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Abstract

Scanning tunnelling spectroscopy measurements were performed on thin films
of Lag7Sr93MnO;3 both at room temperature and liquid nitrogen temperature.
While no inhomogeneities were recorded at liquid nitrogen temperature on
any sample, clear evidence of spectroscopic inhomogeneities was evident in
tunnelling conductance maps collected at room temperature. The investigated
films exhibit a transition from a ferromagnetic-metallic to a paramagnetic-
insulating state at around room temperature, so the observed spectroscopic
features can be interpreted within a phase separation scenario. A quantitative
analysis of the observed spectroscopic features is reported, pointing out the
occurrence of phase modulation and its possible correlation with the properties
of the system.

1. Introduction

The rich phase diagram and the colossal magnetoresistance [1] of manganites such as
La;_,A,MnOj3 (where A is a divalent metallic atoms) strongly depend on the interplay between
electron, spin, orbital and lattice degrees of freedom. It is widely accepted that, in many of these
compounds for x close to x = 0.3, the observed transition from a ferromagnetic metallic (FM)
to a paramagnetic insulating (PI) state is due to the double-exchange mechanism proposed by
Zener [2] together with a strong Jahn—Teller coupling responsible for the polaronic character of
carriers at high temperatures [3, 4]. Moreover, many studies pointed out the possible formation
of phase separation (PS) between FM and PI nanoscopic domains near the Curie temperature
(T.) [5, 6]. While the existence of phase separation is supported by several theoretical
approaches and experimental evidence [7—11], its characteristic length scale (nanoscopic versus
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mesoscopic) and dependence on external perturbations are still widely debated. Some recent
experiments have found indications that even multi-scale phase modulation phenomena can
occur in manganites [12].

Besides the double-exchange mechanism and Jahn—Teller coupling, several studies have
stressed the role of disorder in inducing the phase coexistence [13]; others proposed a metal—
insulator transition induced by long-range elastic interactions that are known to be crucial in
films [14—16] and bulk samples [17-19].

Within this framework, the scanning tunnelling microscope (STM) represents a powerful
tool to investigate the inhomogeneous state. Scanning tunnelling spectroscopy (STS)
performed by STM differs from most other techniques, since it allows us to image spectroscopic
inhomogeneities, up to nanometre resolution, in real space. The direct observation of an
inhomogeneous state in manganites near 7, through STS is therefore possible because of the
different spectroscopic features of the paramagnetic and ferromagnetic phases: insulating- and
metallic-like, respectively. Differential tunnelling conductance can be recorded as a function of
position in the scanned area (d//dV maps), hence mapping the local density of states (LDOS)
of the sample surface.

The presence of an inhomogeneous state has been observed clearly on La;_,Ca,MnO;
(LCMO). STS unambiguously revealed the presence of inhomogeneous structures and patterns
in LDOS close to x = 0.3, pointing out a submicrometre scale for inhomogeneities [8].
For what concerns La;_,Sr,MnO3; (LSMO), the question is more controversial and puzzling.
Although it has been suggested by some authors that the double-exchange mechanism could
fully describe the behaviour of LSMO bulk [20, 21], results obtained with different techniques,
such as resistivity data [22], optical conductivity [23], susceptibility measurements at low
doping [24], photoemission and x-ray spectroscopy [25], provided indirect indications about
the possible presence of an inhomogeneus state, even in bulk samples. STM measurements
have not yet clarified the picture. To our knowledge, the only observation of electronic
inhomogeneities on LSMO by STS was reported by Becker et al [26], but they mainly
reported on a different relative abundance of conducting and insulating spots as a function of
temperature, and there was no clear imaging of spatial features as for LCMO [8]. In contrast,
Akiyama et al [27] observed magnetic domains on LSMO thin films with an LSMO-coated
STM tip, but they measured homogeneous electronic LDOS with metallic tips.

