable
content, the architecture verifies whether or not it is cached
in the Adapted Content Cache. If it is (path 2), the answer
can be immediately returned to the user (this is the case of
a request for the same content and from the same type of
device); otherwise, the content is searched for in the Raw
Content Cache. In case of cache hit (path 3), the content needs
just to be adapted, before being sent to the user (this is the
case of a new device asking for an already processed content);
otherwise, the content is eventually searched for in the Data
Cache. In this case, a cache miss is dealt with in all respects
as if the content were not cacheable (path 5).

We remark that in the pinball caching chart we placed
two different boxes, related, respectively, to actions 2 and 5.
This happens even though the actions themselves have the
same semantics, i.e. transferring the adapted content across the
network which connects to the client. For the sake of generality
we leave the boxes separated because we take into account the
case where the adapted content is cached in a separate network
node, which might be far away from the user agent. In an
even more general case, such adapted content might be stored
in several caching nodes in case an approach à la Content
Delivery Network is embraced. This stated, in the following
of the paper we nonetheless consider the two above actions
as indistinguishable (i.e. t2 � t5), which means that we are

Request

Cached in
the Adapted

Content
Cache?

Return answer stored in
the Adapted Content

Cache to client

End

Cached in
the Raw
Content
Cache?

Content
adaptation

Return adapted
content to client

Cached in the
Data Model

Cache?

C.P.U. produces
Raw Content

Save Raw Content in
the Raw Content Cache

Save Data
in the Data

Model Cache

C.P.U. retrieves Data
from the Back end Data

Model
t1

Save adapted content
in the Adapted
Content Cache

Cacheable?

1

2

3

5

4

t2

t3

t4

t5

NO
(1- 1)

YES
(1)

NO
(1- 2)

YES
(2)

NO
(1- 3)

YES
(3)

NO
(1- 4)

YES
(4)

Fig. 2. The Pinball Caching Chart

envisaging a scenario where there is just a single cache co-
located with the user agent.

The overall response time figure depends on two groups of
parameters:

• probabilities related to the decision blocks (P1, P2, P3,
and P4);

• time spent to execute the various actions (t1, t2, t3, t4,
and t5); only non-negligible times are herein considered.

By appropriately defining such parameters, it is possible to
evaluate how caching influences the overall performance.

Standing the presented diagram, Table I contains the ex-
pressions for tpathi and Ppathi (i = 1 . . . 5), representing,
respectively, the elapsed time and the probability to cross the
i-th path.

i tpathi
Ppathi

1 t1 + t3 + t4 + t5 1 − P1

2 t2 P1P2

3 t4 + t5 P1(1 − P2)P3

4 t3 + t4 + t5 P1(1 − P2)(1 −P3)P4

5 t1 + t3 + t4 + t5 P1(1 − P2)(1 −P3)(1 − P4)

TABLE I

ELAPSED TIME AND PROBABILITIES TO CROSS EACH PATH.

V. QUALITATIVE PERFORMANCE EVALUATION

In this section we will carry out an analysis of the at-
tainable performance improvement in the presence of our
multi-layer caching architecture. We will take into account
three different scenarios dealing, respectively, with the most
generic envisaged situation, as well as particularly favorable
and unfavorable scenarios.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

6000

800

2800

5800 6000

0

1000

2000

3000

4000

5000

6000

7000

Path 1 Path 2 Path 3 Path 4 Path 5

T
im

e
(t

.u
.)

Fig. 3. Time elapsed across each path

A. Generic scenario

For our generic scenario, let us assume that the involved
model parameters take the values in Table II.

