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L,-norm Estimation: Some Simulation
Studies in Presence of Multicollinearity

Massimiliano Giacalone! and Rino Richiusa

L University of Naples "Federico II", Naples, Italy
Email: mgiacalo@unina.it

Abstract : In this paper we propose some simulation studies in order to compare
the Lp-norm estimators with the Least Squares method (L2), introducing a linear
regression model in the case of multicollinearity. A comparative analysis is made
applying three estimation methods to evaluate the empirical distribution of the
regression parameters. Looking at the simulation results we note that improvement
using L, estimators instead of L, is more evident in the case of medium collinearity
than in the case of strong one.

Key words: Multicollinearity, exponential power function, L, norm estimators, -
kurtosis indexes. |

1 Introduction

“For non-normal distributions of the €;’s the least-squares estimates have minimum
" variance among unbiased estimates that are linear combinations of the Y;’s” (Cox and
Hinkley, 1968). And in case of multicollinearity?

In this paper we consider the possibility of creating some adaptive robust estimation
procedures for the standard linear regression model when the disturbance vector has
deviated from normality.

We propose some simulation planes in order to compare the L,-norm estimators
- with the least squares method in the case of multicollinearity, a common regression
problem introduced in the second section of the paper.

After a brief review on the origins of the Exponential Power Function (E.P.F.),
a useful family of symmetrical random error curves, we show their connection with
the L,-norm methods.
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In the fourth section we investigate the relationships between the different values
of p , the shape parameter of the E.P.F., and some kurtosis indexes that refer to the
error distributions, then we analize and propose the Ly, algorithm.

In the subsequent sections we compare three estimation procedures by introducing
a linear regression model with collinear regressors. The aim of the simulation study
is to choose the best rule for selecting the most appropriate value of p for any given
error distribution and to evaluate the influence of multicollinearity in the parameter
_estimation procedures in terms of bias and variance. Finally, in the last paragraph,
some results and comparations are discussed.

2 Multicollinearity in regression

A regression model has two main purposes: 1) it could be used to find out to what
extent the outcome (dependent variable) can be predicted by the independent variables
and 2) it could be used to determine the strength of a theoretical relationship between
the dependent variable and the independent variables. '

A regression problem can be affected by multl—colhnearlty The absence of multi-
collinearity is essential to obtain optimal estimates by a multiple regression model. In -
regression the multi-collinearity or collinearity problem occours when several regressors
are highly correlated. When things are related, we say they are linearly dependent on
each other because one can nicely fit a straight regression line to pass through many of
the data points of those variables. Collinearity simply means co-dependence. It would
have to be eliminated. Doing it is problematic when one’s purpose is explanation
rather than mere prediction. Indeed when prediction is the goal no problem arizes
if, among dependeht_variables, two regressors have the same ‘meaning’: simply it is
possible eliminating one. On the contrary, when explanation is the goal regressors
have been selected according a theoretical rule, so that it is possible eliminate no -

‘variable because of the model is theoretical, that is given; it has to be explamed
exactly, including all selected variables. '

Therefore the multi-collinearity problem can and must be eliminated in the case
of prediction while is often uneliminable in the case of explanation. In this latter
case eliminating a variable leads to a problem of bad-specification of the model. A
viable remedy for bad-specification is to prefer a different estimator than the least
squares one. This is because the ‘classical’ Ordinary Least Squares (OLS) method
provides estimates which could be statistically not significant in presence of multi-
collinearity. It would be better to use alternative methods such as the Ridge Regression
(Morris, 1982; Pagel and Lunneberg, 1985) or the Partial Least Squares (Cassel et al.,
1999). Here we are going to carry out some simulation studies in order to show some
evident differences among three estimation methods (Least Squares estimators and
two different L,-norm estimators) in presence of multi-collinearity.




Lp-norm Estimation _ _ 237_ .

