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The T2K experiment has performed a search for v, disappearance due to sterile neutrinos using

5.9 x 10%° protons on target for a baseline of 280 m in a neutrino beam peaked at about 500 MeV. A sample
of v, CC interactions in the off-axis near detector has been selected with a purity of 63% and an efficiency
of 26%. The p-value for the null hypothesis is 0.085 and the excluded region at 95% C.L. is approximately

sin” 20,, > 0.3 for Am2; > 7 eV?/c*.

DOI: 10.1103/PhysRevD.91.051102

I. INTRODUCTION

In the last two decades, several experiments have
observed neutrino oscillations compatible with the hypoth-
esis of neutrino mixing in a three active flavors basis,
described by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [1,2]. Nevertheless, there exist experimen-
tal data that cannot be accommodated in this framework:
the deficit of v, originating from intense radioactive sources
in the calibration of the solar neutrino gallium detectors
SAGE [3,4] and GALLEX [5] and 7, rates near nuclear
reactors [6]. Those experiments cover L/E values of order
1 m/MeV, where L is the neutrino flight path and FE is the
neutrino energy, too large to observe any sizeable effect for
the standard neutrino mass differences. These anomalies
can be interpreted as neutrino oscillations if the PMNS
matrix is extended by introducing a new sterile neutrino v,
(3 + 1 model) with a mass of order 1 eV/c? [6,7]. The

deficit would be due to (ve) — v, oscillations. The v, beam
component is studied at the ND280 near detectors of the
T2K experiment [8] to search for v, disappearance. The
analysis presented here considers v, — v, oscillations,
given by the v, survival probability in the approximation
of two neutrino mass states:

_ _ AL
P(g/e) - (l/e)> =1- SinZZQeesin2(1.267%> (1)

where sin® 20, is the oscillation amplitude, AmZ[eV?/c?]
is the mass squared difference between the new sterile mass
state and the weighted average of the active standard mass
states, with L[m] and E[MeV]. O

While anomalous excesses that might be explained by v,
appearance through sterile mixing have been observed by
the MiniBooNE [9] and LSND [10] experiments, an explan-
ation of all anomalies as sterile oscillations is disfavored
due to tension between appearance and disappearance data
[11-14]. In the absence of a consensus candidate model,
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new probes using the simple 3 + 1 model may be able to
provide some insights into the existing anomalies. This
analysis assumes no v, disappearance or v, appearance.

With the given combination of L and E, this analysis is
sensitive to v, disappearance for Am2; > 2 eV?/c* in a
sample of v, charged current (CC) interactions [15].
A likelihood ratio fit to the reconstructed neutrino energy
spectrum of the v, CC interactions is used to test the sterile
neutrino hypothesis. A high purity sample of photon
conversions from z° decays is included in the fit to control
the dominant background in the v, sample. In addition, a
selection of v, CC interactions at ND280 is used to
constrain the neutrino flux and cross section uncertainties
in order to substantially reduce the uncertainties on the
predicted v,CC interaction rate.

II. THE T2K EXPERIMENT

The T2K experiment uses a neutrino beam produced at
the J-PARC facility in Japan to study neutrino oscillations
and neutrino interactions [8]. Electron and muon neutrinos
are produced from the decay of pions and kaons generated
when a 30 GeV proton beam impinges on a graphite target.
The detector ND280 sits 280 m from the proton target 2.5°
from the primary proton beam direction (off-axis) and
observes interactions of neutrinos from the beam, whose
v, component is peaked at an energy of 500 MeV. The
present analysis uses neutrino interactions on a polystyrene
scintillator or water inside two fine grained detectors
(FGDs) [16] that corresponds to a total fiducial mass of
about 1.67. Three time projection chambers (TPCs) [17]
adjacent to the FGDs are used to identify particle type and
momentum. Electromagnetic calorimeters (ECal) [18] that
surround the FGDs/TPCs (the tracker) along the beam
direction (barrel ECal) and downstream (DsECal) addition-
ally separate electron showers from muon tracks. The 7°
detector (POD) [19] is located upstream of the Tracker
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FIG. 1. Expected v, flux at ND280 and CC v, selection

efficiency as a function of the true neutrino energy are shown.

region and is used to veto interactions outside the FGDs in
this analysis.

The results presented in this analysis are based on data
taken from January 2010 to May 2013 which corresponds
to a total exposure at ND280 of 5.9 x 10?° protons on target
(POT) with a horn configuration that enhances neutrinos
and suppresses antineutrinos.

