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Networks of non-linear electronic oscillators have shown potential as physical models of neural dy-

namics. However, two properties of brain activity, namely, criticality and metastability, remain

under-investigated with this approach. Here, we present a simple circuit that exhibits both phenom-

ena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow

(neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage glob-

ally connected to all nodes via fixed resistors. Depending on this parameter, two phases having dis-

tinct event rate and degree of spatiotemporal order are observed. The transition between them is

hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein,

approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to

power-law distributions having exponents �3/2 for size and �2 for duration, and fractal structure

is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in

biological neural networks; hence, this circuit may have value as building block to realize

corresponding physical models. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4954879]

Recent work has shown that networks of non-linear

electronic oscillators can recapitulate diverse aspects of

neural dynamics, such as formation of complex synchro-

nization patterns, offering opportunities to draw parallels

between emergence in biological and engineered systems.

However, two pervasive properties found across brains

and in-vitro neuronal cultures have not been extensively

addressed in circuit models: criticality, intended as oper-

ation at the boundary between ordered and disordered

dynamical phases, and metastability, that is, the ability to

maintain and switch between states having finite lifetime.

Here, we investigated a network of glow lamps, a com-

mon type of neon-argon discharge tube, coupled in a two-

dimensional square lattice by capacitors. We find that the

system can be metastable with respect to the transition

between two dynamical phases having different degrees

of spatiotemporal order. Close to the spinodal points,

which denote the limits of existence of the metastable

states, fractal temporal structure emerges and activity

avalanches are generated, whose size and duration follow

power-law distributions having exponents �3/2 and �2.

Despite differences in system scale, topology, and nature,

these critical exponents overlap neural recordings; hence,

this setup deserves consideration as building block to re-

alize corresponding physical electronic models. The cir-

cuit is also of interest as a physical system wherein

critical phenomena are observed close to the spinodal in

a first-order phase transition.

I. INTRODUCTION

The dynamics of neural systems are pervaded by non-

linear processes, apparent across micro-, meso-, and macro-

scopic scales ranging from single neurons to entire brains,

which represent an essential substrate for homeostasis and

behaviour. Critical phenomena and metastability, in particu-

lar, are deemed central to the emergence of cognitive

processes.1,2

Experimental data and simulations indicate that biologi-

cal neural networks preferentially operate in a regime char-

acterized by the absence of characteristic time or length

scale, as found at the critical point in thermodynamical sys-

tems.3 Neural activity, whether recorded from cultured disso-

ciated neurons, isolated slices, or intact brains, often features

avalanches of events (spikes) whose size and duration distri-

butions follow power laws with universal exponents, and

long-range temporal correlations.2,4–9 Near-critical dynamics

are hypothesized to confer functional advantages such as

maximizing dynamic range in response to external stimuli

(e.g., in the ear), and enhancing information capacity by

enlarging the repertoire of available activity patterns.10–14

By positing an emergent internal mechanism driving the con-

trol parameter to the critical point, the paradigm of self-

organized criticality offers a mechanistic explanation of how
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neural systems could maintain operation close to it in spite

of countless perturbations.15–17

On the other hand, metastability is evident in the brain’s

innate ability to maintain persistent activity and switch

between states having long but finite lifetime, which is nec-

essary for functional integration and working memory.1,18,19

Metastable states are again detectable in experimental data

across different scales, particularly in electroencephalo-

graphic data, and appear in a multitude of neural models pos-

sessing a landscape of multiple attractors, some of which can

also show critical phenomena.18–21

The precise relationship between these two aspects of

neural dynamics remains elusive, but it has been postulated

that criticality could maximize the number of available meta-

stable states.22–24

Recently, renewed interest in neuromorphic electronic

circuits has led to attempts to recapitulate select features of

neural dynamics in experimental networks of physical oscil-

lators, with the aim of drawing comparisons between the

brain and other systems, and of complementing computa-

tional work with experimental data acquired in settings

allowing more extensive manipulation compared to biologi-

cal preparations. Promising results have been obtained with

coupled chaotic oscillators; however, to the authors’ knowl-

edge, critical phenomena and metastability have not yet been

consistently studied with this approach.25–29

Here, we present a simple, physically realizable elec-

tronic network which displays some behaviours reminiscent

of criticality and metastability in biological neural networks.