3 The Exponential Power Function and the
L,-norm estimators

The E.P.F is a family of probability functions proposed by Subbotin in 1923 and =
studied by Vianelli (1963), Lunetta (1963), Mineo (1989). The density function is:
1 1|z—-M,
fo(2) = ' ] exp [——- P

P
%] )
| 2p1/7a,T (1+ 1/p p| op _
where M,, = E(z) is the location parameter, o, = (E|[|z - Mpl])l/ P is the scale
parameter, and p > 0 is the shape parameter.
Considering the Pearson kurtosis index Bo we distinguish:

e 0 < p < 1: double exponential distributions, 3, > 6;
e 1< p< 2: leptokurtic distributions, 3 < 8, < 6;
e p > 2: platikurtic distributions, 1.8 < 84 < 3;

For particular values of p we have: the Laplace distribution (p =1, By = 6);
the Gaussian distribution, (p = 2, B, = 3); and the Uniform distribution (p — oo,

By — 1.8).

Let us consider a sample of n observed data (y;, x;), a general linear regression model is:

: | vi = g(z:,0) + €, _ (2)
with ¢ a linear function. ‘

The Ly-norm estimators are a mere generalization of the Least Squares replacing
exponent 2 by a general exponent p. Therefore they minimize the sum of the p-th
power of the absolute deviations of the observed points from the regression function:

Zm— 9(z:,0)F 1<p<oo (3)

Under the regularity assumptions the log-likelihood related to the sample is given by:

10,07,1) = ~nlog [20/20,0(1 4 1/0)] - [(o7) " Sl — sl 0] (@

where we consider z = y; and p, = g(z;,0)

bg
51/59 = Z |y1 g(-’rt,9)|p 131gn (yt g(x'n )) 59
i=1
E lyi — g(xi,0)|P.= min with p > 1 (5)

The optimal exponent p for the L,-norm estimators of the regressmn parameters is
the shape parameter p of the E.P.F.
If it is unknown we have two related problems to consider:

(1) The estimation of the ezponent p on the sample data.
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(2) The choice of the ‘minimization algorlthm to obtain the regression  parameters
estlmatlon ’ ’ '

To estimate the exponent p it is possible to find out the followmg proposals

e Harter (1977), noting that p depends on £, (the sample residual Kurt051s) pro-
- posed selecting p with the following rule: :
if By > 3.8 use p = 1 (the least absolute deviations regression).

- if22<f,<38usep= 2 (the least squares regression).
if ﬂz < 2.2 use p=o0 ( the minimaz or Chebychev regression).

e Money et al. (1982) and Sposito et al. (1983) proposed two different criteria
respectively: '

“:9/3224—1 forl1<p<oo (6)

p=6/0, forl<p<2 (7)

e Mineo A. (1989) proposed the Generalized Kurtosis B, as described below.

o Mineo A.M. (1994) considered a new method to estimate p, based on an empirical
index called VI. ’

e Agro (1995) proposed a maximum likelihood estlmatlon either for the regression
parameters or for the p shape parameter.

4 The Exponential Power Function kurtosis indexes

For the density (1), the theoretical moment of order k is a function of the shape
parameter p as follows:

| ' —k/p L ((E+1)/p
Bl =l = (pog) P i < ®
The ratios of the moments of order 2k and the squared moment of order k only
depend on the shape parameter p. This theoretic relation is also called " Genemlzzed

Kurtosis" (Mmeo 1989) :
B, = Mo T(l/P)F((QkﬂLl)/(P))

M [ ((k+1)/(p)))?

if £ = 2 we can write the Pearson Kurtosis index:

By = ﬂ _ I'(1/p)T (5/p) (9)

w o rE/pe
If ¥ = 1 considering the square root.of the reciprocal we get the Geary length of

tails index:

_m __ T@em :
1= E T TG - W
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~ The indexes I and B, show a dlfferent ‘behaviour according to the variation of p (Gi-

- - acalone, 1997).

