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Alternative representation of the Kubo formula for the optical conductivity:
A shortcut to transport properties
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2INFN, SPIN-CNR and Dipartimento di Fisica, Università di Napoli Federico II, I-80126 Napoli, Italy
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The Kubo formula for the electrical conductivity is expressed in terms of a weighted sum of Drude-like
contributions associated to the exact eigenstates of the interacting system, each characterized by its own frequency-
dependent relaxation time. This alternative formulation considerably simplifies the access to the static properties
(dc conductivity) and resolves the long-standing difficulty to connect the Boltzmann transport theory and the
Kubo formula. In particular, at the lowest order of the perturbation theory, the correct transport scattering lifetime
depending on the momentum k, which appears in the Boltzmann theory, instead of the single-electron lifetime
appearing in the Green function, can be recovered. This alternative formulation is applied to (i) the elastic
scattering in metals, and (ii) the inelastic scattering in the Fröhlich polaron model to obtain the exact result of the
mobility in the low-temperature weak-coupling limit.
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I. INTRODUCTION

The electrical resistivity of materials is the most funda-
mental physical quantity. Its microscopic origin is the elastic
scattering by the disorder and the inelastic scatterings by
phonons or electron-electron interactions. This important topic
in condensed-matter physics has been addressed by using
a large number of theoretical methods [1–4]. In particular,
one of the most powerful tools for investigating the transport
properties is represented by the Boltzmann equation [1,2].
It is derived on the basis of phenomenological assumptions
within a semiclassical approach, and it is mostly suitable
for the calculation of the electrical resistivity in the often
encountered weak-coupling regime [5]. Indeed, by indicating
with λ a dimensionless parameter characterizing the strength
of the coupling with phonon or impurities [6], even in the
weak-coupling limit, contrary to many physical properties, the
analysis of the dc conductivity, σdc, is not a trivial problem
since σdc displays a singularity at λ = 0, i.e., σdc → ∞ when
λ → 0 [7]. In particular, σdc can be expanded in a Laurent
series in λ, near λ = 0, with the lowest-order term of the order
of λ−2. Although very good for the description of the transport
properties at small values of λ, the Boltzmann approach
cannot be systematically extended to any coupling and finite
frequencies. On the other hand, the dynamic charge response
to an electric field can be derived by using the quantum linear
response theory and the Kubo formula [3], whose validity is
not restricted to the weak-coupling regime. However, in the
standard Kubo formulation (SKF), it is not straightforward
to extract the leading term in the weak-coupling limit since
low-frequency divergences appear.

Two remedies to this problem have been proposed in the
literature. One is the van Hove’s λ2t limit [8–10], where if
the limits λ → 0 and t → ∞ (t is the time) with λ2t = const
are performed, one gets an expansion of the dc conductivity
where each term is finite. However, the ad hoc recipe to fix
λ2t is not justified. The other proposal proceeds by expressing
the response function in terms of a self-energy. It is based on
the projection technique introduced by Mori [4] and Zwanzig

[11] and the memory function formalism [12–14]. In the
following, we will call it standard formulation of the optical
conductivity (SFOC). In this approach, to circumvent the
divergence of σdc, the idea is to expand 1/σdc in successive
powers of λ. Evaluation of the memory function at the lowest
order of λ gives the classical Drude formula σdc = ne2τ/m,
which, however, contains a relaxation time that is different
from that entering into the Boltzmann solution [14]. The
last flaw can be fixed, though it requires a trick similar to
the joint λ2t limit: within SFOC, the correct weak-coupling
limit requires again partial summation of an infinite series of
contributions [14].

In this paper, we derive a Boltzmann weighted formulation
of the optical conductivity (BWFOC), which is equivalent
to the Kubo formula [3] but has significant advantages over
both the Boltzmann solution and SFOC. BWFOC trivially
reproduces the Boltzmann approach results without any
artificial conditions of joint limits and without the necessity of
partial summations of an infinite series of contributions. On
the other hand, BWFOC retains all advantages of SFOC, such
as the possibility to consider finite frequencies and to make a
systematic improvement of the result in higher orders of the
interaction. We demonstrate the advantage of this alternative
formulation in two problems: (i) the elastic scattering in metals,
where the momentum-dependent transport scattering lifetime
naturally appears in σdc without solving the Boltzmann
equation, and (ii) the Fröhlich polaron problem, where the
inelastic scattering by optical phonon is treated rigorously in
the low-temperature weak-coupling limit in order to obtain the
correct expression for the mobility.

