
Performance analysis of the Janus WebRTC gateway

Alessandro Amirante Tobia Castaldi
Lorenzo Miniero

Meetecho s.r.l.
Via C. Poerio 89/a, Napoli, Italy

{alex, tobia, lorenzo}@meetecho.com

Simon Pietro Romano
University of Napoli Federico II

Computer Engineering Department
Via Claudio 21, Napoli, Italy

spromano@unina.it

Abstract
This paper takes an in-depth look at the performance of the Janus
WebRTC gateway. Janus is a modular, open-source gateway allow-
ing WebRTC clients to seamlessly interact with legacy real-time
communication technologies, both standard and proprietary, and
with each other. This is achieved by attaching technology-specific
plugins on top of a barebones core implementing all of the func-
tions and protocols mandated by the RTCWEB/WebRTC specifi-
cation suites. The paper focuses on assessing the scalability of the
Janus architecture, by selecting three representative use cases, fol-
lowed by a detailed analysis of a real-world scenario associated
with multi-point audio conferencing.

Keywords WebRTC, RTCWEB, gateway, MCU, SFU, SIP, per-
formance.

1. Introduction
Web Real-Time Communication (WebRTC) is a new standard that
lets browsers communicate in real time using a peer-to-peer archi-
tecture. It is about secure, consent-based, audio/video (and data)
peer-to-peer communication between HTML5 browsers. This is a
disruptive evolution in the web applications world, since it enables,
for the very first time, web developers to build real-time multimedia
applications with no need for proprietary plug-ins.

The most general WebRTC architectural model draws its inspi-
ration from the so-called SIP (Session Initiation Protocol) Trape-
zoid [8]. In the WebRTC Trapezoid model, both browsers are run-
ning a web application, which is downloaded from a different web
server. Signaling messages are used to set up and terminate com-
munications. They are transported by the HTTP or WebSocket pro-
tocol via web servers that can modify, translate, or manage them as
needed. It is worth noting that the signaling between browser and
server is not standardized in WebRTC, as it is considered to be part
of the application. As to the data path, a PeerConnection allows
media to flow directly between browsers without any intervening
servers. The two web servers can communicate using a standard
signaling protocol such as SIP or Jingle [5]. Otherwise, they can
use a proprietary signaling protocol. For what concerns negotia-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AWeS ’15, April 21, 2015, Bordeaux, France
Copyright 2015 ACM 978-1-4503-3477-8/15/04. . . $15.00
http://dx.doi.org/10.1145/2749215.2749223

tion, the Session Description Protocol (SDP) [7] is mandated for
all compliant WebRTC implementations.

The above mentioned scenario is the most straightforward one,
since it envisages the presence of a browser talking directly to an-
other browser. Indeed, the WebRTC APIs are designed around the
one-to-one communication scenario, which represents the easiest
to manage and deploy. In such a scenario, the built-in audio and
video engines of the browser are responsible for optimizing the de-
livery of the media streams by adapting them to match the available
bandwidth and to fit the current network conditions. There are other
situations, though, where the one-to-one approach is not at all the
best option. As an example, in a WebRTC conferencing scenario
(or N-way call), each browser has to receive and handle the media
streams generated by the other N-1 browsers, as well as deliver its
own generated media streams to N-1 browsers. In such a case, in
fact, the application-level topology is a mesh network. While this is
a quite straightforward scenario, it is nonetheless difficult to man-
age for a browser and at the same time calls for increased network
bandwidth availability. For these reasons, video conferencing sys-
tems usually rely upon a star topology where each peer connects to
a dedicated server that is simultaneously responsible for:

• negotiating parameters with every other peer in the network;
• controlling conferencing resources;
• multiplexing (or mixing) the individual streams;
• distributing the proper (mix of) streams to each and every peer

participating in the conference.