The key circuit element is the glow lamp, a miniature neon-

argon gas discharge tube once widely utilized in logic and

oscillating circuits. This device behaves hysteretically, tran-

sitioning to “on” state (finite resistance, light emission)

above a striking voltage and to “off” state (near-infinite re-

sistance, no light emission) below a lower extinction voltage.

These voltages depend on physical parameters including

electrode spacing and composition, gas composition and

pressure, presence of ionization sources. Close to the striking

and extinction voltages, corresponding transitions (thereafter

termed breakdown and recovery) are stochastic with proba-

bility determined by the applied voltage, a phenomenon cen-

tral to the system considered herein.30,31 Testament to the

value of the glow lamp as a non-linear circuit element comes

from the fact that electronic chaos was originally discovered

(though not recognized as such) by van der Pol in a glow

lamp oscillator, and from his early models of neural dynam-

ics which used it in approximating the Hodgkin–Huxley

equations.32,33

By combining capacitive coupling with the glow lamp’s

hysteretic dynamics, nodes in the proposed circuit effectively

accumulate energy and then dissipate it abruptly once a

threshold is reached, in turn causing other nodes to do the

same. This behaviour resembles integrate-and-fire in biologi-

cal neurons, and the physical underpinnings of other well-

known critical phenomena such as earthquakes, forest fires,

and nuclear chain reactions.2,34–36 As discussed below, criti-

cal phenomena are observed near the edges of the metastable

region in a first-order (discontinuous) phase transition, rather

than at a second-order (continuous) phase transition as is

more often the case.

II. CIRCUIT DESCRIPTION AND EXPERIMENTAL
SETUP

A. Circuit topology and principle of operation

The network consists of a 34� 34 square lattice,

wherein each node comprises a glow lamp connected

between ground and a global DC control voltage Vs via a re-

sistor of value R, and coupled to its four von Neumann

neighbours via capacitors of value C (Figure 1(a)). This cir-

cuit is reminiscent of a well-known counter based on a glow

lamps ladder, generalized to two dimensions.30,37

When all lamps are in the “off” state, node potentials

obey the following dynamical equation (suitably adjusted for

nodes along the perimeter):

d

dt
vi;j ¼

1

4

d

dt
vi�1;j þ viþ1;j þ vi;j�1 þ vi;jþ1ð Þ þ

Vs � vi;j

4CR
; (1)

FIG. 1. Circuit description. (a) Circuit diagram of the two-dimensional

square lattice node: a glow (neon) lamp, the potential at which is referred to

as vi;j, is connected to a global DC supply voltage Vs via a resistor of value

R, and coupled via four capacitors of value C to its four von Neumann

neighbours (each capacitor is shared between two nodes). R and C are fixed,

whereas Vs is variable and serves as control parameter. (b) Top view of the

34� 34 nodes circuit board, pictured while powered at 74.2 V.
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where vi;j represents the potential at node i, j. Given suffi-

cient time after a breakdown event (intended as rapid “off”

! “on”! “off” transitions in a lamp’s state, corresponding

to a flash), node voltages return to equilibrium, i.e.,

vi;j ! Vs, and further events are purely stochastic, their proba-

bility increasing with Vs. When breakdown occurs at a given

node, its voltage drops because the corresponding lamp resist-

ance becomes finite; since this change is rapid compared to the

RC time constants in the lattice (�10 ls vs. �10–100 ms), vol-

tages at all other nodes also drop. While a lamp is in the “on”

state, a spatial gradient of node voltages and charge stored in

the coupling capacitors is established, whose characteristics

depends on the location and duration of the “on” state.

Eventually, the lamp recovers, similarly causing a rise in all

node voltages. The fundamental aspect of the present circuit is

that during this process node voltages higher than the applied

control voltage Vs are momentarily generated, enhancing the

probability of further breakdown events relative to quiescence.