II. KUBO FORMULA

The SKF provides the linear response to a small electric
field, along the x axis, of a system in thermodynamic
equilibrium (units are such that � = 1):

σ (z) = i

zV

[
�(z) − q2

e �
]
, (1)
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where V is the system volume, z lies in the complex upper half
plane, z = ω + iε with ε > 0, qe is the electronic charge, and
the quantity �, in the absence of superconductivity and in the
thermodynamic limit, is given by

q2
e � = −

∫ β

0
dτ 〈J (τ )J (0)〉 , (2)

and �(z) is the current-current correlation function,

�(z) = −i

∫ ∞

0
dteizt 〈[J (t),J (0)]〉 . (3)

In Eq. (3) [Eq. (2)], J (t) [J (τ )] is the (imaginary-time)
Heisenberg representation of the current operator along the
x axis, [,] denotes the commutator, and 〈 〉 indicates the
thermodynamical average.

By choosing the eigenbasis of the interacting system
Hamiltonian, it is straightforward to show [15] that the real part
of the optical conductivity, after performing the limit ε → 0+,
can be written as

Reσ (ω) = Dδ(ω) + σreg(ω), (4)

where the regular part σreg(ω) is defined by

σreg(ω)=
∑

n

∑
m

εn �=εm

π

V

| 〈ψn| J |ψm〉 |2
ωnm

δ (ω − ωnm) (pn − pm) .

Above pn = e−βεn/Z is the Boltzmann weight of the eigen-
state |ψn〉, εn is the corresponding energy, Z is the partition
function, ωnm = εm − εn, β = 1/KBT , with KB being the
Boltzmann constant, and the Drude weight D, i.e., the
coefficient of the zero-frequency δ function contribution, is
given by [16]

D = πβ

V

∑
n

∑
m

εn=εm

pn |〈ψn| J |ψm〉|2 . (5)

σ (ω) satisfies the sum rule [18],
∫ ∞

−∞
dωReσ (ω) = −πq2

e �

V
. (6)

The SKF is the most frequently used formulation for the
calculation of the quantum optical conductivity. However, we
note that in this formulation, Reσ (ω) shows a singularity
at ω = 0 if one proceeds perturbatively. Indeed, at λ = 0,
σreg(ω) = 0 so that only the coefficient D turns to be nonzero.
As a consequence, the evaluation of the current-current
correlation function by an expansion in a small parameter fails
due to the singular behavior at small frequencies.

III. MEMORY FUNCTION FORMULATION

To overcome the difficulties related to the diagrammatic
techniques that have to deal with summing divergent series,
the SFOC was suggested, where one represents σ (z) in terms
of a memory function M(z) [12–14]:

σ (z) = − i

V

q2
e �

z + iM(z)
, (7)

with

M(z) = i
z�(z)

�(z) − q2
e �

. (8)

This approach, introduced earlier by Kadanoff and Martin
[19], allows one to easily extract the resonance structures
of the optical absorption due to the relaxation processes,
since the memory function M(z) has a simple expansion
in the lowest order in the impurity concentration and the
electron-phonon coupling [12]. Indeed, by taking into account
that �(z) decreases as 1/z2 when z → ∞, the first step is to
expand M(z) at high frequencies (short-time expansion) so that
M(z) � −iz�(z)/q2

e �. Successively, by using the equations
of motion of the Green functions, one can express the product
z�(z) in terms of the force-force correlation function F (z),
which is a Green function, involving the commutator between
the current operator and the Hamiltonian:

z�(z) = F (z) − F (z = 0)

z
, (9)

with

F (z) = i

∫ ∞

0
dteizt 〈[J (t),H ],[J (0),H ]〉 . (10)

The weak-coupling and low-frequency limit of SFOC give
the classical Drude formula but with a wrong relaxation time.
The relaxation time in the Boltzmann expression is the average
of the relaxation times related to the eigenstates of the system
in the absence of the interaction 〈τ 〉av . On the other hand, in
SFOC, it is

(〈1/τ 〉av

)−1
, i.e., since the SFOC approach, at the

lowest order, averages the inverse relaxation times, recovery
of the Boltzmann formula requires a procedure equivalent to
the λ2t limit.

