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Key Points

• The complement opsonin
C3dg, which is found on PNH
erythrocytes of patients under
anti-C5 therapy, can bind to
complement receptor 3 (CR3).

• Interaction of C3dg with CR3
on activated monocytes
induces erythrophagocytosis,
thereby corroborating a model
of extravascular hemolysis.

The clinical management of paroxysmal nocturnal hemoglobinuria (PNH), a rare but life-

threatening hematologic disease, has fundamentally improved with the introduction of

a therapeutic that prevents complement-mediated intravascular hemolysis. However, a

considerable fraction of PNH patients show insufficient treatment response and remain

transfusion dependent. Because the current treatment only prevents C5-induced lysis

but not upstream C3 activation, it has been speculated that ongoing opsonization with

C3 fragments leads to recognition and phagocytosis of PNH erythrocytes by immune

cells. Here, for the first time,we provide experimental evidence for such extravascular he-

molysis anddemonstrate that PNHerythrocytes fromanti–C5-treated patients are phago-

cytosed by activated monocytes in vitro. Importantly, we show that this uptake can be

mediatedby theend-stageopsoninC3dg,whichisnot traditionallyconsideredaphagocytic

marker, via interaction with complement receptor 3 (CR3). Interaction studies confirmed

that C3dg itself can act as a ligand for the binding domain of CR3. The degree of C3dg-

mediated erythrophagocytosis in samples from different PNH patients correlated well

with the individual level of C3dg opsonization. This finding may guide future treatment options for PNH but also has potential

implications for the description and management of other complement-mediated diseases. (Blood. 2015;126(7):891-894)

Introduction

In paroxysmal nocturnal hemoglobinuria (PNH), somatic mutations
in genes responsible for glycophosphatidylinositol synthesis lead to
clonal populations of blood cells lacking several membrane proteins.
Absence of complement regulators CD55 andCD59 renders affected
cells susceptible to complement attack. Most visibly, the formation
of membrane attack complexes (MACs) on erythrocytes causes in-
travascular hemolysis, resulting in anemia.1 The introduction of a
therapeutic antibody against complement C5 (eculizumab), which
prevents MAC-mediated intravascular hemolysis, profoundly im-
proved the clinical management of PNH.2,3 However, the hemato-
logic benefit is heterogeneous among patients, with up to one-third
showing residual anemia and remaining transfusion dependent. Im-
portantly, eculizumab only blocks C5-mediated effector functions
but not complement activation itself that is driven by C3.1 PNH
erythrocytes from eculizumab-treated patients are therefore coated
with C3 fragments. Although it was suggested that this perpetual
opsonization might lead to extravascular hemolysis through phago-
cytosis,4 this hypothesis has not yet been experimentally confirmed.
PNH erythrocytes still express CD35, a regulator that mediates rapid
transformation of C3 opsonins into the C3dg stage (supplemental

Figure 1, available on the BloodWeb site).5 A hypomorphic variant
of CD35 has been associatedwith increasedC3 deposition and lower
chance to achieve significant hematologic benefit.6 In contrast to
C3b and iC3b, however, C3dg is not generally recognized as phago-
cytic opsonin. However, early reports suggested that the tryptic C3d
fragment of C3dg mediates binding to complement receptor 3 (CR3,
CD11b/CD18) on monocytes.7 Recently, structural studies revealed
that the C3d domain contains the interaction site of iC3b for CR3.8

We therefore hypothesized that C3dg may act as independent opso-
nin that contributes to erythrophagocytosis, thereby corroborating
the mechanism of extravascular hemolysis in PNH.

Study design

Human samples

Blood was collected from PNH patients and volunteers in EDTA vacutainer
tubes after venipuncture, following informed consent as approved by local in-
stitutional review boards. PNH erythrocytes were analyzed for C3 fragment
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deposition as previously described.9 This study was conducted in accordance
with the Declaration of Helsinki.

Interaction analysis

The interaction of CR3-aMI with opsonins was analyzed by surface plasmon
resonance (SPR) as detailed in the supplemental Methods. Briefly, C3b was de-
posited on a sensor chip and converted into iC3b and C3dg as described pre-
viously.10 Binding analysis was performed in Mg21-containing buffer by
injecting CR3-aMI (0.03-2mM) over C3b, iC3b, and C3dg. To test magnesium
dependence, CR3-aMIwas injected in buffer containing eitherMgCl2 or EDTA.
Interaction specificity was validated using blocking antibodies against CD11b
or C3d.