To gain insight into this mechanism, let us first consider

the short RC chain in Figure 2(a), wherein Vs is the DC

control voltage, v0 is held at a constant potential v0<Vs

to represent a lamp in the “on” state at this site, and

v1(0)¼ v2(0)¼ v0 to represent the initial negative step due to

breakdown. The dynamical equations for the potentials are

d

dt
v2 � v1ð Þ ¼

Vs � v2

CR
;

d

dt
v1 � v0ð Þ ¼

2Vs � v1 � v2

CR
;

(2)

whose solution is (assuming without loss of generality

Vs¼ 0)

v1 tð Þ
v0

¼ 1

1þ u2
e�t=s1 þ u2

1þ u2
e�t=s2 ;

v2 tð Þ
v0

¼ u3

1þ u2
e�t=s2 � u�1

1þ u2
e�t=s1 ; (3)

where s1 ¼ RCu2, s2 ¼ RCu�2, and u is the golden ratio.

Charting these solutions reveals that v2> v1; in particular,

even neglecting the effect of lamp recovery as done in this

case, a positive transient (overshoot) exceeding Vs is

observed for v2, the farthest lamp in the chain, but not for v1,

the nearest one (Figure 2(b)).

This effect generalizes to the two-dimensional lattice,

wherein breakdown events induce travelling waves of

voltage overshoot. Numerical simulations with the model

described in supplementary material Section S1 A and

Figure S2 confirm that at short delays after the generating

event (arbitrarily assumed to last 2 ms), the largest overshoot

is observed at the farthest nodes; for longer delays, the over-

shoot wave propagates back towards the originating node,

becoming shallower but more persistent at short distances

(Figures 2(c) and 2(d)).38

These results, together with the corresponding experi-

mental observations in supplementary material Section S1 B

and Figure S3, demonstrate that despite short-range structural

coupling with first neighbours only, activity propagation can

extend over much longer distances, comparable with lattice

size.38 This property is similar to synchronous-mode propaga-

tion of action potentials across synapses in biological neural

networks.39–41 Thus, the interactions are effectively long-

range, as observed elsewhere, for instance, in regards to elas-

tic interactions and fracture propagation, which implies that

even for low dimensions the system dynamics is predicted to

approximate mean-field behaviour.42,43

B. Circuit realization and data acquisition

The system was implemented on a custom-designed

printed circuit board, whose fabrication files are provided as

supplementary material,38 and where 1156 glow lamps of

model NE-2C were instantiated with a pitch of 1/3 in.

(Figure 1(b)). On a subsample of 30 lamps, upon delivery, the

DC striking and extinction voltages measured, respectively,

76.2 6 0.8 V and 61.3 6 0.6 V (mean 6 standard deviation).

Supply resistors and coupling capacitors, respectively, had

values R¼ 2.2� 106 X (accuracy 1%) and C¼ 220� 10�9 F

(accuracy 10%). As detailed in supplementary material

Section S1 C, flashes were recorded optically by means of

both (i) two CCD cameras, providing information about node

location at a rate of 50 Hz, and (ii) a photodiode, providing no

spatial information but a higher sampling rate of 20 kHz.38 The

entire event times dataset is available online, and raw video

and waveforms are also available upon request.44

III. PHASE TRANSITION

A. Existence of two dynamical phases

To begin studying the effect of control voltage Vs, activ-

ity was measured while this parameter was swept between

FIG. 2. Numerical simulations of voltage overshoot generation. (a) Simplified circuit, in the form of an RC ladder, representing three nodes v0,v1,v2, with infinite-

duration breakdown (lamp in “on” state) at node v0, and (b) corresponding voltage time-series obtained from Eq. (3), demonstrating that a transient voltage over-

shoot, i.e., v2>Vs, is generated at the farthest node. (c) and (d) Corresponding simulations in the 34� 34 lattice for 2 ms-long breakdown at two different loca-

tions (j¼ 17), obtained with the model described in supplementary material Section S1, showing that immediately after recovery the largest overshoot is observed

at the farthest nodes, and a wave then propagates back towards the originating node, becoming shallower but more persistent at shorter distance.
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73 and 75 V in steps of 0.1 V. For each setting, �50 measure-

ments were taken in separate runs, each time reducing Vs to

71.5 V (quiescence) and increasing again it to the desired

value at a rate of 0.1 V/s before data acquisition.