IV. ALTERNATIVE FORMULATION OF THE OPTICAL
CONDUCTIVITY

Here we derive the BWFOC, which overcomes the above
described difficulties. We note that �(z) is analytic in the
upper half of the complex plane and vanishes as z → ∞.
Consequently, �(z) can be represented as a spectral integral,

�(z) = 1

π

∫ ∞

−∞
dω

Im�(ω)

ω − z
. (11)

On the other hand, Im�(ω) can be expressed in terms
of 
(z), the Fourier transform of symmetrized correlation
function 〈(J (t)J (0) + J (0)J (t))〉:


(z) = −i

∫ ∞

0
dteizt 〈(J (t)J (0) + J (0)J (t))〉 , (12)

i.e., Im�(ω) = tanh(βω/2)Im
(ω) [20]. Successively, by
introducing the Lehmann representation of the correlation
function Im
(ω), using Eq. (11), and writing the quantity
� in the eigenbasis of the interacting system Hamiltonian,
one obtains � = ∑

n pn (γn + νn) and �(z) = ∑
n pn�n(z),

014310-2



ALTERNATIVE REPRESENTATION OF THE KUBO . . . PHYSICAL REVIEW B 90, 014310 (2014)

where

γn = −
∑
m

εn �=εm

2 |〈ψn| J |ψm〉|2
q2

e ωnm

tanh

(
βωnm

2

)
, (13)

νn = − β

q2
e

∑
m

εn=εm

|〈ψn| J |ψm〉|2 , (14)

and

�n(z) =
∑
m

εn �=εm

|〈ψn| J |ψm〉|2 tanh

(
βωnm

2

)
f (a)

nm (z). (15)

Here, f (a)
nm (z) = 1

z−ωnm
− 1

z+ωnm
. In terms of the microcanonical

quantities sn = γn + νn and �n(z), the BWFOC reads

σ (z) =
∑

n

pnσn(z), (16)

where

σn(z) = i

zV

[
�n(z) − q2

e sn

]
. (17)

One can introduce now, for each of the quantum numbers n

labeling the eigenstates of the Hamiltonian, separate relaxation
or memory function Mn(z) (see Appendix for proof),

σn(z) = − i

V

q2
e sn

z + iMn(z)
, (18)

with

Mn(z) = i
z�n(z)

�n(z) − q2
e sn

. (19)

Finally, by taking into account that zf (a)
nm (z) = ωnmf (s)

nm(z),
where f (s)

nm(z) = 1
z−ωnm

+ 1
z+ωnm

, one can express the product
z�n(z) = fn(z) in terms of the commutator between the
current and Hamiltonian operators:

fn(z) =
∑
m

εn �=εm

|〈ψn| [J,H ] |ψm〉|2
ωnm

tanh

(
βωnm

2

)
f (s)

nm(z),

(20)

which is the analogy of the introduction of the force-force
correlation function in the alternative formulation. The set of
equations (15)–(20) represents the BWFOC.

The BWFOC restores the semiclassical Boltzmann result
at the lowest order in the coupling strength, but it also allows
a nontrivial generalization to all frequencies and couplings.
Namely, in all Boltzmann-like treatments, a similar formula
can be derived but with frequency-independent memory
function Mn(z) = 1/τn [21,22]. Furthermore, the quantities sn,
τn, and pn are exact in BWFOC, whereas they are calculated
in a perturbative way within the Boltzmann approach.

We also point out that SKF and SFOC result in general
expressions involving only the response function which can
be represented in any basis. On the other hand, the alternative
formulation explicitly relies on the use of eigenstates as
the basis. This more limited choice allows one to explicitly
incorporate the Boltzmann weight.

In order to recover the Boltzmann result, we decompose the
full Hamiltonian H as H = H0 + V , where V is the interaction
potential which gives rise to dissipation, and suppose that V is
momentum independent and that the solid is homogeneous. In
this case, the conductivity tensor reduces to just the diagonal
terms and they are equal, so that σn(z) = ∑d

l=1 σn,l(z)/d,
where d is the system dimensionality and l indicate the lattice
axes directions. Equation (18) assumes the following form:

σn(z) = − i

dV

q2
e s̄n

z + iM̄n(z)
, (21)

where s̄n = ∑d
l=1 sn,l , �̄n(z) = ∑d

l=1 �n,l(z), and M̄n(z) =
iz�̄n(z)/[�̄n(z) − q2

e s̄n]. By approximating the exact eigen-
states and eigenvalues with the ones of H0, noticing that the
matrix elements of the current operator between eigenstates of
H0 associated to different eigenvalues are zero, putting z = iε

and performing the limit ε → 0+, one obtains

σ
(0)
dc = β

dV

∑
n

p(0)
n τ (0)

n

∑
ε

(0)
n =ε

(0)
m

d∑
l=1

∣∣〈ψ (0)
n

∣∣Jl

∣∣ψ (0)
m

〉∣∣2
, (22)

where the relaxation time associated to the eigenstate of H0

with eigenvalue ε0
n is

1

τ
(0)
n

= π

∑
m,l

∣∣〈ψ (0)
n

∣∣[Jl,V ]
∣∣ψ (0)

m

〉∣∣2
δ
(
ε(0)
n − ε(0)

m

)
∑

ε
(0)
n =ε

(0)
m

∑d
l=1

∣∣〈ψ (0)
n

∣∣Jl

∣∣ψ (0)
m

〉∣∣2 , (23)

with Jl being the component of the current operator along
the l direction. In the following, we show that on the basis
of this alternative formula, some known results can be easily
reproduced, but also that alternative results can be deduced in
inelastic-scattering problems.