In this paper, we report on directly imaged regions having, at room temperature, different
spectroscopic signatures, by performing STS measurements on Lag7Srg3MnO; thin films.
Considering the reproducibility of measurements, the electronic homogeneity systematically
observed, in contrast, at liquid nitrogen temperature, and the absence of correlation between
spectroscopy and topography, as discussed in the following, our results strongly suggest that a
phase modulation can occur in LSMO when triggered by disorder and long-range strains.

In section 2 we briefly describe the film’s fabrication and main characterization, as well as
the experimental procedure adopted for the STS measurements. Section 3 reports the observed
tunnelling results: d/ /dV maps on samples with different thicknesses at different temperatures,
tunnelling spectra, STM topographies and basic comments on such results. Finally, in section 4
we perform a quantitative analysis and discuss our data and their interpretation.

2. Sample preparation and experimental details

Lag 7Sro3MnOs thin films were fabricated by rf magnetron sputtering from a stoichiometric
target on SrTiO3 (STO) substrates with orientations (100) and (110). The deposition
temperature was 840 °C, with a substrate-to-target distance of 40 mm and a sputtering pressure
(50% Oy, 50% Ar) of 50-70 Pa; such conditions led, on both substrates, to a growth rate of
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Figure 1. p(T) curves for the investigated Lag 7Srg3MnO3 films. The transition temperature has
been evaluated from these curves by taking the temperature of the maximum derivative [5].

Table 1. Main properties of reported Lag 7Srg 3MnOs3 films.

Name Substrate Thickness (nm) T, (K) T. (K)
Sample I ~ STO(110) 40 350 310
Sample2  STO(100) 10 350 300

0.3 A s7!. The films’ stoichiometry was measured by energy dispersion spectroscopy (EDS)
and Rutherford backscattering (RBS). Transport and magnetic characterizations are provided
in more detail elsewhere [22, 28].

Figure 1 shows resistivity versus temperature (o(7)) curves. The plotted curves refer
to the same films, grown on (STO) substrates (orientation given in table 1), for which STS
measurements are reported. 7, represents the temperature of maximum resistivity; 7, values
can be estimated from the maximum slope of p(7") [5]. Table 1 summarizes the main properties
of the films. We stress that, unlike bulk samples, LSMO films are characterized by a metal—
insulator transition at x = 0.3.

STM experiments were performed in an inert helium atmosphere. The films were mounted
on the STM scanner head and sealed in helium soon after the fabrication, limiting air exposure
to preserve the surface quality. We used Ptlr metallic tips, fabricated by an electrochemical
etching procedure, which guarantees sharpness and reproducibility. The tips were tested by
routinely achieving atomic resolution on graphite and NbSe; and flat conductance spectra on
Au. In the experiments on LSMO films, the junction quality was checked, as in the report
in [29], through the reproducibility of tunnel spectra versus tunnel resistance and of topographic
details without artefacts. These checks were performed before and after any measurement run.

Topographic images were acquired in constant current mode, while tunnelling spectra
(tunnelling current and differential conductance versus bias voltage curves) were recorded
by disconnecting the feedback loop and using a standard lock-in technique. Tunnelling
conductance maps were imaged through current image tunnelling spectroscopy (CITS)
measurements. In this technique, the tip is moved from one point to another, on a scan line,
with the current kept constant by the feedback loop, as in the topographic mode. However,
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Figure 2. d//dV maps, 500 x 500 nm?: (a) on sample 1 at 7 = 77 K and (b) at T = 297 K;
(c) on sample 2 at T = 77 K and (d) at T = 297 K. The maps were acquired at a scan rate of
2.7 nm s~!, tunnel current of 100 pA, and bias voltage (tip to sample) of 2 V. The tip-to-surface
distance was frozen, stabilizing the feedback loop at a bias voltage of 3 V. In these maps, the lighter
colours represent a more conducting character of the surface. In the reported colour bars, the tunnel
conductance (arbitrary units) is displayed.

at each point, the feedback is disconnected in order to acquire the tunnelling conductance at
a fixed bias voltage. Thus, a d//dV map represents an image of the surface LDOS (whose
distance from the Fermi level is determined by the bias) at a fixed energy; such an image is a
powerful way to detect possible spectroscopic and electronic inhomogeneities on the sample.
Different d//dV maps on the same scan area were recorded to check the reproducibility of
the imaged spectroscopic structures. The absence of artefacts was also tested by repeating
the measurements at different scan rates. On the contrary, the same scan rate and the same
experimental parameters were considered when the results on different samples had to be
compared.