The WebRTC API does not provide any particular mechanism to
assist the conferencing scenario. The criteria and process to iden-
tify the MCU are delegated to the application. However, this is a
big engineering challenge because it envisages the introduction of
a centralized infrastructure in the WebRTC peer-to-peer communi-
cation model. The upside of such a challenge clearly resides in the
consideration that being capable of establishing a PeerConnection
with a proxy server adds the additional services provided by the
proxy server itself to the benefits offered by WebRTC. Among such
additional services, we cite the possibility of letting the proxy act
as a bridge towards ‘legacy’ technologies (e.g., SIP, Flash, etc.). In
such a case, the proxy acts as a gateway allowing for the seamless
interaction among WebRTC clients on one side and non WebRTC-
enabled devices on the other.

The authors of this paper have recently worked on a general pur-
pose WebRTC gateway called Janus [1], whose main objective is
to make available a highly flexible architecture for the implemen-
tation of scenarios like those illustrated above. We herein present
the results of a thorough experimental campaign aimed at assessing
the performance attainable by the gateway, in a number of different
configurations under varying load conditions.

Categories and Subject Descriptors H.4.3 [Communica-
tions Applications]: Computer conferencing, teleconferenc-
ing, and videoconferencing

The paper is organized in five sections. Sec. 2 presents an
overview of the Janus modular architecture, composed of a We-
bRTC core and a set of configurable plugins. In Sec. 3 we delve
into the details of the aforementioned experimental campaign, by
focusing on some of the most interesting plugins and hence analyz-
ing a real-world audio-conferencing use case. A discussion about
related work in the scientific research community are provided in
Sec. 4. Sec. 5 concludes the paper and summarizes the most rele-
vant directions of our future work.

2. Janus
The Janus WebRTC Gateway has been conceived as a general pur-
pose gateway. As such, it does not provide any functionality per
se other than implementing the means to set up a WebRTC media
communication with a browser, exchanging JSON (JavaScript Ob-
ject Notation) messages with it, and relaying RTP/RTCP messages
between browsers and the server-side application logic they are at-
tached to. Any specific feature/application needs to be implemented
in server-side plugins, that browsers can then contact via the gate-
way to take advantage of the functionality they provide. At the time
of this writing, eight different plugins have been implemented and
publicly released as part of the project:

1. an Echo Test plugin, that simply bounces back whatever it is
sent, together with some simple application logic to control the
media (i.e., enable/disable audio or video, limit the bandwidth);

2. a Video Call plugin, that allows two peers to interact with each
other with media relayed through the gateway, with the same
knobs provided by the Echo Test plugin to have control over
the media transfer;

3. a Streaming plugin, that provides means for creating on-
demand and live WebRTC streams out of local files or media
provided by third-party tools (e.g., FFmpeg or GStreamer);

4. a SIP Gateway plugin, that allows for a simple interaction
with existing SIP infrastructures, hiding most of the complexity
associated with them;

5. an Audio Bridge plugin, that allows multiple WebRTC partic-
ipants to join an Opus-based mixed audio room, and have the
conference call recorded;

6. a Video MCU plugin, which provides a configurable MCU to
allow for any collaboration scenario ranging from webinars
(one-to-many) to video conferences (many-to-many) in a con-
trolled way (e.g., bandwidth limitations);

7. a Voice Mail plugin, a simple audio recorder module that
records media provided by a WebRTC peer and stores it into
a ‘.opus’ file that can be replayed later.

8. a Record & Play plugin, which implements the ability to record
an audio/video message via WebRTC and subsequently replay
it within the context of a new WebRTC PeerConnection; these
recordings can then be post-processed to a WebM and/or Opus
file for fruition in external tools.

Janus, which has been released as open-source software1, has
been implemented using the C programming language, since we
wanted something with a small footprint and that we could only
equip with what was really needed (hence pluggable modules). This
allows us to deploy either a full-fledged WebRTC gateway on the
cloud, or a small ‘nettop/box’ to handle a specific use case.