V. SCATTERING BY IMPURITIES IN METALS

As a first example, we consider a noninteracting electron
gas scattered by spin-independent impurity potentials. In
this case, H0 = ∑

�k ε
(0)
k c

†
�kc�k with ε

(0)
k = k2/2m and Jl =

qe

∑
�k

kl

m
c
†
�kc�k . Taking into account that [Jl,H0] = 0 and that

the eigenvectors of the noninteracting Hamiltonian are labeled
by the total wave number �k, the matrix element 〈�k|[Jl,V ]|�k′ 〉
provides qe(kl − k

′
l)〈�k|V |�k′ 〉/m. It is straightforward to show

that the dc conductivity becomes

σ
(0)
dc = − q2

e

dV m2

∑
�k

f
′
kk

2τ
(0)
k , (24)

with

1

τ
(0)
k

= 2π
∑
�k′

|V�k, �k′ |2δ
(
ε

(0)
k − ε

(0)
k

′
)
[1 − cos(θ�k,�k′ )]. (25)

Here, θ�k,�k′ denotes the angle between �k and �k′
, and f

′
k

represents the derivative of the Fermi distribution with respect
to the energy ε

(0)
k . The set of Eq. (24) and Eq. (25) coincides

with the lowest-order variational solution of the Boltzmann
equation [7]. In particular, the factor 1 − cos(θ�k,�k′ ) shows that
Eq. (25) represents the correct transport scattering time.

014310-3



G. DE FILIPPIS et al. PHYSICAL REVIEW B 90, 014310 (2014)

VI. INELASTIC SCATTERING: THE FRÖHLICH
POLARON

As a second example, we consider the Fröhlich polaron
model [23,24] where the electron (�r and �p are the position
and momentum operators) is scattered by phonons (a†

�q is the
creation operator with wave number �q) with interaction vertex
Mq = iω0

(
Rp4πα/q2V

)1/2
:

H = p2/2m + ω0

∑
�q

a
†
�qa�q +

∑
�q

[Mqe
i �q·�ra�q + H.c.]. (26)

Here, α is the dimensionless coupling constant, Rp =
(1/2mω0)1/2, and V is the volume of the system.

Due to the inelastic nature of the scattering processes,
the theoretical treatment is complicated [21,25] and different
approaches give different expressions even in the limit of
very low temperature. These various methods usually agree
in the weak-coupling limit (α 
 1) providing for the mobility
(μ = σdc/nqe, where n is the particle density) [7]:

μ = qe

2αmω0
N0. (27)

Here, N0 = 1/(eβω0 − 1) is the phonon number density.
This result can be derived from the Kubo formula [7]. The

first term of the expansion of the S matrix leads to the bubble
diagram including two electronic Green functions G(k,ω),
which, in turn, are obtained by Dyson’s equation at the lowest
order in the electron-phonon coupling α. This procedure leads
to μ = qeτ/m, where τ = 1/2αN0ω0 and then Eq. (27) is
recovered. However, in this approach, τ coincides with the
electron lifetime derived from the Green function G(k = 0)
and does not include the equivalent of the 1 − cos(θ�k,�k′ ) factor
in the elastic scattering. On the other hand, the Drude formula
involves the transport scattering time, related to the real part of
the memory function, which, in general, is not identical to the
single-particle scattering time that is related to the imaginary
part of the self-energy of the electron propagator.

Another approach to derive the polaron mobility in the
weak-coupling limit is based on the Boltzmann equation. By
neglecting thein-scattering term’s contribution in the collision
term [26], one again obtains Eq. (27). It turns out that Eq. (27)
does not agree with the correct solution of the Boltzmann
equation in the relaxation-time approximation (see discussion
by Sels and Brosens [27]).

The path-integral method adds a result in disagreement
with the other approaches. In the low-temperature and
weak-coupling limits, the polaron mobility in the Feynman-
Hellwarth-Iddings-Platzman (FHIP) [28] approach differs
from Eq. (27) by a factor of 3KBT/2ω0. It has been shown that
the result obtained in Ref. [28] can be obtained by using the
memory function formalism and the Feynman polaron model
[29], so that the mobility, in this approach, suffers the problem
related to the average value of 1/τ rather than τ .