The event rate averaged over all nodes increased

slowly, remaining around �0.01 Hz until Vs� 74.1 V, then

abruptly increased, reaching �0.4 Hz (Figure 3(a)) and

denoting the onset of self-sustained collective oscillation

(corresponding voltage waveforms in supplementary mate-

rial Figure S4(c)). The degree of spatial order (homogene-

ity) was quantified, expressed as �log10(Fs), where Fs is

the Fano factor (variance divided by average) of event

counts calculated across all nodes after removal of radial

gradient due to finite size; similar to rate, this parameter

remained relatively stable then suddenly increased for

Vs� 74.1 V, indicating transition to a more homogeneous

spatial distribution (Figure 3(b)). The degree of temporal

order (burstiness) was also quantified, as �log10(Ft),

where Ft is the Fano factor of event counts across non-

overlapping 0.8 s—long windows (window width is not

critical). For very small Vs, the system was near-quiescent

and the event distribution was Poissonian; as Vs was

increased, activity became more bursty, followed by an ab-

rupt change for Vs� 74.3 V, past which the distribution of

events suddenly became regular (under-dispersed with

respect to Poissonian; Figure 3(c).45

Predicated on these initial findings, representing the av-

erage over the entire observation window (�50 s), we

recorded the existence of two dynamical phases that we

thereafter term Phases I and II, characterized, respectively,

by low rate and low spatiotemporal order, and high rate and

high spatiotemporal order.

B. Metastability and hysteresis

To gain further insight, rather than averaging over them we

considered the existence of and transitions between Phases I and

II during the observation window. Across runs, for Vs between

73.6 V and 74.3 V, both phases (separated at a threshold of 5

events/frame, which is not critical; see supplementary material

Figure S5(a)) could be observed. Only the Phase I! II transi-

tion was directly observed, because the preset Vs values were

always approached from below and, close to the transition, aver-

age Phase II lifetimes were longer than the observation window.

The probability of observing the Phase I ! II transition

peaked at Vs¼ 74.2 V (maximal variance) whereas for most

runs at Vs¼ 74.3 V the system had already transitioned to

Phase II before recording began (Figures 3(a)–3(c). At

Vs¼ 74.2 V, the transition appeared as a gradual rate increase

over a span �10 s (supplementary material Figure S5(a)) and

in the majority of cases occurred approximately half-way

during recording (supplementary material Figure S5(b)).

At this voltage, in Phase I, the distributions of inter-

event interval (IEI) and number of active nodes per frame

were approximately power-law and exponential, whereas in

Phase II they were closer to normal, with average IEI �3 ms

and number of active nodes per frame �10 (supplementary

material Figures S5(c) and S5(d)), rendering this phase

“crystal-like.” The qualitative difference between the two

phases at this control voltage setting is appreciable in repre-

sentative frame sequences and rate maps (Figure 4).

FIG. 3. Phase transition due to control voltage Vs. (a) Scatter plots (median 6 95% confidence interval) showing separate measurements taken between 73 V

and 75 V. Around 74.2 V, transition between predominant low-rate low-order dynamics (Phase I) and high-rate high-order dynamics (Phase II) occurs, and

inter-measurement variance is maximal. (b) Cycle plots representing continuous voltage sweep from 72.4 V (near-complete inactivity) to 74.2 V and back: hys-

teresis is evident as Phase I! Phase II transition �74.2 V and Phase II! Phase I transition �73.3 V.
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The above results were obtained in separate measurement

runs, i.e., Vs was lowered until quiescence then raised again to

the new Vs value before each recording. To reveal hysteresis

in the Phase I$ II transition, a similar set of measurements

was also acquired while cycling Vs over preset values without

quenching activity between measurements. The cycle, from

72.4 V to 74.2 V and back to 73.1 V, was repeated 24 times.

As above, the average event rate rose slowly then suddenly

increased for Vs� 74.2 V (Phase I! II transition); it

increased further as voltage was lowered one step to 74.1 V

(due to longer time, hence greater cumulative probability of

transition to Phase II) then decreased slowly, only transition-

ing back to low values for Vs� 73.3 V (Phase II! I transi-

tion; Figure 3(d)). The spatial and temporal order parameters

followed a similar pattern (Figures 3(e) and 3(f)).