An overview of the Janus architecture is depicted in Fig. 1.
Herein, we do not provide further details on it. The interested reader
may refer to [1].

1 https://github.com/meetecho/janus-gateway

Fig. 1: Janus modular architecture

In the following subsections, we introduce the Janus plugins that
have been the target of the performance analysis we conducted,
which is in turn presented in Sec. 3.

2.1 The videoroom plugin
This is a plugin implementing a videoconferencing Selective For-
warding Unit (SFU) for Janus. An SFU is capable of receiving mul-
tiple media streams and then decide which of these media streams
should be sent to which participants. The plugin implements a vir-
tual conferencing room peers can join and leave at any time. This
room is based on a Publish/Subscribe pattern. Each peer can pub-
lish her/his own live audio/video feeds: each feed becomes an avail-
able stream in the room the other participants can attach to. This
means that this plugin allows the realization of several different
scenarios, ranging from a simple webinar (one speaker, several lis-
teners) to a fully meshed video conference (each peer sending and
receiving to and from all the others).

For what concerns the subscriber side, there are two different
ways to attach to a publisher’s feed: a generic ‘listener’, which can
attach to a single feed, and a more complex ‘Multiplexed listener’,
which instead can attach to more feeds using the same PeerConnec-
tion. The generic ‘listener’ is the default, which means that if you
want to watch more feeds at the same time, you will need to cre-
ate multiple ‘listeners’ to attach to any of them. The ‘Multiplexed
listener’, instead, is a more complex alternative that exploits the
so called RTCWEB ‘Plan B’ [9], which multiplexes more streams
on a single PeerConnection as well as in the SDP. Another alter-
native, not yet implemented anywhere, is the RTCWEB ‘Unified
Plan’ [6], which tries to address the same requirement in a different
way. While more efficient in terms of resources, these approaches
are still experimental, and currently only available in its ‘Plan B’
form on Google Chrome. At the time of this writing, work on Plan
B is ongoing, and as such its support in Janus is still flaky.

2.2 The videocall plugin
This is a simple video call plugin for Janus, allowing two WebRTC
peers to call each other through the gateway. The idea was to
provide a similar service as the well known AppRTC demo2, but
with the media flowing through the gateway rather than being peer-
to-peer. Such an approach is of paramount importance whenever
the gateway needs to have access to the media for any reason (e.g.,
session recording or bandwidth shaping).

The plugin provides a simple “fake” registration mechanism. A
peer attaching to the plugin needs to specify a username, which acts
as a ‘phone number’: if the username is free, it is associated with
the peer, which means she/he can be called using that username by

2 https://apprtc.appspot.com

another peer. Peers can either call another peer, by specifying their
username, or wait for a call. All frames (RTP/RTCP) coming from
one peer are relayed to the other.

2.3 The audiobridge plugin
This is a plugin implementing an audio conference bridge for Janus,
specifically mixing Opus streams. The plugin implements a Multi-
point Control Unit (MCU) with audio mixing functionality. This
means that it replies by providing in the SDP only support for
Opus, and disabling video. Opus encoding and decoding functions
are implemented using libopus3. The plugin provides an API to
allow peers to join and leave conference rooms. Peers can then
mute/unmute themselves by sending specific messages to the plu-
gin: every time a peer mutes/unmutes, an event is delivered to the
other participants, so that it can be rendered in the UI accordingly.

2.4 The SIP plugin
This is a simple SIP plugin for Janus, allowing WebRTC peers to
register at a SIP server (e.g., Asterisk) and call, or be called by,
SIP user agents through the gateway. This plugin implements the
gateway logic, as it lets the SIP and WebRTC worlds interoperate.
Specifically, when attaching to the plugin, peers are requested to
provide their SIP information, i.e., the address of the SIP server and
their username/secret. This results in the plugin registering at the
SIP server and acting as a SIP client on behalf of the web peer. Most
of the SIP states and lifetime are masked by the plugin, and only the
relevant events (e.g., INVITEs and BYEs) and functionality (call,
hangup) are made available to the web peer: peers can call URIs
at the SIP server or wait for incoming INVITEs, and during a call
they can send DTMF tones.