Phagocytosis assay

Human peripheral monocytes were seeded on glass coverslips at 106 cells
per well. After incubation (1 day), cells were maintained in medium with
10 ng/mL phorbol myristate acetate (PMA) for 4 days at 37°C and 5% CO2.
Washed erythrocytes from PNH patients or volunteers were added to
activated monocytes (30:1 ratio). After a 15-minute incubation, coverslips
werewashed in phosphate-buffered saline, and phagocytosis was terminated by
lysing extracellular erythrocytes inwater (30 seconds). Cellswerefixedwith 4%

formaldehyde/phosphate-buffered saline (30 minutes, ice) and permeabilized
with 0.05% Triton X100 for 20 minutes at room temperature. Cells were
washed and stained with fluorescein isothiocyanate-labeled anti-C3d and
allophycocyanin-conjugated anti-glycophorin antibodies. Coverslips were
mounted to slides with mounting medium containing 49,6-diamidino-2-
phenylindole (DAPI). Intracellular erythrocytes were observed under a
microscope. Phagocytosiswas quantifiedby counting the number ofmonocytes
with internalized erythrocytes as the portion of totalmonocytes in randomfields
until the total number of cells reached 200. To confirm CR3 specificity,
monocytes were incubated with 20mg/mL anti-CD11b or anti-CD21 (negative
control) for 1 hour before adding erythrocytes.

Results and discussion

Wefirst investigatedwhether C3dg, the predominant opsonin found on
PNHerythrocytes during eculizumab treatment,4,9may bindCR3. This
receptor recognizes various ligands, including iC3b, via its aMI
domain.11 We recombinantly expressed CR3-aMI (supplemental
Figure 2) and confirmed opsonin specificity by SPR using opsonin

Figure 1. Interaction between CR3-aMI and C3-derived opsonins in physiologic orientation. (A) Schematic overview of surface opsonization for the SPR study. C3b was

covalently deposited via its thioester domain by on-chip formation of the C3 convertase and injection of C3. The resulting C3b surfaces were either left unchanged or converted to iC3b

and C3dg by injecting factor I (FI) with cofactors factor H or soluble CR1, respectively (supplemental Methods; supplemental Figure 2A). (B-C) Interaction profile of CR3-aMI toward C3b,

iC3b, and C3dg. Recombinant CR3-aMI (0.03-2 mM) was injected over all 3 opsonin surfaces in Mg21-containing buffer, and the interaction was recorded as change in SPR response in

resonance units (RU). In the case of iC3b and C3dg, processed responses (C; blue) were fit to a 1:1 Langmuir model (C; red) to extract kinetic rate constant and binding affinity (B); the

C3b surface did not result in a significant binding response. The binding data are representative of 2 independent experiments with comparable results. (D-F) Evaluation of binding

specificity of the CR3-aMI interaction with C3dg. (D) Metal ion dependence was tested by injecting CR3-aMI (500 nM) to C3dg in the presence of either 1 mM MgCl2 or 3 mM EDTA.

Binding sites were validated using blocking antibodies against (E) the aMI domain of CR3 (mAb CBRM1/5) and (F) the C3d domain of C3 (mAb 1149).
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surfaces (C3b, iC3b, C3dg) prepared in a close-to-physiologicmanner
(Figure 1A; supplemental Figure 3A). As expected, CR3-aMI did not
bind C3b but strongly bound iC3b (Figure 1B-C). Importantly, the
interactionwithC3dg followed the profile of iC3b, thereby confirming
that physiologically deposited C3dg serves as ligand for CR3-aMI. As
early cell-based studies were performed with C3d,7,12,13 we compared
binding to C3dg and C3d but detected no significant difference
(supplemental Figure 3B-D). The interaction was Mg21 dependent
(Figure 1D), supporting reports that CR3 binds the C3d domain via its
metal-ion-dependent adhesion site domain.8 A monoclonal antibody
(mAb) known to bind the aMI domain14 completely blocked the
interaction (Figure 1E) and was used to determine receptor specificity
in subsequent experiments. We also identified an anti-C3d mAb that
impaired binding of CR3-aMI considerably (Figure 1F). Although
avidity during cell-cell interactions may influence the binding profile,
and additional contactswithCR3maybe involved in the case of iC3b,8

our study demonstrates that C3dg can act as independent binding
partner for CR3.