The acquisition of typical spectroscopic maps required about 13 h to be completed. They
were acquired both at room temperature and at 77 K. In the latter case, the thermal stability of
the STM junction was guaranteed by the presence of liquid nitrogen. At room temperature, we
experienced severe problems in achieving the stability required for such long STM operation.
For this reason, to avoid distortions in the tunnelling conductance maps, only when the STM
topographic scans showed reproducibility over a long time did we perform the spectroscopic
measurements. Many days were often necessary before the d/ /dV map could be acquired.

3. Experimental results

Figure 2 summarizes the main observed features on sample 1 and sample 2. Tunnelling
conductance maps are reported. In the maps, the lighter colour represents higher tunnelling
conductance, i.e. a more metallic character of the surface. All d//dV maps were measured
at a tip-to-sample bias voltage of 2 V, with a tunnel current of 100 pA. As already reported
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Figure 3. (a) STM topography on sample 2 at room temperature, on the same scanning area of the
map in figure 2(d); (b) the height profile along the white line in the topography. The topography was
recorded, simultaneously to the conductance map, at a tunnel current of 100 pA and a bias voltage
of 3 V.

in other STS measurements [8], this relatively high tunnel resistance is needed because of the
poor metallic properties of the surface of these compounds. The maps in figure 2 were acquired
at a scan rate of about 2.7 nm s~

At 77 K, well below T; and therefore completely in the ferromagnetic state, d//dV maps
did not show evidence of inhomogeneities on any measured sample, exhibiting homogeneous
LDOS over the whole imaged area (figures 2(a) and (c)). In contrast, maps at 297 K
systematically showed submicrometre regions with sharply different spectroscopic features
(figures 2(b) and (d)). From table 1, we see that the measurement temperature, 297 K,
corresponds to a temperature slightly lower than 7, for both samples. This circumstance
agrees with most PS theoretical works, which predict that separation effects are expected in the
temperature range around the transition, where insulating (paramagnetic) clusters could appear
even below the transition temperature. Furthermore, we note that the tunnelling d//dV values
recorded at 77 K correspond to the more conducting state in the 297 K maps, as discussed in
the following.

Films with two different thicknesses, 40 and 10 nm, were measured.

From tunnelling conductance maps on 40 nm thick films, no differences were observed on
samples grown on both STO(110) and STO(100). A d//dV map acquired at room temperature
on sample 1 is reported in figure 2(b). Figure 2(d) represents a d/ /dV map at room temperature
on sample 2, a 10 nm thick film on STO(100) (good quality films with this thickness were only
obtained on this substrate).

The clear appearance of ‘islands’ in the LDOS at room temperature was found on every
sample at room temperature. The relative abundance of conducting and insulating zones in
each map depends on the imaged scanned area; however, the typical lateral size of the islands
ranges on a submicrometre scale, being of the order of 100-300 nm (depending on the single
island).

A comparison between spectroscopic and topographic features has been performed, in
order to check if spectroscopic and topographic features show some degree of correlation.
Figure 3(a) shows a topographic image on sample 2 on the same area of the d//dV map
(simultaneously acquired) reported in figure 2(d).