Probabilities Value
P1 75%
P2 50%
P3 60%
P4 70%
Actions Time (t.u.)
t1 200
t2 800
t3 3000
t4 2000
t5 800

TABLE II

CONFIGURATION OF PARAMETERS IN THE GENERIC SCENARIO

The values in the table have been chosen on the basis of the
following considerations. Firstly, P1 (Cacheable?) has been
set by considering that the probability of a cache miss is
relatively small when accessing common web-based Internet
applications; indeed, 25% cache misses look like a pessimistic
estimate, thus representing an upper bound for our evaluation
in a generic scenario. As far as probability P4 (Cached in
the Data Model Cache?), we remark that such parameter just
depends on the information acting as a source for building
the requested content. That is to say, this parameter does not
show any dependency on the specific processing that has to
be carried out on the information building blocks. On the
contrary, such a dependency plays a major role in the definition
of probability P3 (Cached in the Raw Content Cache?), which
is actually linked to the processing of such blocks. Finally, P2

(Cached in the Adapted Content Cache?) can be configured by
taking into account both user’s device capabilities and current
user settings. In the light of the above considerations, it comes
out that probabilities progressively decrease when climbing up
the pinball caching chart, from the raw data level, towards the
last stage of the content adaptation process.

With such configuration of parameters, we attain the results
shown in Figure 3.

By looking at the chart, we can derive the following insights.
Path 1 and path 5 present the same performance figures, i.e. a
traversal time of 6000 time units. This is due to the fact that
such paths, though for different reasons, refer to the absence
of caching in the process of accessing the desired content: the

3309

6000

0 1000 2000 3000 4000 5000 6000 7000

Average Crossing
Time

No Cache

Time (t.u.)

Fig. 4. Average time with and without caching in the generic scenario

former is crossed in case of a request for intrinsically non-
cacheable content; the latter deals with the case of cacheable
content not present in any level of the cache hierarchy. Path
4, referring to a hit in the data model cache, shows only a
negligible improvement when compared to the previous cases.
The reason behind such a behavior resides in the small time
we set to access raw data at the data model layer (i.e. the time
to perform a DBMS query). Path 3 just requests for adapting
the content and sending it to the client (2800 time units). Best
performance is achieved by path 2 since the already available
content is just sent over the network (800 time units). The
bottom part of the figure shows the traversal probabilities
related to each path. By weighting the path traversal times
with such probabilities, we derive the average crossing time.
In Figure 4 it is compared with the time needed to fulfill
requests in the absence of caching mechanisms.

As it comes out from the picture, the presence of caching,
in the envisaged scenario, almost doubles the attainable per-
formance.

B. Favorable scenario

For this scenario, we assume that the involved probabilities
take the values in Table III. No change in the action times has
been considered with respect to the generic scenario.

Probabilities Values
P1 95%
P2 70%
P3 80%
P4 90%

TABLE III

CONFIGURATION OF PARAMETERS IN THE FAVORABLE SCENARIO

As opposed to the previous case, here we make the as-
sumption that content has a high degree of reusability, which
caters both for a very low probability for content not to be
cacheable and a high cache hit probability. In this case, we
have Ppath1 = 5%, Ppath2 = 66.5%, Ppath3 = 22.8%,
Ppath4 = 5.13%, Ppath5 = 0.57%, and the average times
(shown in Figure 5), indicate an improvement of 3.33 times
in the presence of caching.

C. Unfavorable scenario

For this scenario, we assume that the involved probabilities
take the values in Table IV. Also in this case, no change in the

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

1802,14

6000

0 1000 2000 3000 4000 5000 6000 7000

Average Crossing
Time

No Cache

Time (t.u.)

Fig. 5. Average time with and without caching in the favorable scenario

4626,1

6000

0 1000 2000 3000 4000 5000 6000 7000

Average Crossing
Time

No Cache

Time (t.u.)

Fig. 6. Average time with and without caching in the unfavorable scenario

action times has been considered with respect to the generic
scenario.

Probabilities Values
P1 55%
P2 30%
P3 40%
P4 50%

TABLE IV

CONFIGURATION OF PARAMETERS IN THE UNFAVORABLE SCENARIO

We herein assume that content is highly dynamic, at the
detriment of reusability, which translates in a very low cache
hit probability. In this case, we have Ppath1 = 45%, Ppath2 =
16.5%, Ppath3 = 15.4%, Ppath4 = 11.55%, Ppath5 =
11.55%, and the average times (shown in Figure 6), indicate
a performance improvement of just 1.3 times in the presence
of caching.