Calculating the sample values of I and ﬂ2 ; it is p0551ble to obtaln, by inverse inter-
polation, two different estimations of p. ‘ ;
Gonin and Money (1987), Lunetta, (1966), Kendall—Stuart (1966) considered the unbi-

- ased estimates of the second and fourth order sample moments w1th correction factors
dependmg on the sample size n :

'pzz:nilZ(-—az

- (n —2n+3) n—l)(2n—— 3) ~
M - D —2)(n - 3)Z ~ n(n—2)(n - 3) 2

The ratio of tty and i, gives the followmg estimator of (3,

=14 | ()

For the I empirical index we obtain:

Sile—d Va=1 )

5 The L, , algorithm

I=

It is based on a two-steps alternating procedure : a) minimization procedure to esti-
mate the parameters, b) joint inverse function of I and f, to estimate p.

The algorithm is stopped when p does not vary significantly. ‘

The function used to estimate p is therefore the following:

[(I _ .f) : 0.86054] g [(ﬁ2 _ ﬁ“z) : 25.2]2 _ min, (13)

where I , I, 8,, B, are respectively given by (10), (12), (9), (11). For simplicity we
express the (13) as [f(p)])? + [9(p)]? = min to take into account the different variability
and average order size related to p , and the standardization factors are the maximum
theoretical values.

- So using the relation (9) we calculate max(f5) = 25.2 for p = 0.5 , lower bound in
our simulation plan, whilst using the relation (10) we calculate max(I) = 0, 86054, for
p = 10, upper bound in our simulation plan.

The proposed algorithm (Giacalone, 1997) is then specified in the following steps:

e STEP 0: Set =0 and pp =2 ;
e STEP 1: Fit the model to the data using the previous step value p;;

e STEP 2: Compute the estimated residuals ¢; = y; — g(zi,0), their average € and
insert these quantities in the (13) which is equal to the sum of the two squared
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functions to be minimized;
e STEP 3: Minimize the function (13) to obtain p;;1 , new estimate of p;

‘e STEP 4: Compare the estimated p;;1 with the previous p; , and if |p;4+1 — pi| >
0.01 then set i = i 4+ 1 and repeat steps 1-4, otherwise:

e STEP 5: Stop the algorithm assuming the values éi, = 0;; as Lp-norm estimators
for the parameters 6; and the value p = p; .as joint estimation of p.

In step 1 a nonlinear Ly-norm estimation is considered (Fletcher and Reeves, 1964).
In step 3 a parabolic interpolation method (Everitt, 1987) to find the minimum of the
sum of squared functions (13) is adopted.

6 The simulation plan

We consider 500 samples of sizes n = 50, 100, generated from E.P.F., and 6 values
of p, ranging from 1.0 to 3.5 with step 0.5. The algorithm for generating the ¢; (for
p > 1) from an E.P.F. is suggested by Chiodi (1986).

The values of y; are given by the multiple regression model:

vi = By + ,31X11 + By Xi2 + B3 Xiz + € v (14)

with X7, X7 identically distributed and independent variables from a Gaussian stan-
dardized distribution and X3 a linear combination of X; and Xs.

X3 = X1+ Xo+ Z with Z ~ N(0,0>) (15)
Therefore we can write the related variance and covariance matrix: It is easy to see
X, X2 X3
X: 1 0 1
X, 0 1 1
Xs 1 1 2402

that: E(X3) = E(X}) + E(X2) + 02 =2+ 02
and the correspondent correlation matrix is equal to:

;o 0 1/\/2+(02)
0 1 1/1/2F (2)
1/1/2+ (02) 1/4/2+4(02) ‘1

where 13 = cov (X1, X3)//var (Xl)ver (X3) =1//1(2+02) =193
and R? ;, = 1 —det A/det As3 = 2/(2 + 02)
In the simulation model one can see that the rate of multicollinearity is (inversely)

r =
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~ proportional to 2. , -
Let be the parameter values By =1, f; = 2, 83 =3, B3 =4, a comparative analysis |
is made applying the following three estlmatxon methods on the same samples, with
the results reported in the Tab 2-7 : '

(1) Least squares estimators (Lz).
(2) Lp-norm estimators with theoretical p of the E.P.F. (Lp).
(3) L,-norm estimators with p as in our ﬁroposal (Section 5) (Lyp,,,.)-

One can see that for any p and for any method, the parameter estimates of 3y, 3,
By , B3, are biased when n = 50 but their variances decrease for increasing values of
n. That depends on the multicollinearity of the model. It is possible noting the unbi-
asedness of the estimates only for middle-large samples sizes.