The data show a smooth surface: the height profile along the white line (crossing
regions with different spectroscopic signatures), plotted in figure 3(b), presents a peak-to-
peak roughness lower than 15 A over a range of more than 4000 A. Such a surface therefore
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Figure 4. (a) d//dV maps, 500 x 500 nm?, on sample 1 at T = 297 K; in the highlighted points A
and B, tunnelling current and conductance versus bias voltage curves were acquired; the curves are
reported in (b) (current) and (c) (conductance).

represents a good test to prove the absence of systematic correspondences between the two
kinds of measurement. This claim can be supported quantitatively by evaluating the correlation
coefficient of the two (spectroscopic and topographic) two-dimensional value distributions:

i s )

R — ct —
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Jodoi \/ijz (955) e (%)
In the above formula, C;; and 7;; are the conductance and topography values respectively,
measured at each pixel, while C and T are their average values; o, o2

D

2. 02 and o? are the
covariance and the variances of the two distributions. The coefficient R ranges from —1 to
1, 1 and —1 representing the complete correlation and anticorrelation between the two data
sets, respectively. For the measurements reported in figures 2(d) and 3(a), we calculated
R = 3 x 1072, It is worth noting that the topographic image used in this calculation was
acquired simultaneously to the conductance map: during the CITS measurement, the height
value was recorded at each pixel before disconnecting the feedback. As a consequence, we can
exclude any thermal drift effect having produced displacements from one measure to another
destroying a possible correlation.

In figure 4, two spectra, acquired with the tip well within an insulating and a conducting
island respectively, are plotted. Both current and conductance curves reflect the different

spectroscopic character of the two regions. The difference in the tunnelling spectra taken on
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surface portions with different conductance is not extremely marked: this agrees with most of
the reported tunnelling measurements on manganites. The conductance spectra show a gap-like
DOS depletion around the Fermi level in both regions, but deeper and more pronounced in the
insulating one. A rough estimation of the half-width of such a conduction gap gives values of
about 1 and 0.6 V for the insulating and conducting islands, respectively.

The systematic observation of inhomogeneities just below 7., the homogeneous
appearance of all d//dV maps at 77 K, the absence of correlation between dI/dV
maps and topographic details, and the results in terms of tunnelling spectra, make us
confident that the observed spectroscopic inhomogeneities are related to electronic and LDOS,
intrinsic, spatial differences, and are not connected to any accidental chemical inhomogeneity
occurrence [5, 12].

In addition, we should point out the presence, in the d/ /dV maps, of a modulation in the
tunnelling conductance on a smaller length scale (about 10-20 nm), more evident in sample 2.
We do not yet have a clear explanation of this feature. This nanoscale pattern is present both
in conducting and insulating submicrometre regions. At the moment, we are not able to check
if this feature is intrinsic or if it is due to extrinsic effects. Some work in this direction is in
progress.

We end this section by mentioning that we observed both d//dV patterns also after thermal
cycles, and they were reproducible (including the nanometre-scale modulation details) when
changing the scan rate. This strongly suggests that the measured d//dV features are not
artefacts related to the tip—sample interaction.

4. Analysis and discussion

A more quantitative analysis can be developed. Figure 5 reports the d//dV profile along scan
lines in the maps recorded at room temperature on sample 1 and sample 2 (figures 5(a) and (c)),
and the histogram distribution of the d7 /dV values on the maps (figures 5(b) and (d)). All maps
were recorded in the same conditions (described above), so a direct comparison between the
values is possible. The histograms report, separately for conducting and insulating large islands,
the relative counting frequency of the tunnel conductance values plotted in the d//dV profiles.
They represent a good synthesis of the information included in the maps and in the conductance
line profiles. Indeed, the maps make evident the presence of inhomogeneities, but do not
provide quantitative details on the tunnelling conductance values; on the other hand, the d//dV
line profiles allow an immediate comparison between spectroscopic measurements on different
films and at different temperatures, but only on a very small portion of the experimental data.
A histogram shows the quantitative content of a conductance profile, but representative of the
entire area imaged in the map.

From the d7/dV profiles (figures 5(a) and (c)), the average values, taken on a line portion
inside a ‘single-colour’ region of the map, put in evidence the LDOS separation. The highest
dl/dV value, i.e. the one corresponding to the more conducting regions, is very close to the
one recorded on the whole map at 77 K (ranging between 1.3 and 1.5 in the adopted units). The
lowest one (corresponding to the more insulating regions) is reproduced well from one sample
to another and from one (less conducting) island to another. The two average values look clearly
distinguishable, from both the profile and the histograms, resembling the sharpness of features
shown by the maps. The double-peaked feature, as well as the periodic-like modulation in the
line profiles, are just a consequence of the above-mentioned nanometre-scale modulation in the
d//dV maps.