The concept behind this plugin is to allow different web pages
associated with the same peer (and hence the same SIP user) to
attach to the plugin at the same time and yet just do a SIP REG-
ISTER once. The same should apply for calls: while an incoming
call would be notified to all the web UIs associated with the peer,
only one would be able to pick up and answer, in pretty much the
same way as SIP forking works but without the need to fork in the
same place. This specific functionality, though, has not been imple-
mented as of yet.

2.5 The streaming plugin
This is a streaming plugin for Janus, allowing WebRTC peers to
watch/listen to pre-recorded files or media generated by another
tool. Specifically, the plugin currently supports three different types
of streams:

1. on-demand streaming of pre-recorded media files (different
streaming context for each peer);

2. live streaming of pre-recorded media files (shared streaming
context for all peers attached to the stream);

3. live streaming of media generated by another tool (shared
streaming context for all peers attached to the stream).

For what concerns types 1. and 2., the only pre-recorded media
files that the plugin currently supports are raw PCM mu-law and
a-law files: support for other additional widespread formats will be
added in the future. For what concerns type 3., instead, the plugin
is configured to listen on a couple of ports for RTP: this means
that the plugin is implemented to receive RTP on those ports and
relay them to all peers attached to that stream. Any tool that can
generate audio/video RTP streams and specify a destination is good

3 http://opus-codec.org

for the purpose, e.g., GStreamer4, FFmpeg5, LibAV6 or others. This
makes it really easy to capture and encode whatever desired using
one’s own favorite tool, and then have it transparently broadcast via
WebRTC using Janus.

3. Performance evaluation
In this section we present the results of a thorough testing cam-
paign we conducted in order to assess Janus performance. The ex-
periments we ran were focused on server-side CPU, memory and
bandwidth consumption. The testbed we set-up envisages on the
server side a single Janus instance (v0.0.8) running on a machine
equipped with 16 Intel Xeon E5-2640 v2 @ 2.00GHz CPU cores,
32 GB of RAM, and hosting an Ubuntu 12.04.5 LTS operating
system. On the client side, we leveraged the Selenium 2.0 frame-
work7 in order to simulate the browser’s behavior: a machine acting
as ‘grid master’ dispatched browser allocation requests to a num-
ber of registered hosts, each capable to run browser instances (see
Fig. 2). Such hosts were all Linux PCs with 8 Intel Core i7-4770S
@ 3.10GHz CPU cores and 16 GB of RAM. Selenium allows to
launch and remotely control any browser through the appropriate
“webdriver”. We chose to rely on the latest stable version of Firefox
(35.0.1) since, despite Chrome, it does not implement audio-video
BUNDLE techniques [3]: this means that audio and video streams
do not share the same ICE component8, thus doubling the network
resources Janus has to use when both audio and video are nego-
tiated as part of a session. In such a way, we put ourselves in the
“worst case” with respect to the server-side resources. In our tests,
we used “fake” media devices for both audio and video by passing
the proper flag to the getUserMedia() constructor: this allowed
us to make the simulations much easier and lighter to handle on the
clients side, while still resulting in actual audio and video streams
being sent and received.

All tests have been conducted over a dedicated gigabit LAN.
The following subsections present the performance figures de-

vised by exploiting three of the plugins mentioned before, namely
videoroom (see Sec. 3.1), audiobridge (see Sec. 3.2), and SIP (see
Sec. 3.3). We do not provide detailed results related to the stream-
ing plugin, since streaming can be seen as a particular SIP sce-
nario characterized by one-way media flows. The same applies to
video calls (i.e., the videocall plugin), which can be just considered
as two-participants video rooms when looking at performance. We
studied the system behavior from two different angles: (i) by per-
forming a “stress test”, i.e., letting an ever-increasing number of
participants join the room; (ii) by reproducing a real-world sce-
nario, i.e., an audio multi-point conference call with 20 partici-
pants. In the former case, we analyzed each plugin performance in-
dividually, while in the latter we used collected data to compare dif-
ferent possible approaches to provide the same service (Sec. 3.5).