The L,-norm estimators give us better parameter estimates for the parameters 3; and
By compared to the least squares method especially for p far from 2 (see tab 7 and
tab 8). , ,

The gain in efficiency using the L,-norm estimators is higher for the L, method in
all the cases considered except for the case p = 2 where the error is generated by a
Gaussian distribution.

The L,_, method could be considered as half-way between the L, and L, methods
because we estimate the exponent p on the sample data.

CASE 1 0,=1 _ RZ.,,=10.66
p I M(By) | V(Bo) I M(ﬂl) | V(B,) | M(ﬁz) | V(Bs) | M (Bs) I V(Bs)
n = 50

1.0 1.162 928 2.117 | .964 3.124 .849 3.748 | 1.334
1.5 0.973 .816 1.877 .834 2.889 .826 4.042 | 1.083
2.0 1.029 .799 1.956 .786 2.835 778 3.987 | 1.037
2.5 1.037 678 | 1.934 713 2.903 .645 4.069 | 0.968
3.0 0.956 .665 1.873 .685 2.918 .616 3.764 | 0.864
3.5 1.235 .558 2.097 .609 3.221 .593 3.952 | 0.798
. n=100
1.0 1.043 128 1.957 .164 2.934 .024 3.838 .033
1.5 1.034 .116 1.942 153 2919 | .022 4.039 028
2.0 1.018 .099 2.001 126 2.965 017 | 4.022 .023
2.5 1.025 | - .078 2.034 101 3.015 .014 3.959 .019
3.0 1.028 .065 1.977 | .078 2.953 .011 3.853 .016
3.5 1.039 .058 1.963 .069 2.941 .009 3.978 014

Table 1: Mean and Variance of 50,,31 82,03 for a multiple regression model
(,60 = 1,6, =2 ,32 = 3,03 = 4) estimated with L,-method on 500 samples of size
- n =250, n =100.
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CASE 2  5,=001 RZ, =0.99

7 | M) | VBo) | M(By) | V(Br) A TV(6) | M(Ba) | V(Ba)
: n=2>5 v e

10T 1276 | 1.281 | 2202 | 1.323| 3.135 1.481 | 3.801 | 1.634
151 1.053| 1.016 | 1.85 | 1.053 | 2859 | 1.213 | 4.052 | 1.466
2.0 1.049 0949 | 1.942 | 1.002 | 2.845 | 1.187 | 3.963 | 1.255
2.5 | 1.047 878 | 1.921 0938 | 2.883 | 1.045 | 4.072 | 1.109
30| 0934 723 | 2.143 801 | 3.108|. .912 | 3.792 | 1.021
35| 1.262 622 | 2104 712 ] 3221 | .796 | 3.938 | 0.934
n = 100 A
1.0 ] 1.067 625 | 1944 | .744 | 2944 834 | 3.855 941
1.5 | 1.045 514 | 1.931 633 | 2931 711 | 4.043 .844
2.0 1.022 397 | 2.005 503 | 2.922 566 | 4.051 654
25| 1.037| .255| 2.051 401 | 3.029 533 | 4.065 592
3.0 | 1.045 155 | 1.983 277 | 2934 .345 | 3.839 416
3.5 | 1.061 103 | 1.942 188 | 2.928 233 | 4.044 307"

Table 2: Mean and Variance of (,01,02,03 for a multiple regression model
(By = 1,8, = 2,8, = 3,83 = 4) estimated with L,-method on 500 samples of size
n = 50, n = 100.