As detailed in supplementary material Section S1 A and

Figures S2(a) and S2(b), analogous results were obtained in

numerical simulations conducted with a simplified model,

capturing the stochastic nature of transitions between lamp

“on” and “off” states with probability dependent on applied

voltage, but neglecting all fine details of lamp behaviour and

inter-node differences due to component tolerances.38

C. Commentary

Power-law distributions as described in Section IV are

frequently associated with second-order (continuous) phase

transitions.3 However, metastability and hysteresis unequivo-

cally indicate that the transition between Phases I and II is a

first-order (discontinuous) one. This apparent incongruence

is resolved by considering that critical phenomena also

emerge in first-order phase transitions as one enters the meta-

stability region and approaches the spinodal curve. In prac-

tice, this requires changing the control voltage gradually in

the absence of external perturbations, similarly to tempera-

ture in regards to obtaining super-heated and super-cooled

water. Close to the spinodal, which in mean-field approxima-

tion denotes the limit of existence of the metastability region,

transition precursors are observed which follow power-law

scaling having a cut-off diverging to infinity on the spinodal

itself; examples are found, for instance, in geophysical

phenomena, breakdown of solids, and spontaneous network

recovery.42,43,46–48

Assuming that interactions are long-range, in infinite

size we expect infinite lifetime of the metastable states up to

two spinodal voltages V
ð1Þ
s and V

ð2Þ
s ; otherwise, the metasta-

ble states have a finite lifetime decreasing to zero as one

approaches these points. When the average lifetime overlaps

the experimental observation window, corresponding

“pseudo-spinodal” voltages V̂
ð1Þ
s and V̂

ð2Þ
s , which are approxi-

mations of the underlying spinodal voltages, become appa-

rent as observed above.46

In between V
ð1Þ
s and V

ð2Þ
s lies a third voltage at which av-

erage lifetime is equal between the two states. In our case,

the system is inherently not in equilibrium because Phases I

and II are dynamical, but it is helpful to consider that for an

equilibrium system this point would correspond to the condi-

tion of equal free energy. Here, we could not measure this

voltage because the duration of the states would be very long

compared to the experimental observation window. Notably,

this is not a critical voltage; hence, no critical phenomena

are predicted to occur in its vicinity; instead, we expect

divergence approaching the spinodal points.

IV. CRITICAL PHENOMENA

A. Branching parameter

In the metastable region below the upper spinodal volt-

age V
ð2Þ
s , precursors of the spinodal transition are predicted

as activity avalanches, wherein lamp breakdown events trig-

ger descendants over a distance scale comparable to system

size. As propagation is effectively long-range, critical behav-

iour at the spinodal point can be approached (see Section

II A, supplementary material Section S1 B and Figure S3).38

To verify this, we computed the so-called “branching

parameter” r(Vs), which represents how many descendants

the voltage overshoot following a single event triggers on av-

erage. Below V
ð2Þ
s , for rising Vs, this parameter is predicted

to increase strictly monotonically because the quiescence

potential approaches the average lamp breakdown voltage,

elevating the probability that a given overshoot will trigger

an event. While the branching parameter is usually considered

FIG. 4. Representative camera-frame sequences and event-rate spatial distribution at control voltage Vs¼ 74.2 V. (a) During Phase I, non-blank frames pre-

dominantly have a low event count (exponential-like distribution, see supplementary material Figure S5(d)), and the rate spatial distribution is markedly inho-

mogeneous. (b) During Phase II, frames on average contain �10 events (normal-like distribution, see supplementary material Figure S5(d)), and the rate

spatial distribution is more homogeneous.
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in regards to second-order transitions (e.g., branching process),

it is also defined for first-order spinodal transition. In this case, it

reaches the value r¼ 1 at the transition but does not necessarily

assume values larger than one, because instead of entering a

“super-critical” regime, the system transitions discontinuously

to a different phase (Phase II in our case).34,42,43

We calculated r(Vs) at Vs¼ 73.8,…,74.2 V until transi-

tion to Phase II was detected (�560 recording runs per volt-

age setting in this range). Similarly to a study demonstrating

critical branching in the spontaneous activity of cultured

neuronal networks, we defined

r ¼
Xnmax

d¼0

d � pðdÞ; (4)