D. Sensitivity analysis of the model parameters

When approaching a system tuning phase, it can be interest-
ing to evaluate where to concentrate efforts in order to improve
performance. This kind of analysis will be carried out for the
three scenarios presented. Useful insights will be derived from
two different optimization strategies by focusing, respectively,
on computation times and cache hit ratios.

1) Computation times optimization: In Table V we report
expressions and values for all the derivatives of the average
response time with respect to each of the action times.
The table suggests to focus the first stage of optimization
on improving both the content adaptation process and the
throughput of the transmission between the User Agent and
the End-User Terminal. In fact, in both the general and the
unfavorable scenarios, times associated with such operations

Expression Gen. Fav. Unfav.
dt

dt1
(1−P1) +P1(1−P2) ·
(1 − P3)(1 −P4)

0.295 0.056 0.57

dt
dt2

P1P2 0.375 0.67 0.16
dt

dt3
(1−P1) +P1(1−P2) ·
(1 − P3)

0.4 0.11 0.68

dt
dt4

(1 − P1) + P1(1 − P2) 0.625 0.33 0.83
dt

dt5
(1 − P1) + P1(1 − P2) 0.625 0.33 0.83

TABLE V

COMPUTATION TIMES OPTIMIZATION

Gen. Fav. Unfav.
dt

dP1
−3588 −4419 −2498

dt
dP2

−2418 −2474 −2123
dt

dP3
−1147 −861 −1193

dt
dP4

−30 −11 −46

TABLE VI

CACHE HIT RATIOS OPTIMIZATION

(t4 and t5) have the strongest impact on the average response
time. This comes out from the high probability that the related
two actions are involved in the content delivery chain for
a generic user request. On the other hand, in the favorable
scenario, t2 is the dominating parameter, since path 2 definitely
has a higher probability than the other paths to be crossed. This
emphasizes the importance of embracing a Content Delivery
based approach in such case.

2) Cache hit ratios optimization: By using the same ap-
proach as in the previous section, we present in Table VI the
values for all the derivatives of the average response time with
respect to each of the probabilities (for the sake of conciseness,
the derivatives expressions have been omitted in the table).

Since all probabilities refer to cache hit events, the table
contains all negative values. In other words, an increase in
hit probability at any of the cache hierarchy layers, always
results in lower response times. Interestingly enough, the
higher in the hierarchy the cache hit probability increase
locates, the stronger the relative performance improvement
achieved (e.g. increasing P1 has a stronger effect on the
overall average response time than increasing any of the
lower layer probabilities). As a final remark, we notice that
optimizing caching mechanisms located at the lowest level of
the hierarchy proves to be almost useless from the performance
improvement perspective. The reason behind such considera-
tion resides in the negligible impact of DBMS query execution
on the overall response time.

VI. IMPLEMENTATION OF A CASE STUDY

In this section we present a proof-of-concept implemen-
tation of the hierarchical caching framework operating in
the context of a web application capable to perform content
adaptation. Our prototype is almost fully compliant with the
layered caching architecture presented in Figure 1: for the

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

Fig. 7. Content adaptation in the presence of heterogeneous devices

sake of simplicity it just avoids implementing the lowest-layer
caching mechanism, i.e. the data cache (which however has
no major influence on the overall achievements).

We take the example of a dynamic web site guaranteeing
access to real-time information about stock quotes and their
trends. The application on the server side is capable to auto-
matically identify the client and serve its request accordingly.
Interface between the user agent and the adaptation module,
as well as all interfaces between server side components
(adaptation module, business logic and data model) have
been specified and implemented following the web services
paradigm, i.e. by using protocols based on SOAP/XML [5].