CASE 3 o.=1 . R3,=066
p [ M(B,) | V(Bo) | M(B1) I_V(ﬂ1)5(|) M(B,) | V(By) | M(B5) | V(Bs)

1.0 1.143 .865 2.111 .883 3.133 821 3.802 | 1.277
1.5 0.981 .802 1.854 .799 2.898 766 | 4.032 | 1.055
2.0 1.033 | .745 1.949 746 2.866 7221 3.985 | 0.965
2.5 0.995 .655 1.912 .695 2.915 .601 4.044 | 0.929
3.0 0.967 .624 1.892 633 2.932 587 | -3.811 | 0.833
3.5 1.195 507 | 2.075 576 3.198 544 | 3.898 | 0.776
A n = 100 _
1.0 1.028 101 1.968 .134 2.955 .021 3.854 |~ .031
1.5 1.025 .099 1.955 124 2.901 019 | 3.998 .026 |
2.0 1.013 .093 1.998 119 2.977 015 | 4.018 021
2.5 1.019 0751 2.029 .098 3.011 .012 | 3.966 017
3.0 1.024 .062 1.975 074 2.951 .009 | 3.866 .013
3.5 1.033 .056 1.961 .067 2.939 | .007 | 3.975 011

Table 3: Mean and Variance of B4,01,082,0; for a multiple regression model
(B = 1,3, = 2,8, = 3,83 = 4) estimated with L,-method on 500 samples of size
n = 50, n = 100.
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CASE 4 - =0.01 "R%2.,,=099
p I M(By) |'V(ﬁo) I M(B,) I V(B1) I M(Bs) } V(B,) l M(B,) I V(ﬁs)
IR n = 50 : v

1.0 | 1.164 921 2122 945 | 3.119 841 3.744 | 1.329

1.5 0.969 .820 1.875 831 2.878 |. .822 | 4.039 | 1.077

2.0 1.025 794 | 1.958 783 | 2.832 769 | 3.978 | 1.032

2.5 1.035 677 | 1.936 709 | 2915 643 | 4.044 | 0.958
3.01 094 655 | 1.876 679 | 2921 620 | 3.788 | 0.871 |}

3.5 1.244 566 | 2.098 611 | 3.219 .b88 | 3.961 | 0.787

n =100 -

1.0} 1.045 122 | 1.944 161 2.941 .023 | 3.855 .032
1.5 1.031 115 | 1.941 149 | 2933 023 | 4.041 027

20| 1.009 095 | 1.999 121 2971 016 | 4.019 021

2.5 | 1.024 076 | 2.031 099 | 3.018 013 | 3.962 018

3.0 1.025 062 | 1.981 074 | 2951 011 | 3.844 015

3.5 1.034 .056 1.973 067 | 2.945 008 | 3.981 013

Table 4: Mean and Variance of 3y,0;,3,,0; for a multiple regression model

By = 1,8; = 2,8, = 3,8; = 4) estimated with L,-method on 500 samples of size -

n = 50, n = 100.
p | M(By) | V(Bo) | M(By) | V(By) | M(Ba) | V(B2) | M(Bs) | V(Bs)
n = 50 : .
1.0 | 1.155| 1.098 | 2.122 | 1.088 | 3.136 | 1.023 [ 3.698 | 1.529
1.5 | 0.955 905 | 1.855 923 | 2.901 958 | 4.051 | 1.208
20| 1.033 | .745}1 1.949 746 | 2.866 722 | 3.985 | 0.965
25| 1.031 701 1.921 751 | - 2.922 688 | 4.123 | 0.955
3.0 0.942 .688 1.855 713 | 2944 651 | 3.728 | 0.888
3.5 1.303 599 | 2.102 654 | 3.234 611 | 3.911 | 0.833
n = 100 :
1.0} 1.041 256 | 1.932 231 | 2.569 058 | 3.855 .053
1.5 1.031 178 1 1.929 189 | 2.933 039 | 4.055 037
20| 1.013 093 | 1.998 A19 | 2977 015 | 4.018 021
25| 1.033 069 | 2.043 109 | 3.022 013 | 3.961 020
3.0 | 1.033 066 | 1.966 .081 2.966 012 | 3.899 017
3.5 1.044 .061 1.944 072 | 2955 011 | 3.985 015
Table 5:' Mean and Variance of f,,8,,02,0; for a multiple regression model

(Bo = 1,68, = 2,05 = 3,83 = 4) estimated with L,-method on 500 samples of size
n = 50, n = 100.
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CASE 6 o, = 0.01 R2,,=099

p I M(By) | V(Bo) I M(ﬂl‘) l V(B,) (l) M(B,) l V(B,) l M(ﬁs)‘] V(ﬁ3)
n=>5 .