III. v, FLUX AT ND280

The T2K beam is composed mostly of v, with 6.2% p,,
1.1% v, and 0.1% v, [20]. The v, flux at ND280 as a
function of the neutrino energy is shown in Fig. 1. The fluxes
of v, and 7, are produced predominantly by K* and K°
decays at high energies (E > 1 GeV), and at low energies
(E < 1 GeV) mainly by u decay in flight [20]. K* and K°
tend to decay near the hadron production point due to their
short mean lifetime, while s decay throughout the 96 m
long decay volume, with a nearly flat decay length distri-
bution. The v, flight path distribution at ND280 is shown in
Fig. 2. The average neutrino flight path, for v, selected in the
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FIG. 2 (color online). Expected neutrino flight path for v,
interacting in the ND280 FV, broken down by the neutrino parent
meson.
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analysis, is 244 m. The fluxes at the near detectors are
predicted using a full Monte Carlo simulation of the beam
line and modeling of hadron production cross section based
on experimental data from NAG61/SHINE [21,22]. The
uncertainties on the v, and v, fluxes range from 10% to
20% as a function of energy, prior to using any additional
information from the v, CC interactions at ND280.

IV. v INTERACTIONS AT ND280

The target material of the v, CC selection in the tracker is
either water or a polystyrene scintillator. At T2K energies,
the dominant CC interaction is the CC quasielastic (CCQE)
scattering off neutrons (v;n — ["p), where a negative
lepton [~ of the same flavor as the neutrino is created.
At higher energies, neutrino CC interactions with pion
production can take place. Those are CC resonant single 7
production (CCRES), coherent 7 production (CCCoh) and
multi-z production due to deep inelastic scattering
(CCDIS). As the v, flux is much larger than the v, flux,
the relative rate of v, CC interactions is expected to be
~100 times larger than the analysis signal, v, CC inter-
actions. Event selections in the tracker are designed to
enhance the selection of v-carbon or v-oxygen interactions
inside the FGD fiducial volume (FV). )

The most important background for v, interactions is v,
CCDIS or neutral current (NC) interactions which produce
an’ (u,N - 7°X). The z° predominantly decays to two
photons and any electrons produced within the FV by y —
eTe” may be misidentified as originating from v, CC
interactions. Electrons in the FV may come from photons
produced in v interactions outside of the FV (OOFV) or
inside it.

The neutrino event generator NEUT [23] simulates the
neutrino interactions at ND280. Uncertainties in the
neutrino-nucleus cross section models and reinteractions
of pions within the nucleus (final state interaction, or FSI)
are estimated by comparing the NEUT prediction with
external neutrino, pion and electron scattering data [24].
Each cross section is characterized using a minimal set of
parameters with large prior uncertainties between 20%
and 40%.

V. FLUX AND CROSS SECTION
CONSTRAINTS AT ND280

Assuming no v, disappearance, a measurement of v, CC
interactions at ND280 is used to reduce the flux and the
cross section uncertainties in the v, signal prediction. This
is possible due to the significant correlation between the v,
and v, fluxes, originated from decays of the same hadron
types. A similar technique is used in other T2K measure-
ments [15,25]. Possible differences between v, and v, cross
sections of up to 3%, due to radiative corrections or
differences in the nucleon form factors [26], are included
as a systematic error.

051102-4
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A predominantly v, CC interaction event sample is
selected by identifying the highest momentum negative
track originating within the FV which is compatible with a
muon. This is done by exploiting the tracking and particle
identification capabilities of the TPCs. Based on the
presence of charged pions, the v,CC sample is further
separated into three categories: events without pions
(CC-0r), events with one 7™ (CC-zt) and other inter-
actions which produce a 7~, z° or more than one pion
(CC-Oth). This provides sensitivity to the rate of v, CCQE,
CCRES and CCDIS interactions. The three samples are
binned in muon momentum and angle and they are fitted to
evaluate the neutrino flux and cross section uncertainties
that are used as prior uncertainties in the v, disappearance
analysis.