where the number of descendants d was generalized to multi-

ple ancestors according to

d ¼ round
nd

na

� �
; (5)

where na and nd are, respectively, the number of active lamps

in a given time-bin (see Subsection IV B) and in the

following one during an avalanche.4,49 The probability of

observing a given number of descendants was calculated as

p dð Þ ¼ 1

nbins

X
bins

nP ajd

nP a

nmax � 1

nmax � np

 !
; (6)

where nP a is the total number of ancestors, nP ajd the number

of ancestors having d descendants, nmax¼ 1156 system size,

and np the number of events observed in the previous bins

within the avalanche, to approximately correct for refractori-

ness (see Ref. 4).

As predicted, r increased with Vs, from r> 0.6 at

Vs¼ 73.8 V to r> 0.9 at Vs¼ 74.2 V, in line with criticality

at the spinodal voltage (Figure 5(a)), which we could not

reach due to finite lifetime of Phase I. Above the spinodal

voltage, we observed r � 1 because short-range inhibition

(see Section II B, supplementary material Section S1 B and

Figure S3) effectively clamped the maximum event rate: the

system did not become super-critical, but transitioned to

Phase II, having markedly different dynamical properties

(supplementary material Figures S5(c) and S5(d)).38

We underline that even though r � 1 both in Phase I close

to the spinodal voltage and in Phase II, the underlying dynamics

were different. In Phase I, the number of descendants was highly

variable, and finite avalanches and fractal structure were

detected (see Subsections IV B and IV C); contrariwise, in Phase

II the number of descendants was stable, without evidence of

critical phenomena (i.e., activity effectively constituted a single

endless avalanche). This illustrates the difference between super-

critical dynamics (expected in second-order phase transition,

and occasionally observed in biological neural networks) and

discontinuous transition to a different phase (observed here).2,4

In Phase I at Vs¼ 74.2 V, the activity was near-critical,

similarly to observations in cultured neuronal networks,

FIG. 5. Emergence of critical phenomena in Phase I for control voltage Vs! 74.2 V. (a) The average branching parameter r, representing number of descend-

ants per ancestor event, monotonically approaches unity (here and in panels (b)–(d), colour denotes control voltage). (b) The avalanche size diverges, the

underlying distribution increasingly resembling a power-law with aS¼ 3/2. (c) The avalanche duration also diverges, the underlying distribution increasingly

resembling a power-law with aD¼ 2. Even at 74.2 V, exponential cut-off with respect to power-law (dashed gray lines) remains clearly visible for both distri-

butions; the green dashed lines denote chosen upper limit for line-fitting (see text). (d) Filled dots and crosses represent the Fano factor in Phases I and II which

are, respectively, over- and under-dispersed at all scales with respect to Poissonian distribution (unity, fine-dashed black line). In Phase I particularly at 74.2 V,

a power-law increase (dashed gray line) is evident over a scaling range, confirming emergence of fractal behaviour.
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even though here criticality was the result of external tun-

ing rather than self-organized. It is noteworthy that opera-

tion close to criticality seem to be the preferential state at

which biological neural networks combine maximization of

information transmission and capacity with stability

requirements.2,4,5

B. Avalanche size and duration divergence

Approaching from below the spinodal voltage V
ð2Þ
s , with

r ! 1, the avalanche size s (number of nodes involved)

and duration d are predicted to diverge, their distributions

approaching power laws with characteristic exponents

depending only on the universality class of the transition.

To test this hypothesis, we searched for probability dis-

tributions pðsÞ � s�aS and pðdÞ � d�aD in the experimental

data acquired, respectively, with the cameras and photo-

diode. The avalanches were identified as event bursts,

separated by a minimum quiescence time Dt which was

empirically set, separately for each Vs value, to the average

inter-event interval as discussed in Ref. 4; further, the ava-

lanche durations were normalized to d¼ t/Dt.
The resulting charts had the characteristic appearance

expected for a sub-critical process, wherein the distributions

converged to a power-law largely independent of Vs for

small size and short duration, with a prominent cut-off shift-

ing towards larger size and longer duration for increasing Vs.