Depending on the specific client capabilities, the retrieved
raw content (i.e. stock trend information) is first adapted and
then presented in the most suitable format. As an example,
in case of a request coming from a user equipped with a PC
or a notebook (see Figure 7), stock trend is presented in a
graphical format; should the same request come from a device
like a mobile phone or a palmtop, a tabular format is chosen
as the most suitable way to present content (as also shown in
Figure 7).

We consider the three following cases:
• cache miss: PC (palmtop) asking for a resource never

requested before;
• raw content cache hit: PC (palmtop) asking for a resource

already retrieved before by palmtop (PC);
• adapted content cache hit: PC (palmtop) asking for a

resource already retrieved before by PC (palmtop).
Figure 8 presents performance results in the three cases

above. More precisely, for each scenario, response time has
been measured for both device types (PC and palmtop). The
measurement campaign has been carried out by means of
a network sniffer embedded in the client device. On the
other hand, red columns refer to the expected response time
computed on the basis of the theoretical model presented in
the previous sections. Time units have been normalized by
means of a proportionality constant making theoretical time
equal to the actual response time in the cache miss case.
Such constant has then been exploited in order to compute
theoretical response times also in the other cases.

As it comes out from the picture, in both cases where
caching comes into play the theoretical response time com-

0,52 0,52

0,38

0,25 0,25

0,16

0,07 0,05 0,05

0

0,1

0,2

0,3

0,4

0,5

0,6

ti
m

e
(s

ec
)

Cache miss
case

Raw Content
cache hit

Adapted Content
cache hit

Teorethical

Personal Computer

Palmtop

Fig. 8. Effect of hierarchical caching on response times

puted based on our model is very close to the actual measured
values. This validates the pinball caching chart approach
and allows concretely appreciating the benefits introduced by
caching in real-world operational scenarios.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a technique aimed at
estimating the attainable performance improvement deriving
from the application of a hierarchical caching technique to the
operation of a system capable to deliver dynamically adapted
content. The analysis focuses on the trend of the main para-
meters characterizing the system’s behavior in the presence of
caching. By applying such instrument to the tuning phase of
the overall architecture we derive some useful insights. First, it
comes out that it is worth devoting efforts to the optimization
of the higher level adaptation mechanisms. The higher in
the hierarchy the optimization strategy takes place, the more
effective the attainable performance improvement. Though, the
above result does not imply that little attention has to be paid
to the lower layers of the architecture. Indeed, a high degree
of reusability can be only achieved if low-level information
is organized and represented in a thoughtful fashion. This
clearly entails that a detailed analysis concerning effective data
organization and representation techniques is carried out.

We just remark that the proposed technique actually rep-
resents a general means which can be exploited in order
to estimate a system’s attainable performance improvement
in all cases where the system itself can be tuned through
appropriate configuration of a well-defined set of parameters.
The methodology proposed in this paper is inspired by an even
more general approach allowing to clearly identify potential
performance bottlenecks of component-based architectures [6].

REFERENCES

[1] G. Armitage. Making the Internet go away. IEEE Internet Computing,
8(2):94–96, Mar.-Apr. 2004.

[2] A. Agostini, C. Bettini, N. Cesa-Bianchi, D. Maggiorini, D. Riboni,
M. Ruberl, C. Sala, and D. Vitali. Towards highly adaptive services for
mobile computing. Mobile Information Systems, pages 121–134, 2004.

[3] T. Laakko and T. Hiltunen. Adapting web content to mobile user agents.
IEEE Internet Computing, pages 46–53, March-April 2005.

[4] J. Challenger, A. Iyengar, and P. Dantzig. A Scalable System for
Consistently Caching Dynamic Web Data. IBM Research.

[5] Nilo Mitra (Editor). SOAP Version 1.2 Part 0: Primer. W3C Recommen-
dation, June 2003.

[6] S. D’Antonio, M. Esposito, S. P. Romano, and G. Ventre. Assessing
the scalability of component-based frameworks: the cadenus case study.
SIGMETRICS Perform. Eval. Rev., 32(3):34–43, 2004.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