3.1 Testing the videoroom plugin
In this subsection we present the performance figures derived from
stress testing of the Janus videoroom plugin. Two different roles are
envisaged: subscribers only receive remote streams, while publish-
ers both send and receive Opus-encoded audio and VP8-encoded
video. During our tests, we first made 10 publishers join the vide-
oroom, then we let 140 subscribers join as well. As already an-

4 http://gstreamer.freedesktop.org/
5 http://www.ffmpeg.org/
6 http://libav.org/
7 http://www.seleniumhq.com
8 ICE Component: A component is a piece of a media stream requiring a
single transport address; a media stream may require multiple components,
each of which has to work for the media stream as a whole to work.

Fig. 2: Selenium grid

Fig. 3: Videoroom plugin: CPU and memory

ticipated, the videoroom plugin implements the SFU logic, hence
the 150 participants envisaged by this scenario correspond to 1500
PeerConnnections maintained by Janus. Fig. 3 shows the CPU uti-
lization level and memory occupation in such a scenario. We notice
how memory load increases quadratically with the number of pub-
lishers (participants 1 to 10). This was expected since every time a
new publisher joins, Janus creates a new PeerConnection per each
pre-existing participant. Then, it increases in a roughly linear man-
ner with the number of subscribers. We notice periodic “steps” in
the memory evolution, which we are still in the process of inves-
tigating in further detail through fine-grained profiling techniques.
Intuitively, we believe such a phenomenon can be ascribed to the
intensive use of dynamic memory allocation both in the core of
Janus and in most of its plugins. With this type of memory man-
agement mechanisms, the system typically reserves memory slots
in the heap and starts gradually filling them up. As soon as it runs
short on free memory, it makes a new reservation. The CPU load,
instead, does not follow this pattern and always keeps the same
growth trend.

Fig. 4 plots the bandwidth usage. Each publisher sends both
Opus audio and a 640x480 VP8 video, generating around 180kbit/s
towards the server. Hence, the downlink traffic generated by pub-
lishers grows linearly to 1.8Mbit/s. This value slightly increases
toward 3Mbit/s as more and more subscribers join, accounting
for signalling traffic, RTCP feedback and possible retransmissions
on each PeerConnection. On the other hand, uplink traffic has a

Fig. 4: Videoroom plugin: bandwidth

Fig. 5: Audiobridge plugin: CPU and memory

quadratic evolution with the number of publishers, for the same
reasons already discussed for memory load. Then, it increases al-
most linearly with the number of subscribers.

3.2 Testing the audiobridge plugin
When we aimed our stress tests at the audiobridge plugin, we found
out that mixing and transcoding media flows led the CPU load
to increase in a roughly linear way with the number of flows to
be mixed. Such operations are quite demanding in terms of CPU
resources: 200 participants in a wideband (16kHz) audio mix took
up around 73% of CPU as depicted in Fig. 5. Memory occupation,
instead, kept relatively small, as it did not exceed 150 MB.

Fig. 6: Audiobridge plugins: bandwidth

Fig. 7: SIP plugin: CPU and memory

Fig. 8: SIP plugin: bandwidth

Finally, Fig. 6 shows how uplink and downlink traffic followed
the same trend, as expected.

3.3 Testing the SIP plugin
This subsection shows the performance attained when we put under
test the SIP plugin. In this case, each participant joining made Janus
generate a SIP dialog with an external server, namely an Asterisk
PBX and its echo-test application. As Fig. 7 shows, the CPU level
increases linearly. 330 participants took up around 22% of the CPU.
The memory consumption, instead, presented the same behavior
already discussed in Sec. 3.1.