For Vs¼ 74.2 V (>1000 recording runs, Dt¼ 53.3 ms), line-

fitting the initial part of the distributions yielded aS¼ 1.50

and aD¼ 2.02 (Figures 5(b) and 5(c)). These experimental

exponents are in agreement with aS¼ 3/2 and aD¼ 2

expected for the critical branching process and self-

organized criticality, and observed for mature preparations

of cultured dissociated neurons, isolated slices, and entire

brains.2,4–9,34,50,51 However, in our case, the exponents

were observed at spinodal instability of a first-order transi-

tion. This is consistent, at least in regards to avalanche

sizes, with the exponent found in other systems with a first-

order transition, such as breakdown in fracture processes,

random fuse model, and the “democratic fibre bundle mod-

el” (DFBM).42,51,52 The same aS¼ 3/2 is also found in the

long-range Ising model on the spinodal lines, with a suita-

ble definition of the clusters.53

To further check the agreement of our measurements

with aS¼ 3/2 and aD¼ 2, we performed a form of data col-

lapse analysis over all size and duration distributions deter-

mined for Vs¼ 73.8,…,74.2 V; while the cut-off (here

assumed exponential) is expected to depend also on system

size, this was not taken into account, since we could not alter

it experimentally. Following Ref. 43 and the exactly solvable

case of the DFBM, we fit to the data distributions of the form

p(s,Vs) and p(d,Vs), with the scaling function pðs;VsÞ ¼
s�aesðVs�V

ð2Þ
s Þj with a¼ 3/2 and j¼ 1 for size, and an analo-

gous function for duration with a¼ 2.43,52,54 Applying the

trust-region method with multiple restarts to log(p), for size

we obtained R2¼ 0.98 and V
ð2Þ
s ¼ 74:33 V, whereas for dura-

tion R2¼ 0.96 and V
ð2Þ
s ¼ 74:36 V(data not shown). These

results corroborate the conclusion that aS¼ 3/2 and aD¼ 2

for this system, and are in keeping with the observation that

Phase I had a very short lifetime at Vs¼ 74.3 V. We addition-

ally confirmed the aS estimate with respect to array scale by

recalculating this exponent while masking out half of the

events using checkerboards having pitch 1, 2, 4, 8, and 16,

which yielded aS within [1.50,1.54].4 Avalanching in accord-

ance to aS¼ 3/2 and aD¼ 2 was also observed in numerical

simulations with the simplified model, as described in sup-

plementary material Section S1 A and Figures S2(c) and

S2(d).38

Our results are therefore consistent with a transition in

the same universality class of breakdown in disordered

media, or the transition in the DFBM or in the long-range

Ising model on the spinodal lines, that show power laws in

the distributions of avalanches at the spinodal instability of a

first-order transition.43,52,54,55

Attempts were also made to detect recurrent spatiotem-

poral avalanching patterns which would bear similarity to

the “repertoires” found for neural cultures, using hierarchical

trees and other classification techniques, but these were not

found (data not shown).56

C. Fractal structure

Another aspect of critical phenomena is fractal behav-

iour, leading to generation of long-range correlated time se-

ries.15,45,57 As breakdown events constitute a point process,

we investigated this aspect by calculating the Fano factor,

i.e., count variance divided the mean, over a span of time-

scales (0.1 ms–3 s, windowing the signal in powers of two).