1.0 1.164 921 2.121 967 3.134 .855 3.337 | 1.345
1.5 0.988 .820 1.888 .836 2.885 .829 4.041 | 1.091
2.0 1.025 794 1 1.958 | .783 2.832 .769 3.978 | 1.032
2.5 1.039 733 1.942 137 2.921 |  .691 4.077 | 0.991
3.0 0.966 703 1.887 701 2.933 612 3.755 | 0.903
3.5 1.246 .588 2.115 651 | 3.233 .609 3.945 | 0.847
n=100 ~ A
1.0 1.044 .145 1.966 | = .188 2.945. .029 3.844 .038
1.5 1.036 121 1.951 .169 2.901 .024 4.045 032 |
2.0 1.009 .095 1.999 121 2.971 .016 4.019 021
2.5 1.022 .082 2.039 .105 3.021 .015 3.933 .020
3.0 1.027 0731 1.975 083 | 2.977 .013 3.799 017
3.5 1.033 .062 1.961 071 2.933 011 3.965 .015

Table 6: Mean and Variance of f,,0; ,,82,,33 for a multiple regression model
(Bo = 1,8, = 2,8y = 3,03 = 4) estimated with L,-method on 500 samples of size
n = 50, n = 100.

CASE 1,35 o,=1 RZ , =0.66
P 1.0 1.5 2.0 2.5 3.0 35
:31|ﬁ2 51!ﬂ2 ,31|,32 ,31]i32 ﬂllﬂz ﬂllﬁz
' n = 50 :

L, 2211813121010 (|11}12|14}12}|18]|13
2111711314 (08|09(08}(09(13112{17]13
A n = 100
L, 181614 (11]10{10}1.1(11]12|11(14/|15
L 1811511310109 0.9 1.1]110(12|11]|13|13

Pmin

Table 7: Relative efficiency of L,-norm- estimators compared to the least squares
(parameter 3y, 3,). _
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CASE 24,6 . 0,=001 . R2,,=0.99
P 1.0 15 | 20 25 30 | 35
/81 I 132 /61| :32 IBII rB2 /81] /82 ﬂl l /32 IBII 132

I, |12]11]12]12]10][10]11]12][13]12][15]12
1.3112113[13109[08[090|11({14|12]|14}1.2
s - n=100
L, 1211111411 |10(10(12|11 (1211|1311
L 11111212 (11|09|10|10}|12|11{13 |12

Pmin

Table 8: Relative efficiency of L,-norm estimators with respect to the least squares
(parameter 3;, 5).

7 Conclusions

In this ending section we underline the objectives reached with our simulation plan.
In this study the L,-norm methods are considered not in order to reduce the multi-
collinearity in the model, but with the aim of seeing the improvements in the parameter
estimation.

Looking at the simulation results we note that the improvement using L, estimators.
instead of least squares is more evident in the case 0, = 1 RZ ;5 = 0,66 (medium mul-
ticollinearity) than in the case o, = 0,01 R% 5, = 0,99 (strong multicollinearity).
That is due to the characteristics of L, methods that are adaptive procedures related
to the erratic component of the model and not related to the deterministic one.
Finally, the simulation studies show how our algorithm (L,,_, ) achieves more efficient
estimates for the regression parameters when compared with the least squares proce-
dure. A

In particular, using the L, and the L,_, method , a better performance, in terms of
the variances of the parameter estimates, is always obtained in the case of nonnor-
mal symmetric distributions compared the least squares situation also considering a
model with collinear regressors.
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