For what concerns bandwidth, uplink and downlink levels are
exactly the same, as expected (see Fig. 8).

Fig. 9: Streaming plugin: CPU and memory

Fig. 10: MCU vs. SFU: CPU and memory

3.4 Testing the streaming plugin
As already anticipated, the streaming scenario can be seen as a
particular SIP scenario characterized by one-way media flows. As
such, the same considerations apply. CPU and memory evolutions
are depicted in Fig. 9.

3.5 A real-world scenario: multi-point audio conference
In this subsection, we take a sample real-world scenario, namely a
multi-point audio conference involving 20 participants. Such sce-
nario may be realized by exploiting either the videoroom, or the
audiobridge or the SIP plugin, with different performance attained
as we show in the following.

3.5.1 MCU vs. SFU
In this first comparative example, we implemented the aforemen-
tioned audio conference service by leveraging the videoroom and
audiobridge plugins. In the former case, of course, we disabled
video functionality to obtain an audio-only SFU. Fig. 10 shows
CPU and memory loads of the two approaches. CPU evolution over
time is also depicted in Fig. 11, while bandwidth consumption is
shown in Fig. 12.

The results demonstrate that, using a wideband (16kHz) mixer
in the audiobridge, MCU wins over SFU whenever the number of
participants goes beyond 8, as it requires less CPU, memory, and
bandwidth. This seems to contradict the general belief that mixing
flows requires more resources than just forwarding them: wideband
Opus audio mixing proved to be a lightweight operation that can be
easily performed without taking too much CPU cycles. It is worth
remarking that the results provided do not take into account video
flows. Video mixing, in fact, is a heavy task, which may lead to
completely different outcomes.

3.5.2 Local vs. remote mixing
In this subsection we compare local and remote mixing approaches.
We refer to local as the mixing functionality provided by Janus

Fig. 11: MCU vs. SFU: CPU time evolution

Fig. 12: MCU vs. SFU: bandwidth

Fig. 13: Local vs. remote mixing: CPU and memory

itself, while remote are mixing features provided by an external
component. To implement such scenarios, in the former case, we
leveraged the Janus audiobridge plugin; in the latter, we exploited
the SIP plugin which in turn forwarded flows to an Asterisk server
taking care of mixing through its ConfBridge application.

As clearly stated by Fig. 13, remote mixing is definitely prefer-
able when looking at CPU and memory consumption as key per-
formance indicators. On the other hand, whenever bandwidth is
considered more critical (e.g., on Amazon AWS instances), local
mixing may be the best choice, as shown in Fig. 14.

Fig. 14: Local vs. remote mixing: bandwidth

4. Related work
Performance assessment of server-side WebRTC code is gaining
more and more interest. A discussion on this has recently been
started on the discuss-webrtc group9 on Google Groups, the main
discussion forum on the WebRTC space.

T. Levent-Levi provides in [4] a theoretical analysis of different
approaches to WebRTC server-side media processing, even though
no experimental data is presented. He also proposes the two defini-
tions of MCU and SFU we adopted in this work.

B. Grozev and E. Ivov conducted in [2] a thorough performance
evaluation of the Jitsi Videobridge, an open source WebRTC SFU,
by also making available experimental data. The performance at-
tained seems to be close to the figures we presented in Sec. 3.1:
they claim to support 10 publishers with 3.1% CPU usage, while in
our tests the same number of publishers took less than 1% of CPU.
On the other hand, in their scenario each publisher sent 515kbit/s
toward the server, against the 180kbit/s per publisher we sent in our
experiments.