Several mechanisms have been proposed to explain the stabilization of submicrometre-
scale domains with different electronic and magnetic properties [13-16].
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Figure 5. STS room temperature map analysis, concerning: (a) d//dV profile along a line for
sample 1 (40 nm thick); (b) d7/dV value distribution for sample 1; (c) dI/dV profile along a line
for sample 2 (10 nm thick); (d) d//dV value distribution for sample 2. Histograms have been plotted
separately for the conducting and insulating large regions, and vertically shifted for clarity.

(This figure is in colour only in the electronic version)

However, while for the LCMO the coexistence of two phases around T, for x close to 0.3,
is nowadays widely accepted, the existence of inhomogeneities between ferromagnetic metallic
and paramagnetic insulating regions in LSMO at x = 0.3 is somehow unexpected. This is due
to a more pronounced metallic character of LSMO than LCMO that obscures the formation,
below T, of insulating clusters resembling the phase above the transition.

Our results, which clearly support the existence of submicrometre domains in LSMO films,
can be understood if we remember two experimental observations. First of all, Mannella et al
[25] have shown that LSMO single crystals exhibit different types of lattice distortions. These
are smaller than in the LCMO case but, still, they could trigger a phase separation in LSMO. A
second important observation is that, unlike single crystal, LSMO films at x = 0.3 exhibit
an insulating-like decrease of p(T") above T, (see figure 1). These circumstances suggest
that LSMO thin films can be considered, from this point of view, more similar to the LCMO
system than to the LSMO single crystal. The difference between single crystal and films, in
our opinion, can be interpreted in terms of the role played by disorder and strain in films.
Actually, our observations are consistent with what has been reported by some of us in [22],
where p(T') curves for samples with different degrees of disorder were analysed using a model
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based on the PS scenario. Such an analysis provided a good fit of the data for samples having
the highest residual resistivity and the least metallic behaviour at high temperature; it should be
remarked that those samples exhibited py values very similar to those of sample 1 and sample
2 reported in figure 1. The same model resulted in a poor fitting of data for a sample with lower
resistivity, i.e. with a more metallic character. This occurrence suggests that disorder can play
an important role in films favouring a metal-insulating crossover and submicrometre phase
coexistence, as proposed in [30]. It is worth noting that, alternatively to or in combination with
disorder, the stress field induced by the substrate might play a major role in tuning the observed
inhomogeneities [12]. In the case of LCMO films, the effect of stress has been studied and
reported in [31].

Finally, concerning the lower average d//dV value observed in metallic regions of sample
2, it has the lowest T, and therefore it could be merely a consequence of the closest transition
point. However, since the difference in the 7 s is very small and the transitions are quite broad,
we cannot exclude an effect of the finite thickness [32] on this very thin film.

In conclusion, we have provided a clear, direct observation of inhomogeneities in the
surface LDOS on Laj7Sr93MnO; thin films using STS spectroscopy close to 7. The main
experimental finding is represented by the coexistence, in films grown on STO(110) and
STO(100), of two phases with different electronic features just below the transition temperature
from the insulating-paramagnetic to the metallic-ferromagnetic state. The same measurements
well below 7, show an homogenous aspect of the surface LDOS, which proves, as well as
other circumstances discussed, that we observed intrinsic properties of the measured sample.
Our data strongly suggest that the observed spectroscopic (electronic) pattern is related to the
magnetic transition in the compound, which are in agreement with the phase separation scenario
predicted for manganites and are still debated in the case of the LSMO system. The clearly
observed islands on the sub-micrometre length scale, and in particular its apparent correlation
with the disorder of the sample and with the substrate, seem to indicate the possibility of driving
the phase separation by acting on strain and disorder. Concerning the observed conductance
modulation on the smaller scale, although its presence in the recorded d//dV maps and in
related analysis cannot be ignored, it requires a deeper investigation and measurements in order
to clarify its presence and behaviour.
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