We then askedwhether this interactionmediates phagocytosis of PNH
erythrocytes. When erythrocytes from PNH patients, which all tested
positive for C3dg but negative for C3b/iC3b (supplemental Figure 4),
were incubated with activated monocytes, erythrophagocytosis could

be observed in a significant fraction of monocytes (Figure 2A). The
identity of the internalized structures was confirmed as C3dg-coated
PNH erythrocytes by positive staining with anti-glycophorin
and anti-C3d antibodies (Figure 2A). Blockage of CR3-aMI
essentially stopped phagocytosis, whereas a blocking control
antibody against complement receptor 2 had no obvious effect
(Figure 2B). Between the samples from 5 PNH patients, the
degree of erythrophagocytosis varied significantly (Figure 2C) but
showed strong correlation with the percentage of C3dg-positive
cells (Figure 2D). These observations support the hypothesis that C3dg
acts as ligand for CR3 and as a phagocytic opsonin thatmay contribute to
erythrophagocytosis. Previous reports about C3d binding to monocytes
viaCR3 have been controversially discussed.7,12,13 The activation
state of the monocytes appears to be critical to allow for proper
expression of activated CR37; indeed, erythrophagocytosis was only
observed in PMA-activated adherent monocytes but not in fresh
suspension monocytes (data not shown). Recently, residual phago-
cytosis by THP-1 macrophages was reported for rabbit erythrocytes
coated with a plasmin-mediated C3dg-like opsonin.15

Whereas C3b/iC3b-mediated phagocytosis likely prevails in many
conditions, PNH patients under anti-C5 treatment face unique circum-
stances as perpetual C3 deposition without MAC-mediated lysis leads

Figure 2. Phagocytosis of C3dg-coated PNH erythrocytes by activated human monocytes. (A) Visualization of intracellular erythrocytes by fluorescent microscopy. The

processes of phagocytosis and immunostaining are described in Methods. PNH erythrocytes were identified by positive staining with anti-C3d and anti-glycophorin antibodies.

(B) Phagocytosis quantification. The results represent the average of 3 independent experiments, and the error bars represent the standard deviation. In each phagocytosis

experiment, activated human monocytes were incubated with erythrocytes from a healthy donor (Ctrl) or PNH patient E (panel C). To test whether the phagocytosis

is accomplished via CR3, a CR3-specific blocking antibody was preincubated with activated monocytes before adding the PNH erythrocytes, and a blocking anti-CR2 mAb

was used as a nonspecific control (n 5 3; *P , .05, 1-way analysis of variance). (C-D) Correlation between phagocytosis efficiency by activated human monocytes and C3dg

coating of PNH erythrocytes. Phagocytosis experiments were performed with erythrocytes from 5 different PNH patients. The data in C represent the average of 3 inde-

pendent experiments with error bars indicating the standard deviation. (D) Correlation between the fraction of C3dg-positive cells (supplemental Figure 4) and eryth-

rophagocytosis (C), with error bars indicating the standard deviation (Pearson r 5 0.99; P 5 .002).
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toaccumulationofdenselyC3dg-opsonizederythrocytes.4HighC3dden-
sities were indeed shown to be required for CR3-mediated rosetting of
activated monocytes,12 and kinetic aspects during opsonization and
clearance likely play a major role. In cold-agglutinin disease, accu-
mulation of C3dg-coated erythrocytes is also observed, but opsonin
densities are typically lower due to the presence of CD55, and initial
rapid phagocytic elimination of cold-agglutinin disease-type cells was
attributed to C3b-mediated effects.16-18 C3dg-mediated clearance in
circulation and/or organsmaywell be slower due to lack of binding to
CD35 and CR4, yet previous studies spanning several days showed
that opsonized PNH erythrocytes have a reduced half-life and
accumulate in the spleen and liver.4 Our data therefore suggest that
conversion of opsonins to the C3dg stage does not confer protection
from phagocytic removal of diseased cells but rather marks a shift
in kinetics and mechanisms. Although analyzed in the context of
PNH, C3dg-induced binding to CR3 on immune cells may also play
a role in other pathologies inwhichC3 deposition on tissue is observed
(eg, transplantation, atherosclerosis, kidney diseases). While not
inducing phagocytosis, C3dg coating on tissues may modulate
adherence and activation of immune cells; for example, binding of
iC3b to CR3 on macrophages is known to modulate interleukin-12
release, and a similar effect was recently reported for C3dg.15,19

Although the contribution of this route for the in vivo clearance of
PNH erythrocytes remains to be determined, our studies show for the
first time that C3dg-opsonized cells from PNH patients under anti-C5
treatment can be recognized and internalized by phagocytes, thereby
corroborating a mechanism of extravascular hemolysis. This finding
also supports efforts to introduce therapeutic options that target C3
as treatment of PNH.1 Indeed, engineered regulators such as TT30
and mini-FH, and derivatives of the C3 inhibitor compstatin, were
shown to prevent C3 opsonization of PNH erythrocytes in addition
to stopping intravascular hemolysis (supplemental Figure 5).9,10,20

Further investigation of the C3dg-CR3 interaction in phagocytosis,
leukocyte activation, and immune modulation will be important to
elucidate the role of the C3dg opsonin in disease and therapy.
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