For a Poissonian process, by definition the Fano factor is uni-

tary; it becomes larger for temporally clustered events (over-

dispersed, such as avalanches) and smaller in the presence of

regularity (under-dispersed). For a fractal process, the Fano

factor is predicted to exhibit power-law scaling over a suita-

ble range of temporal scales.45,57

As expected given the qualitative features of activity

(Figure 4, supplementary material Figures S5(c) and S5(d)),

in this experiment, the Fano factor was positive in Phase I

and negative in Phase II, at all control voltage values

Vs¼ 73.8,…,74.2 V (Figure 5(d)).38 Approaching the spino-

dal voltage V
ð2Þ
s in Phase I, power-law scaling became

increasingly evident in the range of 13–400 ms; at

Vs¼ 74.2 V, the corresponding exponent d¼ 0.55 with

R2> 0.99. This result confirms critical behaviour, without

entailing assumptions about the threshold Dt used to delin-

eate avalanches. The value found for d is also not very dis-

tant from d� 0.78 observed in mature cultures of dissociated

cortical neurons.6

V. DISCUSSION AND CONCLUSION

We illustrated a circuit wherein energy storage in the

coupling capacitors together with the glow lamp’s probabil-

istic and hysteretic behaviour lead to dynamics similar to

other processes, such as earthquakes, forest fires, and spike

propagation in neurons, where elements gradually accumu-

late energy then abruptly release it, causing others to do the

same.2,34–36 Despite first-neighbour structural coupling,

interactions in this system are effectively long-range, enabling
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the observation of phenomena that are characteristic of mean-

field approximation.

By varying the DC control voltage applied globally to

the array, two dynamical phases were observed, the transi-

tion between them being discontinuous and hysteretic, hence

first-order. In the metastable region of this transition,

approaching to the spinodal critical precursors of the transi-

tion emerge, including divergence of avalanche size and du-

ration, and long-term temporal correlation. The qualitative

and quantitative features of these phenomena overlap well

with experimental evidence in neuronal systems, despite

obviously different underlying physical mechanisms, spatio-

temporal scale, and network size.2,4–9

However, in biological neural circuits, critical behaviour

emerges without external tuning, presumably due to a inter-

nal self-regulation mechanism that maintains the system

close to the critical point (self-organized criticality).15–17

Contrariwise, in this circuit, (near) critical behaviour is

observed only when driving the system near the spinodal

point by externally tuning the control parameter (supply volt-

age). While in neural circuits plasticity (and other adaptive

mechanisms) support self-organization, here possibilities for

self-organization are constrained because the structural con-

nectivity and circuit parameters are fixed.

In biological neural circuits, critical phenomena can be

observed for very long time-spans, compatible with the life-

time of the system itself; contrariwise, here critical phenom-

ena arise during a metastable state: approaching the spinodal

point, while the avalanche size and duration diverge, the life-

time of the metastable state decreases, eventually making ex-

perimental observation impossible. An external controller to

restore criticality after transition to the stable state could be

devised, but this would not alter the fundamental fact that

the lifetime of the metastable state is finite, which is at odds

with seemingly “persistent” criticality in neurophysiogical

data.2,4–9

Indeed, biological neural circuits are widely deemed to

be governed by a second-order phase transition, whereas crit-

ical phenomena in this circuit are observed close to a first-

order transition.2,5 Further experimental study of phase tran-

sitions in biological neural networks is anyway motivated,

particularly because reconciling the hypothesis of a second-

order phase transition with evidence of metastability is not

trivial. While it is not easy to manipulate “control parame-

ters” of intact brains, neurons cultured in-vitro provide a

convenient experimental platform to investigate system

response to a multitude of biochemical control parameters

(e.g., excitation/inhibition ratio), making it possible to search

for hysteresis and other hallmarks, allowing differentiation

between a first- and a second-order transition.

While in this experiment glow lamps were connected in

a lattice, biological neural networks, even those spontane-

ously forming from dissociated neurons in an artificial envi-

ronment, have complex architecture, their structure being

significantly modular, small-world and scale-free.2,58,59

Future work should consider the behaviour of this circuit in

more ecologically-relevant topologies; while interactions

were primarily long-range, short-range effects were also

observed, and these could lead to dynamical differences

depending on connectivity. In particular, in biological neural

networks, avalanches seemingly follow “repertoires” of ac-

tivity, associated with network maturity and integrity; by

contrast, in this experiment, the avalanches appeared purely

stochastic.56 We conjecture that a structured repertoire could

emerge even in this circuit given a richer connectivity struc-

ture. It is also worthwhile to consider how the emergent

properties of this system are altered by gradual degeneration

of structural connections.

Overall, these experimental results reinforce the capabil-

ities of physical networks of electronic oscillators to recap-

ture aspects of in-vivo and in-vitro neural dynamics. More

generally, this observation of critical phenomena in a first-

order phase transition is rare in electronic systems; hence,

the proposed circuit may open up opportunities for experi-

mental work in this area.
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