BWFOC allows trivial derivation of the correct perturbative
solution of the polaron mobility. By taking into account that
Jl = qepl/m and [pl,V ] = ∑

�q ql[Mqe
i �q·�ra�q − H.c.], from

Eq. (23) one obtains the relaxation time 1/τ
(0)
k = 1/τ

(0)
a,k +

1/τ
(0)
e,k , where 1/τ

(0)
a,k and 1/τ

(0)
e,k denote the contributions

coming from absorption and emission of longitudinal optical

phonons, respectively:

1/τ
(0)
a,k = π

∑
�q

q2

k2
|Mq |2N0δ

(
ε

(0)
�k − ε

(0)
�k+�q + ω0

)
(28)

and

1/τ
(0)
e,k = π

∑
�q

q2

k2
|Mq |2(1 + N0)δ

(
ε

(0)
�k − ε

(0)
�k−�q − ω0

)
. (29)

We emphasize that the factor q2/k2, where �q is the transferred
momentum by phonons in the scattering, is a substitute of the
factor 2[1 − cos(θ�k,�k′ )]. Hence, BWFOC automatically intro-
duces transport scattering time into perturbative expressions. It
is remarkable that this factor, introduced phenomenologically
by Fröhlich in 1937 [30,31], had been discarded in all
successive treatments but has been put back by perturbative
expansion of BWFOC. Furthermore, at low temperatures,
where only momenta around k = 0 contribute to the mobility,
one obtains τ

(0)
k � τk2/mω0, i.e., as expected, the transport

relaxation time τ
(0)
k differs by a factor k2/mω0 from the

single-particle scattering time τ . Finally, we note that in the
BWFOC expansion at low temperatures, only the phonon
absorption processes contribute to the mobility, which reflects
the impossibility of the events in which a low-energy polaron
emits a phonon [32].

By inserting the time relaxation expression in Eq. (22),
we obtain the mobility in the weak-coupling regime at low
temperatures as μ = μFHIP10/3, i.e., the mobility differs by
a numerical factor 10/3 from the result of FHIP [28] and by
5kBT /ω0 from the value obtained through the diagrammatic
technique [33], i.e., Eq. (27).

VII. CONCLUSIONS

In this paper, we derived an alternative formulation of the
optical conductivity which allows a trivial derivation of the
Boltzmann result. The structure of BWFOC (16), weighting
the contribution from exact eigenstates by Boltzmann occu-
pation numbers, allows one to treat weak-coupling and low-
temperature limits trivially, which is in complete contrast with
all previous formulations of the optical conductivity. Beyond
recovery of the correct Boltzmann limit, BWFOC retains the
possibility to consider finite frequency features and perform
calculations in the intermediate- and strong-coupling regimes.
We demonstrated the power of the BWFOC formulation for
elastic- and inelastic-scattering problems.

APPENDIX

The alternative formulation of the linear response theory
is based on the idea to introduce, for each of the quantum
numbers n labeling the eigenstates of the Hamiltonian, one
relaxation or memory function Mn(z):

σ (z) = − i

V

∑
n

pn

q2
e sn

z + iMn(z)
, (A1)

with

Mn(z) = i
z�n(z)

�n(z) − q2
e sn

. (A2)
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Here we want to prove that the quantity �n(z) − q2
e sn is

different from zero for Imz �= 0. We observe that by using the
spectral representation

�n(z) = 1

π

∫ ∞

−∞
dω

Im�n(ω)

ω − z
, (A3)

we have, for z = x + iε,

�n(x + iε) = 1

π

∫ ∞

−∞
dω

Im�n(ω)(ω − x + iε)

(ω − x)2 + ε2
. (A4)

Since sn is real, first of all we find the values x + iε,
with ε �= 0, for which �n(z) is real. For these values, we

have ∫ ∞

−∞
dω

Im�n(ω)

(ω − x)2 + ε2
= 0. (A5)

The next step is to write the denominator Dn(z) of Mn(z) in
the complex upper half plane for z values where Eq. (A5) is
satisfied:

Dn[x(ε) + iε] = −
∫ ∞

−∞
dω

Im�n(ω)

πω

x2 + ε2

(ω − x)2 + ε2

− q2
e νn > 0,

having taken into account that sn = γn + νn, γn = �n(z =
0)/q2

e , −Im�n(ω)/ω � 0, and νn � 0. This proves that Mn(z)
is analytic in the complex upper half plane. A similar proof
has been given [34] to justify the introduction of the memory
function in Eq. (8) of the main text.
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