VI. ELECTRON NEUTRINO SELECTION AT
ND280 AND SYSTEMATIC UNCERTAINTIES

A sample of v, CC events is obtained by selecting
electronlike events with the most energetic negatively
charged track starting either in the FGD1 or FGD2 FV.
Electron candidates are selected by combining the particle
identification (PID) capabilities of the TPCs and ECals to
reject 99.8% of muons. 7° backgrounds are reduced by
rejecting events where a positive electronlike track is
identified within 100 mm of the electron candidate and
the eTe™ invariant mass is smaller than 100 MeV/c?.
Additionally we require that there be no tracks in the
detectors upstream of the interaction vertex to reject v, N —
72X interactions outside the FV. v, CC interactions are
selected with an overall efficiency of 26% (see Fig. 1)
and a purity of 63%. The majority of the background
(72%) is electrons from conversion of z° decay photons
N — 7°X). The remaining background is from neutrino
interactions where muons (14%) or protons and pions
(14%) are misidentified as electrons. A significant compo-
nent of the background (35%) is due to particles produced
outside the FV, as in the magnet, dead materials of the
FGDs and TPCs, ECal, POD or surrounding material.
Those neutrino interactions occur on heavier nuclei (e.g.
iron, aluminium, lead) with larger cross section uncertain-
ties (30%). This background is large at low energy.

A control sample is used to measure the v,N — X
background. It is selected by requiring two electronlike
tracks in the TPC with a common vertex in the FGD
(distance between the starting points of the two tracks less
than 10 mm) and invariant mass less than 50 MeV/c?. The
control sample has an overall selection efficiency with
respect to the total number of photons converting in the
FGDs of about 12% and is a highly pure background
sample predominantly consisting of photon conversion
(92%) from v,N — 7°X in NC and CCDIS interactions.
The kinematics of the photons in the control and signal
samples are similar. Furthermore, 62% of the control
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sample v, events are OOFV y,N — 72X, which provides
a direct constraint for the v, sample background. A more
detailed description of the selection of both the v, and the
control samples is reported in [15].

The reconstructed v, energy spectrum (E ), assuming
a CCQE interaction, is inferred from the outgoing electron
candidate momentum and angle, as in [27]. v, disappear-
ance would affect the rate and energy spectrum of v, CC
interactions. Figure 3 shows the E .., distributions of the v,
and the control samples. A total of 614 v, CC candidates
are selected in the v, sample and 665 4= 51 (syst) events
are expected, assuming no oscillation and with the sys-
tematic uncertainties described below. The number of
selected events in the control sample is 989 in data, with
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FIG. 3 (color online). Reconstructed energy distributions of the
v, (top) and control (bottom) samples. The distributions are
broken down by v, interactions (signal), background inside the
fiducial volume due to v,N — °X (In-FV v,N — 7°X), back-
ground outside the fiducial volume due to v,N — 7°X (OOFV
v,N — 7°X) and all other sources of background (v, other). Both
v and ¥ are included in the samples. The ratio of the data to the
MC expectation in the null oscillation hypothesis is shown for
both samples. The red error band corresponds to the fractional
systematic uncertainty. Black dots represent the data with the
statistical uncertainty.
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TABLE I.  Fractional variation (rms/mean in %) of the expected
total number of events for v, (all events and signal only) and
control sample in the null oscillation hypothesis due to the effect
of the systematic uncertainties. Existing correlations between
systematics are taken into account.

Error source v, sample v, sample Control
(# parameters) (sig + bkg) (sig only) sample
V-V, common (40) 4.4 5.2 6.7
Unconstrained (5) 3.7 3.0 17.9
Detector+-FSI (10) 5.1 5.5 55
Total (55) 7.6 8.1 19.9

an expectation of 1236 4 246 (syst). Systematic uncertain-
ties on the flux, cross section and detector response are
taken into account using the approach adopted in [15]. The
systematic uncertainties on the flux and v,-v, common
cross sections are constrained by fitting the v, CC sample
as described earlier. The unconstrained cross-section sys-
tematic uncertainties include several contributions: the
difference between the interaction cross section of v,
and v,, between v and ¥ and the uncertainty on OOFV
interactions. FSI uncertainties contribute 1.5% (2.7%) to
the v, (y,N — 7°X) sample systematic uncertainty. The
detector systematic uncertainties have been evaluated
independently for the TPCs, FGDs and ECal. The largest
sources of uncertainties are given by the TPC momentum
resolution and the PID. In Table I, the effect of each group
of systematic uncertainties on the total expected number
of signal and signal plus background events is shown.
In Fig. 3 the effect of the systematic uncertainties on
the E,., distributions is shown. The simulation over-
estimates the data in both the v, and control sample
distributions at low energy. However this overestimation
in the control sample is within 1 standard deviation of
expectation.