Several other implementations of WebRTC server-side compo-
nents are currently available, many of which come in the form of
open source code like Janus. We mention webrtc2sip10, a WebRTC-
to-SIP gateway, Licode11, a WebRTC SFU, Medooze12, a WebRTC-
enabled MCU and media server, Kurento13, a media server with
WebRTC support. To the best of our knowledge, no performance
analysis of these software is currently available.

5. Conclusion and Future Work
In this paper we presented the results of a wide-range experimen-
tal campaign aimed at assessing the key performance indicators of
the Janus WebRTC gateway. The tests we conducted have indeed
allowed us to reach a twofold goal. First, during the first phases of
testing, we have seized the opportunity to leverage test results in or-
der to spot out latent issues hidden in our software and properly fix
them. This has allowed us to arrive at a higher maturity level of the
code our system’s architecture relies upon. Subsequent tests have
instead represented the ideal means for us to properly benchmark
some of the most typical configurations of Janus and its plugins
along the three main directions associated, respectively, with mem-
ory, CPU and bandwidth utilization. The mentioned parameters are
indeed of interest if one is willing to make an informed decision

9 https://groups.google.com/forum/#!forum/discuss-webrtc
10 http://webrtc2sip.org/
11 http://lynckia.com/licode/
12 http://www.medooze.com/
13 http://www.kurento.org/

on how to optimally configure one’s own system in a real-world
deployment scenario.

The results look encouraging, since they clearly demonstrate
how the current structure and organization of the Janus architecture
allow users to implement a variegated set of advanced services in a
scalable fashion. In the next few months it is our intention to push
testing one step further by both extending measurements to the set
of plugins we have not yet analyzed in detail and digging further
into the details of some of the phenomena for which we have not
come out with a clear explanation as of yet. With respect to this
last point, as already anticipated we are interested in investigating,
through fine-grained memory profiling techniques, the exact behav-
ior of our system for what concerns the optimized management of
dynamic memory slots.

Acknowledgments
This work was partially funded by the Italian Ministry of Educa-
tion, University and Research (MIUR) within the framework of
projects PON01 01007 “PLATform for INnOative services in fu-
ture internet” (PLATINO) and PON04a2 C (“SMART HEALTH”).

References
[1] A. Amirante, T. Castaldi, L. Miniero, and S. P. Romano. Janus: a gen-

eral purpose WebRTC gateway. In Proceedings of the 7th International
Conference on Principles, Systems and Applications of IP Telecommu-
nications (IPTComm), Chicago, USA, October 2014.

[2] B. Grozev and E. Ivov. Jitsi Videobridge Performance Evaluation.
https://jitsi.org/Projects/JitsiVideobridgePerformance.

[3] C. Holmberg, H. Halvestrand, and C. Jennings. Negotiating Media
Multiplexing Using the Session Description Protocol (SDP). Internet
Draft, January 2015.

[4] T. Levent-Levi. Seven Reasons for WebRTC Server-Side Media Pro-
cessing. Technical report, 2015.

[5] S. Ludwig, J. Beda, and P. Saint-Andre. XEP-0166: Jingle. Tech-
nical report, XMPP Standards Foundation, December 2009. URL
http://xmpp.org/extensions/xep-0166.html.

[6] A. Roach, J. Uberti, and M. Thomson. A Unified Plan for Using
SDP with Large Numbers of Media Flows. Internet-Draft draft-roach-
mmusic-unified-plan-00, IETF Secretariat, July 2013.

[7] J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with the
Session Description Protocol (SDP). RFC 3264, RFC Editor, June
2002. URL http://tools.ietf.org/html/rfc3264.

[8] J. Rosenberg, H. Schulzrinne, and G. C. et al. SIP: Session
Initiation Protocol. RFC 3261, RFC Editor, June 2002. URL
http://tools.ietf.org/html/rfc3261.

[9] J. Uberti. Plan B: a proposal for signaling multiple media sources in
WebRTC. Internet-Draft draft-uberti-rtcweb-plan-00, IETF Secretariat,
May 2013.