VII. OSCILLATION FIT

The sterile oscillation parameters sin26,, and AmZ;
are estimated with a Poisson binned likelihood ratio
method. The expected reconstructed neutrino energy dis-
tributions are compared to data with a simultaneous fit
to the selected v, and control samples. The range of E ., is
from 0.2 GeV to 10 GeV. The oscillation amplitude sin” 26,
is restricted to the physical region. The effect of systematic
uncertainties is included in the fit with nuisance parameters
(55 in total) constrained by a Gaussian penalty term. The
oscillation probability Eq. (1) affects v, signal events based
on the true neutrino energy and flight path.

The best-fit oscillation parameters are sin” 26,. = 1 and
Am2; =2.05 eV?/c*. The y*/ndf is 42.16/49. Most
of the best-fit systematic parameters are within a 0.5¢
deviation and always within 1o from the prior values. The
systematic parameter corresponding to the normalization
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FIG. 4 (color online). The ratio of the best-fit spectrum to the
expected MC distribution, where the fit includes nuisance
and oscillation parameters (blue) and nuisance parameters only
(red dashed), is shown. The plots show the v, sample (top) and
the control sample (bottom). The black line corresponds to the
expected nonoscillated MC before the fit. The black dots show
the data. Statistical uncertainties are shown.

of the y,N — 7°X OOFV component is reduced by 31%
(~10) due to the deficit at low energy in the control sample.
If neutrino oscillations are not considered, the parameter is
reduced by approximately the same amount, since the
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FIG. 5 (color online). 68% and 90% C.L. allowed regions and
95% C.L. exclusion region for the sin®260,.-Am?; parameters
measured with the T2K near detector.
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FIG. 6 (color online). The T2K confidence interval in the
$in26,,-Am2; parameter space at 90% C.L. (top) and 95% C.L.
(bottom) is compared with the other experimental results avail-
able in literature: allowed regions of gallium and reactor
anomalies and excluded regions by v,-carbon interaction data
and solar neutrino data [14]. The T2K best fit is marked by a
green star; the best fit of other experimental results corresponds to
circles of the same coloring as the limits. In the region Am2; <
0.2 eV?/c* limits on the mixing angle sin? 26, have also been set
by the Daya Bay experiment [48].

control sample contains a small fraction of electron
neutrinos and is therefore independent of oscillations.
The ratio between the best-fit and the expected nonoscil-
lated MC distributions is shown as a function of E,., for
both the v, and the control samples in Fig. 4. The best fit,
where the nuisance parameters are allowed to float while
the oscillation parameters are fixed to null, is also shown.
The corresponding y?/ndf is 45.86/51.

The two-dimensional confidence intervals in the
sin229%—Am§flc parameter space are computed using the
Feldman-Cousins method [28]. The systematic uncertain-
ties are incorporated using the method described in [29].
The 68%, 90% and 95% confidence regions are shown in
Fig. 5. The exclusion region at 95% C.L. is approximately
given by sin®20,. > 0.3 and Am2; > 7 eV?/c*.
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The p-value of the null oscillation hypothesis, computed
using a profile likelihood ratio as a test statistic, is 0.085.

The impact of v, disappearance and v, appearance on
the present result is estimated by considering a non-null
sin? 26, in the 3 + 1 model. For sin”26,,, between 0 and
0.05, approximately the region not excluded by other
experiments [11,30], the 95% C.L. exclusion on
sin”26,, moves by less than 0.1.

In Fig. 6 the T2K confidence region at 90% and 95%
C.L. is compared with v, disappearance allowed regions
from the gallium anomaly and reactor anomaly. The
excluded regions from v, +12C — 2N + e~ scattering
data of KARMEN [31,32] and LSND [33] experiments
and solar neutrino and KamLAND data [34-46] are also
shown. The T2K result excludes part of the gallium
anomaly and a small part of the reactor anomaly allowed
regions. The current T2K limit at 95% C.L. is contained
within the region excluded by the combined fit of the solar
and KamLAND data. Another analysis which combines the
solar neutrino data with the reactor neutrino data shows
weaker limits on sin®26,, [47].

VIII. CONCLUSIONS

T2K has performed a search for v, disappearance with
the near detector. The excluded region at 95% C.L. is
approximately sin’20,, > 0.3 and AmZ; > 7 eV?/c.
The p-value of the null oscillation hypothesis is 0.085.
Further data from T2K will reduce the statistical uncer-
tainty, which is still an important limitation for the
analysis.
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